A New Hybrid Monitoring Model for Displacement of the Concrete Dam
Abstract
:1. Introduction
2. Model Establishment
2.1. FEM-Calculated Elastic Hydraulic Component
2.2. Mathematical Expression of the Ageing Displacement of the Concrete Dam Considering Viscoelastic Deformation
2.2.1. Creeping Law of Concrete
2.2.2. Derivation of the Equation for the Creep Displacement of a Dam on a Rigid Foundation
2.2.3. Creep Displacement of Intact Rock Masses under External Loading
2.2.4. The Effect of Fractures and Joints in a Rock Body under Water Pressure on the Ageing Displacement
2.3. Temperature Kernel Principal Components Analysis
3. Mathematical Expression of the New Hybrid Model
4. Case Study
5. Results and Accuracy of the Proposed Model
5.1. A Better Mathematical Model for the Ageing Displacement of Concrete Dams
5.2. Calculation of Temperature Displacement by KPCA Method
5.3. Fitting and Predicting Accuracy of the Proposed Hybrid Model
6. Conclusions and Discussion
- (1)
- The principal component factors are extracted using kernel principal component analysis in conjunction with measured thermometer information in the concrete dam body, which can better reflect the influence of temperature variations inside the concrete dam body on its displacement compared with the traditional HST hybrid model.
- (2)
- The Burgers model was used to determine the instantaneous elasticity modulus and viscoelastic modulus of the dam; thus the hysteretic hydraulic elastic displacement in the original hybrid model can be subsumed into the ageing displacement component, while the period factor was added to the ageing displacement to fit this component. Thus, a better mathematical model for the ageing displacement of concrete dams was established. It can fully reflect the recoverable creep component of the concrete and rock and accurately separate the ageing component from the total displacement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.Z.; Li, J.T.; Chen, W.F.; Zhang, G.X.; Tan, Y.S. Optimization study on super-high arch dam temperature control standard and measure. In Proceedings of the 4th International Workshop on Renewable Energy and Development (IWRED), Sanya, China, 24–26 April 2020; Electr Network. Volume 510. [Google Scholar]
- Zhang, C.; Ali, A.; Sun, L. Investigation on low-cost friction-based isolation systems for masonry building structures: Experimental and numerical studies. Eng. Struct. 2021, 243, 112645. [Google Scholar] [CrossRef]
- Wang, S.; Xu, C.; Gu, C.; Su, H.; Wu, B. Hydraulic-seasonal-time-based state space model for displacement monitoring of high concrete dams. Trans. Inst. Meas. Control. 2021, 43, 3347–3359. [Google Scholar] [CrossRef]
- Huang, H.; Li, M.; Yuan, Y.; Bai, H. Experimental Research on the Seismic Performance of Precast Concrete Frame with Replaceable Artificial Controllable Plastic Hinges. J. Struct. Eng. 2023, 149, 04022222. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, G.; Niu, Q.; Wang, F.; Chen, J.; Zhao, B.; Ke, L. A Wiener degradation process with drift-based approach of determining target reliability index of concrete structures. Qual. Reliab. Eng. Int. 2022, 38, 3710–3725. [Google Scholar] [CrossRef]
- Huang, H.; Li, M.; Yuan, Y.; Bai, H. Theoretical analysis on the lateral drift of precast concrete frame with replaceable artificial controllable plastic hinges. J. Build. Eng. 2022, 62, 105386. [Google Scholar] [CrossRef]
