The Efficiency of Nanoparticles on Improving Seed Germination and Mitigating Ammonium Stress of Water Spinach (Ipomoea aquatica Forssk.) and Hami Melon (Cucumis melo L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanomaterials and Crop Seeds
2.2. Experimental Setup for Seed Germination
2.3. Seed Germination and Seedling Growth Assay
2.4. Experimental Setup for Ammonium Stress
2.5. Determination of N Content and Antioxidant Enzyme Activity
2.6. Statistical Analysis
3. Results
3.1. Seed Germination Parameters
3.2. Seedling Growth
3.3. Ammonium Stress Alleviation
3.4. Plant N Content
3.5. Antioxidant Enzyme Activities
4. Discussion
4.1. Effects of NPs on Seed Germination and Growth
4.2. Effects of NPs on Ammonium Stress Alleviation
4.3. Effects of NPs on Antioxidant Enzyme Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, Y.; Yang, T.; Xiang, W.; Li, S.; Fan, X.; Sha, L.; Kang, H.; Wu, D.; Zhang, H.; Zeng, J. Ammonium-nitrogen addition at the seedling stage does not reduce grain cadmium concentration in two common wheat (Triticum aestivum L.) cultivars. Environ. Pollut. 2021, 286, 117575. [Google Scholar] [CrossRef]
- Ahmed, M.; Rauf, M.; Mukhtar, Z.; Saeed, N.A. Excessive use of nitrogenous fertilizers: An unawareness causing serious threats to environment and human health. Environ. Sci. Pollut. Res. 2017, 24, 26983–26987. [Google Scholar] [CrossRef]
- Zhao, F.; Xin, X.; Cao, Y.; Su, D.; Ji, P.; Zhu, Z.; He, Z.J.N. Use of carbon nanoparticles to improve soil fertility, crop growth and nutrient uptake by corn (Zea mays L.). Nanomaterials 2021, 11, 2717. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Ding, Y.; Yin, X.; Raza, S. Optimising nitrogen fertilisation: A key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008–2014). Field Crops Res. 2017, 206, 1–10. [Google Scholar] [CrossRef]
- Rubio-Asensio, J.S.; Bloom, A. Inorganic nitrogen form: A major player in wheat and Arabidopsis responses to elevated CO2. J. Exp. Bot. 2017, 68, 2611–2625. [Google Scholar] [CrossRef] [Green Version]
- Setién, I.; Fuertes-Mendizabal, T.; González, A.; Aparicio-Tejo, P.M.; González-Murua, C.; González-Moro, M.B.; Estavillo, J.M. High irradiance improves ammonium tolerance in wheat plants by increasing N assimilation. J. Plant Physiol. 2013, 170, 758–771. [Google Scholar] [CrossRef] [Green Version]
- Bittsánszky, A.; Pilinszky, K.; Gyulai, G.; Komives, T. Overcoming ammonium toxicity. Plant Sci. 2015, 231, 184–190. [Google Scholar] [CrossRef]
- Britto, D.T.; Kronzucker, H.J. NH4+ toxicity in higher plants: A critical review. J. Plant Physiol. 2002, 159, 567–584. [Google Scholar] [CrossRef] [Green Version]
- Chairuangsri, S.; Whangchai, N.; Jampeetong, A. Responses of water spinach (Ipomoea aquatica Forssk.) on growth, morphology, uptake rate and nutrients allocation under high ammonium concentration. Chiang Mai J. Sci. 2014, 41, 324–333. [Google Scholar]
- Rajput, V.D.; Kumari, A.; Upadhyay, S.K.; Minkina, T.; Mandzhieva, S.; Ranjan, A.; Sushkova, S.; Burachevskaya, M.; Rajput, P.; Konstantinova, E.; et al. Can nanomaterials improve the soil microbiome and crop productivity? Agriculture 2023, 13, 231. [Google Scholar] [CrossRef]
- Durgude, S.A.; Ram, S.; Kumar, R.; Singh, S.V.; Singh, V.; Durgude, A.G.; Pramanick, B.; Maitra, S.; Gaber, A.; Hossain, A. Synthesis of Mesoporous Silica and graphene-based FeO and ZnO nanocomposites for nutritional biofortification and sustained the productivity of rice (Oryza sativa L.). J. Nanomater. 2022, 2022, 5120307. [Google Scholar] [CrossRef]
