Changes and Factors Determining the Efficiency of Cattle Farming in the State of Pará, Brazilian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Analysis
2.2.1. Data Envelopment Analysis (DEA)
- ▪
- h0 is the efficiency of the DMU under analysis;
- ▪
- vi is the weight calculated for input i, i = 1, …, n;
- ▪
- uj is the weight calculated for the product j, j = 1, …, n;
- ▪
- xi0 is the amount of input i for the DMU under analysis;
- ▪
- yi0 is the quantity of product j for the DMU under analysis;
- ▪
- v is the numerator scale return variable;
- ▪
- κ is the number of the DMU under analysis;
- ▪
- n is the number of inputs;
- ▪
- m is the number of products.
2.2.2. Malmquist Index
- ▪
- is the change in productivity of DMU 0;
- ▪
- is the frontier-shift effect of DMU 0;
- ▪
- is the DMU 0 catch-up effect;
- ▪
- is the distance from DMU 0 in period t + 1 relative to the boundary of base period t;
- ▪
- is the distance from DMU 0 in base period t relative to the boundary of base period t;
- ▪
- is the distance from DMU 0 in period t + 1 relative to the boundary of period t + 1;
- ▪
- is the distance from DMU 0 in base period t relative to the boundary of period t + 1.
2.2.3. Tobit Regression
- ▪
- VPij: the value of soybean production in microregion j;
- ▪
- VPj: the value of agricultural production in the microregion j;
- ▪
- VPiA: the value of soybean production in the state of Pará;
- ▪
- VPA: the value of agricultural production in the state of Pará.
- ▪
- is the natural logarithm of the inverse of the efficiency score in the year 2017, that is, the natural logarithm of the inefficiency score;
- ▪
- β indicates the parameters or coefficients to be estimated;
- ▪
- is the natural logarithm of each contextual variable, except the dummy variable used for soybean specialization.
3. Results
3.1. Efficiency Analysis between 2006 and 2017
3.2. Determining Factors of Efficiency
4. Discussion
4.1. Efficiency Factors: Non-Family Agriculture, Livestock Credit, and Land Price
4.2. Inefficiency Factors: Deforestation and Specialization in Soybean
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. How to feed the World in 2050; FAO: Rome, Italy, 2009; Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf (accessed on 15 November 2021).
- Food and Agriculture Organization of the United Nations. Food and Agriculture Data [Database]. 2023. Available online: https://www.fao.org/faostat/en/#home (accessed on 17 May 2023).
- Instituto Brasileiro de Geografia e Estatística. Pesquisa Pecuária Municipal [Database]. 2023. Available online: https://sidra.ibge.gov.br/pesquisa/ppm/tabelas (accessed on 11 February 2023).
- De Freitas Junior, A.M.; de Barros, P.H.B. Cattle’s expansion to the legal amazon: Spatial externalities, credit market access and intensification of production. Nov. Econ. 2021, 31, 303–333. [Google Scholar] [CrossRef]
- Cederberg, C.; Persson, U.M.; Neovius, K.; Molander, S.; Clift, R. Including carbon emissions from deforestation in the carbon footprint of Brazilian beef. Environ. Sci. Technol. 2011, 45, 1773–1779. [Google Scholar] [CrossRef]
- Ministério do Desenvolvimento, Indústria, Comércio e Serviços. Comex Stat [Database]. 2023. Available online: http://comexstat.mdic.gov.br/pt/home. (accessed on 15 November 2021).
- Macedo, L.O.B. Modernização da pecuária de corte bovina no Brasil e a importância do crédito rural. Agroana 2006, 25, 35–36. [Google Scholar]
- Instituto Nacional de Pesquisas Espaciais. Desmatamento nos Municípios [Database]. 2023. Available online: http://www.dpi.inpe.br/prodesdigital/prodesmunicipal.php (accessed on 11 February 2023).