- Gu, M.; Cai, X.; Fu, Q.; Li, H.; Wang, X.; Mao, B. Numerical Analysis of Passive Piles under Surcharge Load in Extensively Deep Soft Soil. Buildings 2022, 12, 1988. [Google Scholar] [CrossRef]
- Deng, E.-F.; Zhang, Z.; Zhang, C.-X.; Tang, Y.; Wang, W.; Du, Z.-J.; Gao, J.-P. Experimental study on flexural behavior of UHPC wet joint in prefabricated multi-girder bridge. Eng. Struct. 2023, 275, 115314. [Google Scholar] [CrossRef]
- Cheng, Y.; Fu, L.-Y. Nonlinear seismic inversion by physics-informed Caianiello convolutional neural networks for overpressure prediction of source rocks in the offshore Xihu depression, East China. J. Pet. Sci. Eng. 2022, 215, 110654. [Google Scholar] [CrossRef]
- Chen, J.H.; Gu, C.S. Study on Semi-parametric Statistical Model of Safety Supervision of Concrete Dam. Disaster Adv. 2013, 6, 16–24. [Google Scholar]
- Shang, C. Statistical analysis of deformation monitoring data of a RCC gravity dam. J. Water Resour. Water Eng. 2017, 28, 205–211. [Google Scholar]
- Hu, J.; Wu, S. Statistical modeling for deformation analysis of concrete arch dams with influential horizontal cracks. Struct. Health Monit. 2019, 18, 546–562. [Google Scholar] [CrossRef]
- Kang, F.; Liu, X.; Li, J. Temperature effect modeling in structural health monitoring of concrete dams using kernel extreme learning machines. Struct. Health Monit. 2020, 19, 987–1002. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, G.; Hu, M.; Huang, J. Dam deformation prediction based on extreme learning machine and elastic network. Sci. Surv. Mapp. 2020, 45, 20. [Google Scholar]
- Su, H.; Wen, Z.; Wu, Z. An Early-warning Model of Dam Safety Based on SVM Theory. J. Basic Sci. Eng. 2009, 17, 40–48. [Google Scholar]
- Salazar, F.; Toledo, M.; Oñate, E.; Suárez, B. Interpretation of dam deformation and leakage with boosted regression trees. Eng. Struct. 2016, 119, 230–251. [Google Scholar] [CrossRef] [Green Version]
- Campos, A.; López, C.M.; Blanco, A.; Aguado, A. Structural Diagnosis of a Concrete Dam with Cracking and High Nonrecoverable Displacements. J. Perform. Constr. Facil. 2016, 30, 04016021. [Google Scholar] [CrossRef] [Green Version]
- Lamea, M.; Mirzabozorg, H. Simulating Structural Responses of a Generic AAR-Affected Arch Dam Considering Seismic Loading. Sci. Iran 2018, 25, 2926–2937. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Xu, C.; Gu, H.; Zhu, P.; Liu, H.; Xu, B. An Approach for Quantifying the Influence of Seepage Dissolution on Seismic Performance of Concrete Dams. Comput. Model. Eng. Sci. 2022, 131, 97–117. [Google Scholar] [CrossRef]
- Li, F.; Wang, Z.; Liu, G.; Fu, C.; Wang, J. Hydrostatic seasonal state model for monitoring data analysis of concrete dams. Struct. Infrastruct. Eng. 2015, 11, 1616–1631. [Google Scholar] [CrossRef]
- Wang, S.; Xu, Y.; Gu, C.; Bao, T.; Xia, Q.; Hu, K. Hysteretic effect considered monitoring model for interpreting abnormal deformation behavior of arch dams: A case study. Struct. Control. Health Monit. 2019, 26, e2417. [Google Scholar] [CrossRef]
- Gu, C.S.; Wu, Z.R. Safety Monitoring of Dams and Dam Foundations: Theories & Methods and Their Application. 2006. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85119970332&partnerID=40&md5=b759974ac898b3b32a5e01140f7cd34f (accessed on 14 December 2022).