- Gupta, A.; Rayeen, F.; Mishra, R.; Tripathi, M.; Pathak, N. Nanotechnology Applications in Sustainable Agriculture: An Emerging Ecofriendly Approach. Plant Nano Biol. 2023, 4, 100033. [Google Scholar] [CrossRef]
- Hussain, M.; Shakoor, N.; Adeel, M.; Ahmad, M.A.; Zhou, H.; Zhang, Z.; Xu, M.; Rui, Y.; White, J.C. Nano-enabled plant microbiome engineering for disease resistance. Nano Today 2023, 48, 101752. [Google Scholar] [CrossRef]
- Guha, T.; Gopal, G.; Kundu, R.; Mukherjee, A. Nanocomposites for delivering agrochemicals: A comprehensive review. J. Agric. Food Chem. 2020, 68, 3691–3702. [Google Scholar] [CrossRef]
- Raskar, S.; Laware, S. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 467–473. [Google Scholar]
- Tiwari, D.; Dasgupta-Schubert, N.; Villaseñor Cendejas, L.; Villegas, J.; Carreto Montoya, L.; Borjas García, S. Interfacing carbon nanotubes (CNT) with plants: Enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl. Nanosci. 2014, 4, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Sallam, A.; Alqudah, A.M.; Dawood, M.F.; Baenziger, P.S.; Börner, A. Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. Int. J. Mol. Sci. 2019, 20, 3137. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Huang, J. Effects of nanoparticle hydroxyapatite on growth and antioxidant system in pakchoi (Brassica chinensis L.) from cadmium-contaminated soil. J. Nanomater. 2014, 2014, 470962. [Google Scholar] [CrossRef] [Green Version]
- Shah, T.; Latif, S.; Saeed, F.; Ali, I.; Ullah, S.; Alsahli, A.A.; Jan, S.; Ahmad, P. Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. J. King Saud Univ. Sci. 2021, 33, 101207. [Google Scholar] [CrossRef]
- Tratnyek, P.G.; Johnson, R.L. Nanotechnologies for environmental cleanup. Nano Today 2006, 1, 44–48. [Google Scholar] [CrossRef]
- Liu, W.; Wang, S.; Sun, H.; Zuo, Q.; Lai, Y.; Hou, J. Impact of nanometer hydroxyapatite on seed germination and root border cell characteristics. RSC Adv. 2015, 5, 82726–82731. [Google Scholar] [CrossRef]
- Cai, L.; Chen, J.; Liu, Z.; Wang, H.; Yang, H.; Ding, W. Magnesium oxide nanoparticles: Effective agricultural antibacterial agent against Ralstonia solanacearum. Front. Microbiol. 2018, 9, 790. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Li, X.; Pan, G.; Wu, Y.; Yang, C.; Kuang, X.; Liu, W. Effects of manganese stress on seed germination, and seedling physiological and biochemical characteristics of Cleome viscosa. Acta Prataculturae Sin. 2019, 28, 75–84. [Google Scholar]
- Hamdiah, S.; Karas, L.; Houšková, K.; Van Damme, K.; Attorre, F.; Vahalík, P.; Habrová, H.; Lvončík, S.; Eler, K.; Maděra, P. Seed Viability and Potential Germination Rate of Nine Endemic Boswellia Taxa (Burseraceae) from Socotra Island (Yemen). Plants 2022, 11, 1418. [Google Scholar] [CrossRef]
- Nahakpam, S.; Shah, K. Expression of key antioxidant enzymes under combined effect of heat and cadmium toxicity in growing rice seedlings. Plant Growth Regul. 2011, 63, 23–35. [Google Scholar] [CrossRef]
- Anand, K.V.; Anugraga, A.; Kannan, M.; Singaravelu, G.; Govindaraju, K. Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and seedling vigour of green gram (Vigna radiata L.). Mater. Lett. 2020, 271, 127792. [Google Scholar] [CrossRef]