- Fearnside, P.M. Deforestation in Brazilian Amazonia: History, rates, and consequences. Conserv. Biol. 2005, 19, 680–688. [Google Scholar] [CrossRef]
- Ferreira, M.D.P.; Coelho, A.B. Desmatamento Recente nos Estados da Amazônia Legal: Uma análise da contribuição dos preços agrícolas e das políticas governamentais. Rev. Econ. Sociol. Rural. 2015, 53, 91–108. [Google Scholar] [CrossRef] [Green Version]
- Brazil. Plano de ação Para a Prevenção e Controle Do Desmatamento na Amazônia Legal (PPCDAm): Fase I. 2004. Available online: http://redd.mma.gov.br/pt/ (accessed on 15 November 2021).
- Banco Central do Brasil. Resolução nº 3.545, de 29 de Fevereiro de 2008: Altera o MCR 2-1 Para Estabelecer Exigência de Documentação Regularidade Comprobatória Ambiental E de Outras Condicionantes, Para Fins de Financiamento Agropecuário No Bioma Amazônia. 2008. Available online: https://www.bcb.gov.br/pre/normativos/res/2008/pdf/res_3545_v1_O.pdf (accessed on 15 November 2021).
- Barreto, P.; Pereira, R.; Baima, S. Os Potenciais Impactos de Fiscalizar Frigoríficos sem Compromissos Contra o Desmatamento; Imazon: Belém, Brazil, 2018. [Google Scholar]
- Brazil. Lei nº 12.651, 25 de maio de 2012. Dispõe Sobre a Proteção da Vegetação Nativa; Altera as Leis nºs 6.938, de 31 de Agosto de 1981, 9.393, de 19 de Dezembro de 1996, e 11.428, de 22 de Dezembro de 2006; Revoga as Leis nºs 4.771, de 15 de Setembro de 1965, e 7.754, de 14 de Abril de 1989, e a Medida Provisória nº 2.166-67, de 24 de Agosto de 2001; e dá Outras Providências. 2012. Available online: https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm (accessed on 5 May 2023).
- Nepstad, D.; McGrath, D.; Stickler, C.; Alencar, A.; Azevedo, A.; Swette, B.; Bezerra, T.; Digiano, M.; Shimada, J.; da Motta, R.S.; et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 2014, 344, 1118–1123. [Google Scholar] [CrossRef]
- Gollnow, F.; Lakes, T. Policy changes, land use, and agriculture: The case of soy production and cattle ranching in Brazil, 2001–2012. Appl. Geogr. 2014, 55, 203–211. [Google Scholar] [CrossRef]
- Fearnside, P. Deforestation of the Brazilian Amazon. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Stabile, M.C.; Guimarães, A.L.; Silva, D.S.; Ribeiro, V.; Macedo, M.N.; Coe, M.T.; Pinto, E.; Moutinho, P.; Alencar, A. Solving Brazil’s land use puzzle: Increasing production and slowing Amazon deforestation. Land Use Policy 2019, 91, 104362. [Google Scholar] [CrossRef]
- Filho, M.B.D.; Lopes, M.D.S. Histórico e desafios da pecuária bovina na Amazônia. In Documentos 454; Embrapa Amazônia Oriental: Belém, Brazil, 2020; 34p. [Google Scholar]
- Dos Santos, W.M.; dos Santos, M.A.S.; Lopes, M.L.B.; Martins, C.M.; Soares, B.C.; de Loureiro, B.J.P.B.; Costa, J.D.S.; Martins, G.C.C.; Saraiva, J.d.S.; Costa, N.L.; et al. Socioeconomic, Environmental, and Institutional Determinants of Cattle Ranching in the State of Pará, Brazilian Amazon. J. Agric. Stud. 2022, 10, 100–117. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A Gen. 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D. Estimating most productive scale size using data envelopment analysis. Eur. J. Oper. Res. 1984, 17, 35–44. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário 2006: Segunda Apuração [Database]. 2009. Available online: https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/censo-agropecuario-2006/segunda-apuracao (accessed on 15 November 2021).
- Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário 2017: Resultados Definitivos [Database]. 2019. Available online: https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/censo-agropecuario-2017/resultados-definitivos (accessed on 15 November 2021).
- Instituto Brasileiro de Geografia e Estatística. Cidades e Estados. 2022. Available online: https://www.ibge.gov.br/cidades-e-estados/pa/.html (accessed on 17 January 2022).
- Instituto Brasileiro de Geografia e Estatística. Brasil: Informações Ambientais. 2022. Available online: https://www.ibge.gov.br/geociencias/cartas-e-mapas/informacoes-ambientais.html (accessed on 17 January 2022).