- Hu, J.; Ma, F. Zoned deformation prediction model for super high arch dams using hierarchical clustering and panel data. Eng. Comput. 2020, 37, 2999–3021. [Google Scholar] [CrossRef]
- Tatin, M.; Briffaut, M.; Dufour, F.; Simon, A.; Fabre, J.-P. Thermal displacements of concrete dams: Accounting for water temperature in statistical models. Eng. Struct. 2015, 91, 26–39. [Google Scholar] [CrossRef]
- Mata, J.; de Castro, A.T.; da Costa, J.S. Time–frequency analysis for concrete dam safety control: Correlation between the daily variation of structural response and air temperature. Eng. Struct. 2013, 48, 658–665. [Google Scholar] [CrossRef] [Green Version]
- Kang, F.; Li, J.; Zhao, S.; Wang, Y. Structural health monitoring of concrete dams using long-term air temperature for thermal effect simulation. Eng. Struct. 2019, 180, 642–653. [Google Scholar] [CrossRef]
- Chen, S.; Gu, C.; Lin, C.; Zhao, E.; Song, J. Safety Monitoring Model of a Super-High Concrete Dam by Using RBF Neural Network Coupled with Kernel Principal Component Analysis. Math. Probl. Eng. 2018, 2018, 1712653. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Richards, C.M. Parameter identification of analytical and experimental rubber isolators represented by Maxwell models. Mech. Syst. Signal Process. 2007, 21, 2814–2832. [Google Scholar] [CrossRef]
- Pelosi, G. The finite-element method, part 1: R. L. Courant. IEEE Antennas Propag. Mag. 2007, 49, 180–182. [Google Scholar] [CrossRef]
- Ren, S.; Zhao, G.; Zhang, S. Elastic–Viscoelastic Composite Structures Analysis with an Improved Burgers Model. J. Vib. Acoust. 2018, 140, 031006. [Google Scholar] [CrossRef]
- Xiong, L.; Yang, L.; Zhang, Y. Non-stationary Burgers model for rock. J. Cent. South Univ. 2010, 41, 679–684. [Google Scholar]
- Zhang, S.; Sheng, D.; An, W.; Liu, B.; Qi, R.; Cheng, J. Nonlinear Visco-Elastic-Plastic Analysis of Rubber Asphalt Composites Based on Improved Burgers Model. Chin. Q. Mech. 2021, 42, 528–537. [Google Scholar]
- Huang, Y.; Wan, Z. Study on Viscoelastic Deformation Monitoring Index of an RCC Gravity Dam in an Alpine Region Using Orthogonal Test Design. Math. Probl. Eng. 2018, 2018, 8743505. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Gu, C.; Meng, Z.; Shao, C. Improve the Model Stability of Dam’s Displacement Prediction Using a Numerical-Statistical Combined Model. IEEE Access 2020, 8, 147482–147493. [Google Scholar] [CrossRef]
- Ranaivomanana, N.; Multon, S.; Turatsinze, A. Basic creep of concrete under compression, tension and bending. Constr. Build. Mater. 2013, 38, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.; Wang, Y.; Zou, R.; Long, Y.; Zhang, J. Creep of concrete-filled steel tube considering creep-recovery of the concrete core. Adv. Struct. Eng. 2020, 23, 997–1009. [Google Scholar] [CrossRef]
- Ju, Y.-W.; Li, K.-F.; Han, J.-G. Experimental and theoretical research on tensile creep of early-age concrete. Eng. Mech. 2009, 26, 43–49. [Google Scholar]
- Gu, C.S.; Zhao, E.F. Theory and Method of dam Safety Monitoring; Hohai University Press: Nanjing, China, 2019. [Google Scholar]
- Yang, C.; Chen, M.; Zhang, M.; Li, Q.; Fang, W.; Wen, Q. Research on the creep of concrete filled steel tubular columns based on the generalized kelvin chain. Eng. Mech. 2022, 39, 200–207. [Google Scholar]
- Yakubovskiy, Y.E.; Kolosov, V.I.; Donkova, I.A.; Kruglov, S.O. Creep mathematical model on the example of early age concrete. IOP Conf. Ser. Mater. Sci. Eng. 2020, 972, 012054. [Google Scholar] [CrossRef]
- Sun, K.; Wu, Z.D.; Wu, Y.Y.; Wu, Y.Z. Research on fault diagnosis of altimeter based on KPCA-BN. J. Ordnance Equip. Eng. 2020, 41, 95–99. [Google Scholar]