- Jayarambabu, N.; Kumari, S.B.; Rao, V.K.; Prabhu, Y. Enhancement of growth in maize by biogenic-synthesized MgO nanoparticles. Int. J. Pure Appl. Zool. 2016, 4, 262–270. [Google Scholar]
- Sharma, P.; Gautam, A.; Kumar, V.; Guleria, P. In vitro exposure of magnesium oxide nanoparticles adversely affects the vegetative growth and biochemical parameters of black gram. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100483. [Google Scholar] [CrossRef]
- Seeger, E.M.; Baun, A.; Kästner, M.; Trapp, S. Insignificant acute toxicity of TiO2 nanoparticles to willow trees. J. Soils Sediments 2009, 9, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Kuang, L.; He, X.; Bai, W.; Ding, Y.; Zhang, Z.; Zhao, Y.; Chai, Z. Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 2010, 78, 273–279. [Google Scholar] [CrossRef]
- Wang, M.; Chen, L.; Chen, S.; Ma, Y. Alleviation of cadmium-induced root growth inhibition in crop seedlings by nanoparticles. Ecotoxicol. Environ. Saf. 2012, 79, 48–54. [Google Scholar] [CrossRef]
- Hu, P.; An, J.; Faulkner, M.M.; Wu, H.; Li, Z.; Tian, X.; Giraldo, J.P. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano 2020, 14, 7970–7986. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Xian, Y.; Luo, P.; Xiao, R.; Wu, J. Physiological response and tolerance of Myriophyllum aquaticum to a wide range of ammonium concentrations. J. Environ. Manag. 2022, 317, 115368. [Google Scholar] [CrossRef]
- Elizabath, A.; Bahadur, V.; Misra, P.; Prasad, V.M.; Thomas, T. Effect of different concentrations of iron oxide and zinc oxide nanoparticles on growth and yield of carrot (Daucus carota L.). J. Pharmacogn. Phytochem. 2017, 6, 1266–1269. [Google Scholar]
- Gao, J.; Ren, P.; Zhou, Q.; Zhang, J. Comparative studies of the response of sensitive and tolerant submerged macrophytes to high ammonium concentration stress. Aquat. Toxicol. 2019, 211, 57–65. [Google Scholar] [CrossRef]
- Wang, R.; Fu, W.; Wang, J.; Zhu, L.; Wang, L.; Wang, J.; Ahmad, Z. Application of rice grain husk derived biochar in ameliorating toxicity impacts of Cu and Zn on growth, physiology and enzymatic functioning of wheat seedlings. Bull. Environ. Contam. Toxicol. 2019, 103, 636–641. [Google Scholar] [CrossRef]
- Xie, Y.; Mao, Y.; Xu, S.; Zhou, H.; Duan, X.; Cui, W.; Zhang, J.; Xu, G. Heme-heme oxygenase 1 system is involved in ammonium tolerance by regulating antioxidant defence in Oryza sativa. Plant Cell Environ. 2015, 38, 129–143. [Google Scholar] [CrossRef]
- Patterson, K.; Cakmak, T.; Cooper, A.; Lager, I.; Rasmusson, A.G.; Escobar, M.A. Distinct signalling pathways and transcriptome response signatures differentiate ammonium-and nitrate-supplied plants. Plant Cell Environ. 2010, 33, 1486–1501. [Google Scholar] [CrossRef] [Green Version]
- Konate, A.; He, X.; Zhang, Z.; Ma, Y.; Zhang, P.; Alugongo, G.M.; Rui, Y. Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability 2017, 9, 790. [Google Scholar] [CrossRef] [Green Version]
- Rai-Kalal, P.; Tomar, R.S.; Jajoo, A. Seed nanopriming by silicon oxide improves drought stress alleviation potential in wheat plants. Funct. Plant Biol. 2021, 48, 905–915. [Google Scholar] [CrossRef]
- Vishwakarma, K.; Upadhyay, N.; Singh, J.; Liu, S.; Singh, V.P.; Prasad, S.M.; Chauhan, D.K.; Tripathi, D.K.; Sharma, S. Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front. Plant Sci. 2017, 8, 1501. [Google Scholar] [CrossRef]