- Bogetoft, P.; Otto, L.; Otto, M.L. Package ‘Benchmarking’. 2019. Available online: https://cran.r-project.org/web/packages/Benchmarking/index.html (accessed on 4 October 2021).
- Kleiber, C.; Zeileis, A.; Zeileis, M.A. R Package Version: Package ‘AER’. 2020. Available online: https://cran.r-project.org/web/packages/AER/AER.pdf (accessed on 17 January 2022).
- Lacerda, D.P.; Camargo, L.F.R.; Piran, F.S. Análise e Gestão da Eficiência: Aplicação em Sistemas Produtivos de Bens e de Serviços, 1st ed.; Elsevier Brasil: Rio de Janeiro, Brasil, 2018. [Google Scholar]
- Peña, C.R. Um modelo de avaliação da eficiência da administração pública através do método análise envoltória de dados (DEA). Rev. Adm. Contemp. 2008, 12, 83–106. [Google Scholar] [CrossRef] [Green Version]
- Gomes, A.P. Impactos Das Transformações da Produção de Leite No Número de Produtores e Requerimentos de Mão-de-Obra e Capital. Ph.D. Thesis, Federal University of Viçosa, Viçosa, Brazil, 1999. [Google Scholar]
- De Abreu, U.G.P.; Lopes, P.S.; Torres, R.d.A.; Santos, H.d.N. Evaluation of new management technologies on the performance and culling rate of Pantanal beef cows. Rev. Bras. De Zoot. 2006, 35, 2496–2503. [Google Scholar] [CrossRef] [Green Version]
- De Mello, J.C.C.B.S.; Gomes, E.G.; de Abreu, U.G.P.; de Carvalho, T.B.; de Zen, S. Análise de Desempenho de Sistemas de Produção Modais de Pecuária de Cria no Brasil. Production 2013, 23, 877–886. [Google Scholar] [CrossRef] [Green Version]
- Bayma, M.M.A. Análise da Eficiência da Pecuária Leiteira No Oeste da Amazônia: Um Estudo de Caso Sobre a Produção de Leite No Estado do Acre/Brasil; Embrapa: Recife, Brazil, 2016. [Google Scholar]
- Pellenz, J.D.L.V.; de Almeida, M.; Lirio, V.S. Eficiência técnica agropecuária e desmatamento: Análise espacial para a Amazônia legal brasileira. Estúd. Económ. 2021, 38, 119–146. [Google Scholar] [CrossRef]
- Silva, J.V.B.D.; Rosano-Peña, C.; Martins, M.M.V.; Tavares, R.C.; Silva, P.H.B.D. Eco-efficiency of agricultural production in the Brazilian Amazon: Determinant factors and spatial dependence. Rev. Econ. Sociol. Rural 2021, 60, 1–21. [Google Scholar] [CrossRef]
- Banker, R.D.; Gifford, J.L. A Relative Efficiency Model for the Evaluation of Public Health Nurse Productivity; Carnegie Mellon University: Pittsburgh, PA, USA, 1988. [Google Scholar]
- Avkiran, N.K. Stability and integrity tests in data envelopment analysis. Socio-Econ. Plan. Sci. 2007, 41, 224–234. [Google Scholar] [CrossRef]
- Fundação Getúlio Vargas. Índice Geral de Preços: IGP-DI. 2021. Available online: https://portalibre.fgv.br/igp (accessed on 10 December 2021).
- Instituto Brasileiro de Geografia e Estatística. Confidencialidade do IBGE: Procedimentos Adotados na Preservação do Sigilo Das Informações Individuais nas Divulgações de Resultados das Operações Estatísticas; IBGE: Rio de Janeiro, Brazil, 2018.
- Caves, D.W.; Christensen, L.R.; Diewert, W.E. The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica 1982, 50, 1393–1414. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity growth, technical progress, and efficiency change in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Tobin, J. Estimation of relationships for limited dependent variables. Econom. J. Econom. Soc. 1958, 1, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Banco Central do Brasil. Matriz de Dados do Crédito Rural—MDCR. Available online: https://dadosabertos.bcb.gov.br/dataset/matrizdadoscreditorural (accessed on 10 December 2021).