- Li, X.; Zhang, L.; Khan, F.; Han, Z. A data-driven corrosion prediction model to support digitization of subsea operations. Process. Saf. Environ. Prot. 2021, 153, 413–421. [Google Scholar] [CrossRef]
- Su, H.; Wen, Z.; Ren, J. A kernel principal component analysis-based approach for determining the spatial warning domain of dam safety. Soft Comput. 2020, 24, 14921–14931. [Google Scholar] [CrossRef]
- Wang, S.; Xu, C.; Su, H. Back analysis of viscoelastic working behavior for Jinping-I Arch Dam. Adv. Sci. Technol. Water Resour. 2020, 40, 62–69. [Google Scholar]
- Li, Y.; Bao, T.; Shu, X.; Chen, Z.; Gao, Z.; Zhang, K. A Hybrid Model Integrating Principal Component Analysis, Fuzzy C-Means, and Gaussian Process Regression for Dam Deformation Prediction. Arab. J. Sci. Eng. 2021, 46, 4293–4306. [Google Scholar] [CrossRef]
- Ren, L.; Song, C.; Wu, W.; Guo, M.; Zhou, X. Reservoir effects on the variations of the water temperature in the upper Yellow River, China, using principal component analysis. J. Environ. Manag. 2020, 262, 110339. [Google Scholar] [CrossRef]
- Su, H.; Li, J.; Hu, J.; Wen, Z. Analysis and Back-Analysis for Temperature Field of Concrete Arch Dam During Construction Period Based on Temperature Data Measured by DTS. IEEE Sens. J. 2013, 13, 1403–1412. [Google Scholar] [CrossRef]
- Yang, M.; Su, H. A study for optical fiber multi-direction strain monitoring technology. Optik 2017, 144, 324–333. [Google Scholar] [CrossRef]
- Xu, B.; Liu, B.; Zheng, D.; Chen, L.; Wu, C. Analysis method of thermal dam deformation. Sci. China Technol. Sci. 2012, 55, 1765–1772. [Google Scholar] [CrossRef]
- Yang, M.; Su, H.; Wen, Z. An approach of evaluation and mechanism study on the high and steep rock slope in water conservancy project. Comput. Concr. 2017, 19, 527–535. [Google Scholar] [CrossRef]
- Halim, H.; Isa, S.M.; Mulyono, S. Comparative analysis of PCA and KPCA on paddy growth stages classification. In Proceedings of the IEEE Region 10 Symposium (TENSYMP), Sanur, Indonesia, 9–11 May 2016; pp. 167–172. [Google Scholar]
- Shao, C.; Zheng, S.; Gu, C.; Hu, Y.; Qin, X. A novel outlier detection method for monitoring data in dam engineering. Expert Syst. Appl. 2022, 193, 116476. [Google Scholar] [CrossRef]
Kernel Type | Accuracy Rate (%) | Maximum Contribution Rate of the First Kernel PC PC1 (%) |
---|---|---|
Linear kernel | 97.04 | 82.00 |
Polynomial kernel | 98.32 | 81.72 |
Gaussian kernel | 95.85 | 50.84 |
Polynomial kernel | 97.63 | 82.40 |
Gaussian kernel | 94.67 | 51.65 |
Coefficient | X | b1 | b2 | C | C1 | C2 | K1 | K2 |
---|---|---|---|---|---|---|---|---|
Values | 0.98 | −0.8089 | −0.1356 | −17.1222 | −0.9430 | 0.7931 | 3.2374 | 0.6715 |
Fitting | Predicting | |||||
---|---|---|---|---|---|---|
Model | MAE | MSE | R2 | MAE | MSE | R2 |
Proposed model | 1.6886 | 4.8333 | 0.9746 | 0.5062 | 0.3404 | 0.9902 |
HST model | 1.7164 | 4.8737 | 0.9743 | 1.2798 | 2.2055 | 0.9898 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, C.; Cui, X.; Gu, H.; Yang, M. A New Hybrid Monitoring Model for Displacement of the Concrete Dam. Sustainability 2023, 15, 9609. https://doi.org/10.3390/su15129609
Gu C, Cui X, Gu H, Yang M. A New Hybrid Monitoring Model for Displacement of the Concrete Dam. Sustainability. 2023; 15(12):9609. https://doi.org/10.3390/su15129609
Chicago/Turabian StyleGu, Chongshi, Xinran Cui, Hao Gu, and Meng Yang. 2023. "A New Hybrid Monitoring Model for Displacement of the Concrete Dam" Sustainability 15, no. 12: 9609. https://doi.org/10.3390/su15129609
APA StyleGu, C., Cui, X., Gu, H., & Yang, M. (2023). A New Hybrid Monitoring Model for Displacement of the Concrete Dam. Sustainability, 15(12), 9609. https://doi.org/10.3390/su15129609