- Jahani, M.; Khavari-Nejad, R.A.; Mahmoodzadeh, H.; Saadatmand, S. Effects of cobalt oxide nanoparticles (Co3O4 NPs) on ion leakage, total phenol, antioxidant enzymes activities and cobalt accumulation in Brassica napus L. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 1260–1275. [Google Scholar] [CrossRef]
Nanomaterial Types | Nanomaterial Concentration | GE | GR | MGT | GI |
---|---|---|---|---|---|
mg L−1 | % | % | Day | — | |
Water spinach | |||||
Control | 0 | 33.33 ± 4.41 c | 70.00 ± 5.77 b | 3.53 ± 0.07 a | 4.60 ± 0.44 b |
nMgO | 10 | 35.00 ± 2.89 bc | 71.67 ± 1.67 ab | 3.47 ± 0.07 a | 4.57 ± 0.12 b |
100 | 45.00 ± 2.89 ab | 73.33 ± 1.67 ab | 3.40 ± 0.35 a | 5.07 ± 0.28 ab | |
500 | 41.67 ± 4.41 abc | 70.00 ± 2.89 b | 3.60 ± 0.06 a | 4.37 ± 0.17 b | |
1000 | 41.67 ± 4.41 abc | 70.00 ± 2.89 b | 3.40 ± 0.17 a | 4.57 ± 0.22 b | |
nHA | 10 | 43.33 ± 3.33 abc | 75.00 ± 2.89 ab | 3.40 ± 0.06 a | 4.97 ± 0.23 b |
100 | 48.33 ± 1.67 a | 81.67 ± 4.41 a | 3.40 ± 0.10 a | 5.83 ± 0.29 a | |
500 | 46.67 ± 3.33 a | 73.33 ± 1.67 ab | 3.47 ± 0.09 a | 4.80 ± 0.23 b | |
1000 | 45.00 ± 2.89 ab | 71.67 ± 1.67 ab | 3.57 ± 0.18 a | 4.57 ± 0.29 b | |
Hami melon | |||||
Control | 0 | 73.33 ± 3.84 abc | 88.90 ± 2.20 ab | 2.70 ± 0.08 bc | 5.34 ± 0.04 abcd |
nMgO | 10 | 78.90 ± 4.85 ab | 91.10 ± 2.20 ab | 2.66 ± 0.13 bc | 5.53 ± 0.35 abcd |
100 | 78.90 ± 1.10 ab | 93.33 ± 3.84 ab | 2.59 ± 0.14 c | 5.87 ± 0.31 ab | |
500 | 55.57 ± 5.88 d | 88.90 ± 2.20 ab | 3.12 ± 0.06 a | 5.05 ± 0.26 cde | |
1000 | 53.33 ± 3.84 d | 86.67 ± 3.84 b | 3.26 ± 0.17 a | 4.39 ± 0.30 e | |
nHA | 10 | 75.53 ± 2.23 abc | 91.13 ± 4.43 ab | 2.63 ± 0.09 bc | 5.62 ± 0.30 abc |
100 | 80.00 ± 3.87 a | 97.77 ± 2.23 a | 2.58 ± 0.04 c | 6.10 ± 0.05 a | |
500 | 67.90 ± 1.20 bc | 93.30 ± 0.00 ab | 3.00 ± 0.04 ab | 5.23 ± 0.05 bcd | |
1000 | 64.47 ± 2.23 cd | 88.87 ± 4.43 ab | 3.15 ± 0.21 a | 4.82 ± 0.19 de |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Zou, G.; Lan, X.; Zhang, G.; Shan, Y.; Liu, B.; Ding, Z.; Nogueira, T.A.R.; Nawaz, M.; Zhao, F.; et al. The Efficiency of Nanoparticles on Improving Seed Germination and Mitigating Ammonium Stress of Water Spinach (Ipomoea aquatica Forssk.) and Hami Melon (Cucumis melo L.). Sustainability 2023, 15, 10083. https://doi.org/10.3390/su151310083
Wu T, Zou G, Lan X, Zhang G, Shan Y, Liu B, Ding Z, Nogueira TAR, Nawaz M, Zhao F, et al. The Efficiency of Nanoparticles on Improving Seed Germination and Mitigating Ammonium Stress of Water Spinach (Ipomoea aquatica Forssk.) and Hami Melon (Cucumis melo L.). Sustainability. 2023; 15(13):10083. https://doi.org/10.3390/su151310083
Chicago/Turabian StyleWu, Tianhao, Ganghua Zou, Xuecheng Lan, Guangxu Zhang, Ying Shan, Beibei Liu, Zheli Ding, Thiago Assis Rodrigues Nogueira, Muhammad Nawaz, Fengliang Zhao, and et al. 2023. "The Efficiency of Nanoparticles on Improving Seed Germination and Mitigating Ammonium Stress of Water Spinach (Ipomoea aquatica Forssk.) and Hami Melon (Cucumis melo L.)" Sustainability 15, no. 13: 10083. https://doi.org/10.3390/su151310083
APA StyleWu, T., Zou, G., Lan, X., Zhang, G., Shan, Y., Liu, B., Ding, Z., Nogueira, T. A. R., Nawaz, M., Zhao, F., Abideen, Z., & He, Z. (2023). The Efficiency of Nanoparticles on Improving Seed Germination and Mitigating Ammonium Stress of Water Spinach (Ipomoea aquatica Forssk.) and Hami Melon (Cucumis melo L.). Sustainability, 15(13), 10083. https://doi.org/10.3390/su151310083