- Instituto de Terras do Pará. Tabela de Referência Hectare/Município/Ano. 2021. Available online: http://portal.iterpa.pa.gov.br/tabela-de-referencia-do-valor-hectare-municipio-ano/ (accessed on 10 December 2021).
- Suzigan, W.; Furtado, J.; Garcia, R.; Sampaio, S.E. Coeficientes de Gini locacionais–GL: Aplicação à indústria de calçados do Estado de São Paulo. Nov. Econ. 2003, 13, 39–60. [Google Scholar]
- Wooldridge, J.M. Introductory Econometrics: A Modern Approach, 7th ed.; Cengage Learning: Boston, MA, USA, 2018. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis, 7th ed.; Prentice Hall: Hoboken, NJ, USA, 2009. [Google Scholar]
- Brazil. Estabelece as Diretrizes para a Formulação da Política Nacional da Agricultura Familiar e Empreendimentos Familiares Rurais. 2006. Available online: https://www.planalto.gov.br/ccivil_03/_ato2004-2006/2006/lei/l11326.htm (accessed on 15 November 2021).
- Marchand, S. The relationship between technical efficiency in agriculture and deforestation in the Brazilian Amazon. Ecol. Econ. 2012, 77, 166–175. [Google Scholar] [CrossRef]
- Ferreira, M.D.P.; Féres, J.G. Farm size and Land use efficiency in the Brazilian Amazon. Land Use Policy 2020, 99, 104901. [Google Scholar] [CrossRef]
- Caviglia-Harris, J.L. Agricultural innovation and climate change policy in the Brazilian Amazon: Intensification practices and the derived demand for pasture. J. Environ. Econ. Manag. 2018, 90, 232–248. [Google Scholar] [CrossRef]
- Araujo, C.; Bonjean, C.A.; Combes, J.L.; Motel, P.C.; Reis, E.J. Property rights and deforestation in the Brazilian Amazon. Ecol. Econ. 2009, 68, 2461–2468. [Google Scholar] [CrossRef] [Green Version]
- De Delgado, J.S. Competitividade da agropecuária brasileira: Uma análise juseconômica. J. Law Sustain. Dev. 2017, 5, 56–75. [Google Scholar] [CrossRef]
- Merry, F.; Amacher, G.; Lima, E. Land values in frontier settlements of the Brazilian Amazon. World Dev. 2008, 36, 2390–2401. [Google Scholar] [CrossRef]
- Bowman, M.S.; Soares-Filho, B.S.; Merry, F.D.; Nepstad, D.C.; Rodrigues, H.; Almeida, O.T. Persistence of cattle ranching in the Brazilian Amazon: A spatial analysis of the rationale for beef production. Land Use Policy 2012, 29, 558–568. [Google Scholar] [CrossRef]
- Thalês, M.; Poccard-Chapuis, R.; Ruivo, M.D.L. Cartografia das frentes pioneiras e contribuição à análise do desmatamento no Pará. Mercator 2021, 20, e20018. [Google Scholar]
- Dos Santos, M.A.S.; Lourenço Júnior, J.D.B.; de Santana, A.C.; Homma, A.K.O.; de Andrade, S.J.T.; Maciel, A.G. Caracterização do nível tecnológico da pecuária bovina na Amazônia Brasileira. Rev. Ciências Agrárias Amazon. J. Agric. Environ. Sci. 2017, 60, 103–111. [Google Scholar] [CrossRef]
- Olimpio, S.C.M.; Gomes, S.C.; Santana, A.C.D. Patterns of production and sustainability of cattle ranching in the state of Pará-Brazilian Amazon. Semin. Ciências Agrárias 2022, 43, 541–560. [Google Scholar] [CrossRef]
- de Sousa, S.B.; Junior, L.G.F.; Miziara, F.; de Morais, H.A. Crédito Rural e Atividade Pecuária Bovina (2013–2016): Distribuição espacial, finalidades e destinações. Raega-O Espaço Geográfico Em Análise 2021, 50, 183–205. [Google Scholar] [CrossRef]
- dos Santos, M.A.S.; Júnior, J.D.B.L.; de Santana, A.C.; Homma, A.K.O.; Martins, C.M.; de Andrade, S.J.T.; Silva, A. Quantitative analysis of the beef cattle industry in the state of Pará, Brazil. Semin. Ciências Agrárias 2018, 39, 747–756. [Google Scholar] [CrossRef] [Green Version]
- Domingues, M.S.; Bermann, C. O arco de desflorestamento na Amazônia: Da pecuária à soja. Ambient. Soc. 2012, 15, 1–22. [Google Scholar] [CrossRef]
- Moreira, J.G.; Conterato, M.A.; Matte, A. Productive transformations and land use changes in the Brazilian Pampa: Influences of soybean advances in beef cattle. CAMPO-TERRITÓRIO Rev. Geogr. Agrária 2019, 14, 179–207. [Google Scholar]
- Silva, C.S.D.; Viana, J.G.A. Instituições na pecuária de corte e sua influência sobre o avanço da sojicultura na Campanha Gaúcha-Brasil. Rev. Econ. Sociol. Rural 2020, 58, 1–20. [Google Scholar] [CrossRef]
- Siani, S.R.; Hayashi, C. Transformações urbanas no sudeste do Pará e os impactos recentes trazidos pelas fazendas de soja. Res. Soc. Dev. 2021, 10, e47101018416. [Google Scholar] [CrossRef]
- Farias, M.H.C.S.; Beltrão, N.E.S.; Santos, C.A.; Cordeiro, Y.E.M. Impacto dos assentamentos rurais no desmatamento da Amazônia. Mercator 2018, 17, 1–20. [Google Scholar] [CrossRef]
- Kalamandeen, M.; Gloor, E.; Mitchard, E.; Quincey, D.; Ziv, G.; Spracklen, D.; Spracklen, B.; Adami, M.; Aragão, L.E.O.C.; Galbraith, D. Pervasive rise of small-scale deforestation in Amazonia. Sci. Rep. 2018, 8, 1600. [Google Scholar] [CrossRef] [Green Version]
- Sauer, S. Soy expansion into the agricultural frontiers of the Brazilian Amazon: The agribusiness economy and its social and environmental conflicts. Land Use Policy 2018, 79, 326–338. [Google Scholar] [CrossRef]
- Coelho, A.; Aguiar, A.; Toledo, P.; Araújo, R.; do Canto, O.; Folhes, R.; Adami, M. Rural landscapes and agrarian spaces under soybean expansion dynamics: A case study of the Santarém region, Brazilian Amazonia. Reg. Environ. Chang. 2021, 21, 100. [Google Scholar] [CrossRef]
- Alves, E.D.O.; de Oliveira, N.M. Regional development of the Southeast of Pará state: Based on the application of the regional development index. Desenvolv. Reg. Debate 2020, 10, 512–534. [Google Scholar] [CrossRef]
- Crispim, S.N.S.; Frabetti, G.L. Exploração da terra e do trabalho na fronteira agropecuária da Amazônia Oriental: O caso de São Félix do Xingu (PA). Cad. CEPEC 2020, 9, 116–139. [Google Scholar] [CrossRef]
- Conte, O.; Prando, A.M.; Castro, C.D.; Balbinot Junior, A.A.; Campos, L.J.M.; Hirakuri, M.H.; El-Husny, J.C. A Evolução da Produção de Soja na Macrorregião Sojícola 5. In Documento 405; Embrapa Soja: Brasília, Brazil, 2018; pp. 23–61. [Google Scholar]
- Castelo, T.B.; Almeida, O.T.D. Desmatamento e uso da terra no Pará. Rev. Pol. Agric. 2015, 24, 99–111. [Google Scholar]
- Carvalho, F.S.; Thompson, K.N.N.; Lima, W.A.S.; Santos, N.D.F.A.; Melo, M.R.D.S.; De Souza, V.Q.; Borges, L.D.S.; Guerreiro, A.C. Dynamics of land use, on agricultural sector, in Paragominas, Pará State. Rev. Agroecossist. 2018, 9, 148–163. [Google Scholar] [CrossRef] [Green Version]
- Wesz Junior, V.J.; Kato, K.; Rente Leão, A.; Leão, S.A.; de Lima, M.D.S.B. Dinâmicas recentes do agronegócio no Oeste do Pará (Brasil): Expansão da soja e estruturação de corredores logísticos. Mundo Agrar. 2021, 22, 174. [Google Scholar] [CrossRef]
- Souza, G.D.S.E.; Gomes, E.G.; Alves, E.R.D.A.; Gasques, J.G. Technological progress in the Brazilian agriculture. Socio-Econ. Plan. Sci. 2020, 72, 100879. [Google Scholar] [CrossRef]
- Hamid, S.S.; Aguiar, A.F.; de Costa, K.M.; Vieira, R.D.C.; dos Santos, M.A.S.; Brabo, M.F.; Silva, P.A. Crescimento e nível de especialização da produção de soja no estado Pará. In Estudos Aplicados em Plantas Cultivadas na Amazônia Paraense; RFB: Belém, Brazil, 2021; Volume 1, pp. 47–61. [Google Scholar] [CrossRef]
Variables | Class | Data Source |
---|---|---|
Number of establishments with cattle 1 (n) | Input | Agricultural Census [24,25] |
Number of people employed in cattle 2 (n) | Input | Agricultural Census [24,25] |
Area with pasture in establishments with cattle 3 (ha) | Input | Agricultural Census [24,25] |
Value of the sale of cattle and milk in establishments (1000 reais) | Output | Agricultural Census [24,25] |
Before Removing Outliers | n | Interval | Mean ± SD | CV (%) | ||||
Reference year: 2006 | ||||||||
Number of establishments (1000 units.) | 21 | 0.07 | - | 8.51 | 3.00 | ± | 2.71 | 90.55 |
People employed (1000 units.) | 21 | 0.24 | - | 22.74 | 8.80 | ± | 7.51 | 85.31 |
Pasture area (1000 ha.) | 21 | 17.51 | - | 1635.71 | 443.89 | ± | 450.33 | 101.45 |
Financial income (1000 reais) 1 | 21 | 7.13 | - | 740.70 | 212.76 | ± | 229.21 | 107.73 |
Reference year: 2017 | ||||||||
Number of establishments (1000 units.) | 21 | 0.05 | - | 12.71 | 4.65 | ± | 4.01 | 86.09 |
People employed (1000 units.) | 21 | 0.14 | - | 30.90 | 11.41 | ± | 10.29 | 90.18 |
Pasture area (1000 ha.) | 21 | 0.49 | - | 2.380.62 | 583.20 | ± | 659.30 | 113.05 |
Financial income (1000 reais) 1 | 21 | 0,81 | - | 1485.13 | 466.31 | ± | 469.49 | 100.68 |
After removing outliers | n | Interval | Mean ± SD | CV (%) | ||||
Reference year: 2006 | ||||||||
Number of establishments (1000 units.) | 17 | 0.15 | - | 8.51 | 3.65 | ± | 2.60 | 71.30 |
People employed (1000 units.) | 17 | 0.53 | - | 22.74 | 10.70 | ± | 7.10 | 66.41 |
Pasture area (1000 ha.) | 17 | 17.56 | - | 1.635.71 | 537.43 | ± | 452.03 | 84.11 |
Financial income (1000 reais) 1 | 17 | 16.29 | - | 740.70 | 258.87 | ± | 231.96 | 89.60 |
Reference year: 2017 | ||||||||
Number of establishments (1000 units.) | 17 | 0.23 | - | 12.71 | 5.66 | ± | 3.79 | 66.98 |
People employed (1000 units.) | 17 | 0.47 | - | 30.90 | 13.93 | ± | 9.85 | 70.75 |
Pasture area (1000 ha.) | 17 | 11.59 | - | 2380.62 | 717.40 | ± | 665.49 | 92.76 |
Financial income (1000 reais) 1 | 17 | 21.14 | - | 1485.13 | 558.69 | ± | 475.24 | 85.06 |
Variables | Concept | Data Source |
---|---|---|
Technical assistance | Proportion of livestock establishments that receive technical assistance in relation to the total number of livestock establishments. | 2017 Agricultural Census [25] |
Producer Experience | Proportion of livestock producers under the age of 55 in relation to the total number of livestock producers. | 2017 Agricultural Census [25] |
Non—Family farming | Proportion of livestock establishments that are classified as non-family farming in relation to the total number of livestock establishments. | 2017 Agricultural Census [25] |
Specialization in soybean | Locational Quotient of the value of soybean production in relation to the value of agricultural production | 2017 Agricultural Census [25] |
Livestock credit | Average value of livestock rural credit operations from 2015 to 2017 | Rural Credit Data Matrix [45] |
Deforestation | Deforested area in the period from 2015 to 2017. | PRODES Project [8] |
Land price | Average land price in the year 2017. | Value per hectare/city/year [46] |
Variables | n | Interval | Mean ± SD | CV (%) | ||||
---|---|---|---|---|---|---|---|---|
Technical assistance | 17 | 0.04 | - | 0.22 | 0.12 | ± | 0.07 | 55.56 |
Producer Experience | 17 | 0.64 | - | 0.77 | 0.69 | ± | 0.03 | 4.86 |
Non-Family farming | 17 | 0.19 | - | 0.43 | 0.27 | ± | 0.07 | 25.57 |
Specialization in soybean | 17 | 0.00 | - | 4.00 | 0.70 | ± | 1.31 | 186.79 |
Livestock credit (1000 reais) 1 | 17 | 1.12 | - | 312.37 | 118.07 | ± | 105.82 | 89.63 |
Deforestation (km2) | 17 | 6.80 | - | 2394.20 | 419.27 | ± | 609.79 | 145.44 |
Land price (1000 reais/ha) 1 | 17 | 0.63 | - | 2.96 | 1.26 | ± | 0.60 | 47.48 |
Microregion | Mesoregion | 2006 | 2017 |
---|---|---|---|
Almeirim | Baixo Amazonas | 0.6055 | 0.6839 |
Altamira | Southwest of Pará | 0.5265 | 0.7487 |
Arari | Marajó | 1 | 0.5518 |
Bragantina | Northeast of Pará | 0.7319 | 0.9970 |
Conceição do Araguaia | Southeast of Pará | 0.6917 | 0.4960 |
Guamá | Northeast of Pará | 0.6179 | 0.6336 |
Itaituba | Southwest of Pará | 0.4180 | 0.5516 |
Marabá | Southeast of Pará | 0.8904 | 0.9215 |
Óbidos | Baixo Amazonas | 0.4424 | 0.4596 |
Paragominas | Southeast Pará | 0.8165 | 0.7219 |
Parauapebas | Southeast of Pará | 1 | 1 |
Redenção | Southeast of Pará | 1 | 1 |
Salgado | Northeast of Pará | 1 | 1 |
Santarém | Baixo Amazonas | 0.6522 | 0.4714 |
São Félix do Xingu | Southeast of Pará | 0.9250 | 1.0000 |
Tomé-Açu | Northeast of Pará | 0.8856 | 0.7915 |
Tucuruí | Southeast of Pará | 0.5703 | 0.8217 |
Frequency | |||
Efficient (value = 1) | 4 | 5 | |
Inefficient (value < 1) | 13 | 12 | |
Minimum | 0.4180 | 0.4596 | |
Mean | 0.7514 | 0.7559 | |
SD | 0.2034 | 0.2047 | |
CV (%) | 27.07 | 27.08 |
Microregion | Mesoregion | Frontier-Shift | Catch-Up | Malmquist |
---|---|---|---|---|
Almeirim | Baixo Amazonas | 1.4369 | 1.1296 | 1.6231 |
Altamira | Southwest of Pará | 1.7735 | 1.4222 | 2.5223 |
Arari | Marajó | 1.4081 | 0.5518 | 0.7770 |
Bragantina | Northeast of Pará | 1.6703 | 1.3623 | 2.2753 |
Conceição do Araguaia | Southeast of Pará | 1.5899 | 0.7170 | 1.1400 |
Guamá | Northeast of Pará | 1.6385 | 1.0255 | 1.6803 |
Itaituba | Southwest of Pará | 1.7044 | 1.3197 | 2.2492 |
Marabá | Southeast of Pará | 1.6625 | 1.0350 | 1.7206 |
Óbidos | Baixo Amazonas | 1.6550 | 1.0391 | 1.7197 |
Paragominas | Southeast of Pará | 1.6671 | 0.8841 | 1.4738 |
Parauapebas | Southeast of Pará | 1.7129 | 1 | 1.7129 |
Redenção | Southeast of Pará | 1.6380 | 1 | 1.6380 |
Salgado | Northeast of Pará | 1 | 1 | 1 |
Santarém | Baixo Amazonas | 1.6424 | 0.7227 | 1.1870 |
São Félix do Xingu | Southeast of Pará | 1.8620 | 1.0811 | 2.0129 |
Tomé-Açu | Northeast of Pará | 1.5905 | 0.8938 | 1.4215 |
Tucuruí | Southeast of Pará | 1.6288 | 1.4408 | 2.3468 |
Frequency | ||||
Increased (value > 1) | 16 | 9 | 15 | |
Without changes (value = 1) | 1 | 3 | 1 | |
Decreased (value < 1) | 0 | 5 | 1 | |
Minimum | 1.0000 | 0.5518 | 0.7770 | |
Maximum | 1.8620 | 1.4408 | 2.5223 | |
Mean | 1.6048 | 1.0367 | 1.6765 | |
SD | 0.1092 | 0.2490 | 0.4752 | |
CV (%) | 11.74 | 24.02 | 29.35 |
Variable | Coefficient | Std. Error | z-Value | p-Value | VIF |
---|---|---|---|---|---|
(Intercept) | 3.1471 | 0.9377 | 3.3560 | 0.0008 | - |
Technical assistance | 0.0466 ns | 0.1594 | 0.2920 | 0.7699 | 5.4653 |
Producer Experience | 0.4749 ns | 1.0103 | 0.4700 | 0.6383 | 3.3843 |
Non-Family farming | −0.9360 *** | 0.3045 | −3.0740 | 0.0021 | 1.4463 |
Specialization in soybean | 0.3473 *** | 0.1195 | 2.9060 | 0.0037 | 1.4301 |
Livestock credit | −0.1078 ** | 0.0479 | −2.2510 | 0.0244 | 4.1855 |
Deforestation | 0.1041 * | 0.0548 | 1.8990 | 0.0576 | 4.6231 |
Land price | −0.5002 *** | 0.1785 | −2.8020 | 0.0051 | 2.8398 |
Log (scale) | −1.8679 *** | 0.2000 | −9.3380 | 0.0000 | - |
Pseudo R2 | 0.9146 | ||||
Pseudo Adjusted R2 | 0.8482 | ||||
Log-likelihood | 3.869 *** | 0.0000 | |||
Wald-statistic | 40.860 *** | 0.0000 | |||
Shapiro–Wilk test | 0.9321 | 0.2356 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamid, S.S.; Santos, M.A.S.d.; Aguiar, A.F.; Andreatta, T.; Costa, N.L.; Lopes, M.L.B.; Lourenço-Júnior, J.d.B. Changes and Factors Determining the Efficiency of Cattle Farming in the State of Pará, Brazilian Amazon. Sustainability 2023, 15, 10187. https://doi.org/10.3390/su151310187
Hamid SS, Santos MASd, Aguiar AF, Andreatta T, Costa NL, Lopes MLB, Lourenço-Júnior JdB. Changes and Factors Determining the Efficiency of Cattle Farming in the State of Pará, Brazilian Amazon. Sustainability. 2023; 15(13):10187. https://doi.org/10.3390/su151310187
Chicago/Turabian StyleHamid, Sheryle S., Marcos Antônio S. dos Santos, Albert F. Aguiar, Tanice Andreatta, Nilson L. Costa, Maria Lúcia B. Lopes, and José de B. Lourenço-Júnior. 2023. "Changes and Factors Determining the Efficiency of Cattle Farming in the State of Pará, Brazilian Amazon" Sustainability 15, no. 13: 10187. https://doi.org/10.3390/su151310187
APA StyleHamid, S. S., Santos, M. A. S. d., Aguiar, A. F., Andreatta, T., Costa, N. L., Lopes, M. L. B., & Lourenço-Júnior, J. d. B. (2023). Changes and Factors Determining the Efficiency of Cattle Farming in the State of Pará, Brazilian Amazon. Sustainability, 15(13), 10187. https://doi.org/10.3390/su151310187