Evaluation of Conventional and Mechanization Methods towards Precision Agriculture in Indonesia
Abstract
:1. Introduction
2. Literature Review
Development of PA Research in Worldwide Compare with Indonesia
3. Materials and Methods
4. Results and Discussion
4.1. Analysis of Conventional Farming to Machinery (Mechanization)
4.2. The Use of Agricultural Tools and Machinery (Mechanization) in Paddy Rice
4.3. The Impact of Agricultural Mechanization in Main Rice Producing Area
4.4. The Implementation PA in Main Rice Producing Area
4.5. The Strategy of Dissemination PA to Paddy Farmer
4.6. Synergistic Empowerment in PA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Byerlee, D.; Fanzo, J. The SDG of Zero Hunger 75 years on: Turning Full Circle on Agriculture and Nutrition. Glob. Food Secur. 2019, 21, 52–59. [Google Scholar] [CrossRef]
- FAO. FAO Statistical Yearbook—World Food and Agriculture Series Number 2020; FAO: Rome, Italy, 2020; 366p, ISBN 9789251333945. Available online: https://www.fao.org/3/cb1329en/CB1329EN.pdf (accessed on 27 February 2023).
- Mason-D’Croz, D.; Sulser, T.B.; Wiebe, K.; Rosegrant, M.W.; Lowder, S.K.; Nin-Pratt, A.; Willenbockel, D.; Robinson, S.; Zhu, T.; Cenacchi, N.; et al. Agricultural Investments and Hunger in Africa Modeling Potential Contributions to SDG2—Zero Hunger. World Dev. 2019, 116, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Barnes, A.P.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sánchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gómez-Barbero, M. Exploring the Adoption of Precision Agricultural Technologies: A Cross Regional Study of EU Farmers. Land Use Policy 2019, 80, 163–174. [Google Scholar] [CrossRef]
- Ansari, A.; Lin, Y.P.; Lur, H.S. Evaluating and Adapting Climate Change Impacts on Rice Production in Indonesia: A Case Study of the Keduang Subwatershed, Central Java. Environments 2021, 8, 117. [Google Scholar] [CrossRef]
- Madembo, C.; Mhlanga, B.; Thierfelder, C. Productivity or Stability? Exploring Maize-Legume Intercropping Strategies for Smallholder Conservation Agriculture Farmers in Zimbabwe. Agric. Syst. 2020, 185, 102921. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Andrianopoulos, A.; Galanis, G.; Kalopesa, E.; Dimitrakos, A.; Katsogiannos, F.; Zalidis, G. An Integrated Approach to Promote Precision Farming as a Measure Toward Reduced-Input Agriculture in Northern Greece Using a Spatial Decision Support System. Compr. Geogr. Inf. Syst. 2018, 3, 315–352. [Google Scholar] [CrossRef]
- Morais, R.; Silva, N.; Mendes, J.; Adão, T.; Pádua, L.; López-Riquelme, J.A.; Pavón-Pulido, N.; Sousa, J.J.; Peres, E. MySense: A Comprehensive Data Management Environment to Improve Precision Agriculture Practices. Comput. Electron. Agric. 2019, 162, 882–894. [Google Scholar] [CrossRef]
- Capmourteres, V.; Adams, J.; Berg, A.; Fraser, E.; Swanton, C.; Anand, M. Precision Conservation Meets Precision Agriculture: A Case Study from Southern Ontario. Agric. Syst. 2018, 167, 176–185. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, M.; Wang, N. Precision Agriculture—A Worldwide Overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Autio, A.; Johansson, T.; Motaroki, L.; Minoia, P.; Pellikka, P. Constraints for Adopting Climate-Smart Agricultural Practices among Smallholder Farmers in Southeast Kenya. Agric. Syst. 2021, 194, 103284. [Google Scholar] [CrossRef]
- Akhter, R.; Sofi, S.A. Precision Agriculture Using IoT Data Analytics and Machine Learning. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 5602–5618. [Google Scholar] [CrossRef]
- Katalin, T.-G.; Rahoveanu, T.; Magdalena, M.; István, T. Sustainable New Agricultural Technology—Economic Aspects of Precision Crop Protection. Procedia Econ. Financ. 2014, 8, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Said Mohamed, E.; Belal, A.A.; Kotb Abd-Elmabod, S.; El-Shirbeny, M.A.; Gad, A.; Zahran, M.B. Smart Farming for Improving Agricultural Management. Egypt. J. Remote Sens. Space Sci. 2021, 24, 971–981. [Google Scholar] [CrossRef]
- Higgins, S.; Schellberg, J.; Bailey, J.S. Improving Productivity and Increasing the Efficiency of Soil Nutrient Management on Grassland Farms in the UK and Ireland Using Precision Agriculture Technology. Eur. J. Agron. 2019, 106, 67–74. [Google Scholar] [CrossRef]
- Far, S.T.; Rezaei-Moghaddam, K. Impacts of the Precision Agricultural Technologies in Iran: An Analysis Experts’ Perception & Their Determinants. Inf. Process. Agric. 2018, 5, 173–184. [Google Scholar] [CrossRef]
- Rozaki, Z. COVID-19, Agriculture, and Food Security in Indonesia. Rev. Agric. Sci. 2020, 8, 243–260. [Google Scholar] [CrossRef]
- Aubert, B.A.; Schroeder, A.; Grimaudo, J. IT as Enabler of Sustainable Farming: An Empirical Analysis of Farmers’ Adoption Decision of Precision Agriculture Technology. Decis. Support Syst. 2012, 54, 510–520. [Google Scholar] [CrossRef] [Green Version]
- Kanter, D.R.; Bell, A.R.; McDermid, S.S. Precision Agriculture for Smallholder Nitrogen Management. One Earth 2019, 1, 281–284. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Wang, X. Innovation of Agricultural Economic Management in the Process of Constructing Smart Agriculture by Big Data. Sustain. Comput. Inform. Syst. 2021, 31, 100579. [Google Scholar] [CrossRef]
- Domingues, D.; Dowd, C.; Atwell, W. Encyclopedia of Food Grains; Elsevier Inc.: Amsterdam, The Netherlands, 2015; Volume 3–4, ISBN 9780123947864. [Google Scholar]
- Barnes, A.; De Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sánchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gómez-Barbero, M. Influencing Factors and Incentives on the Intention to Adopt Precision Agricultural Technologies within Arable Farming Systems. Environ. Sci. Policy 2019, 93, 66–74. [Google Scholar] [CrossRef]
- Kendall, H.; Naughton, P.; Clark, B.; Taylor, J.; Li, Z.; Zhao, C.; Yang, G.; Chen, J.; Frewer, L.J. Precision Agriculture in China: Exploring Awareness, Understanding, Attitudes and Perceptions of Agricultural Experts and End-Users in China. Adv. Anim. Biosci. 2017, 8, 703–707. [Google Scholar] [CrossRef] [Green Version]
- Oliphant, A.J.; Thenkabail, P.S.; Teluguntla, P.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K. Mapping Cropland Extent of Southeast and Northeast Asia Using Multi-Year Time-Series Landsat 30-m Data Using a Random Forest Classifier on the Google Earth Engine Cloud. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 110–124. [Google Scholar] [CrossRef]
- Directorate General of Agricultural Infrastructure and Facilities, Ministry of Agriculture Indonesia. Available online: https://psp.pertanian.go.id/layanan-publik/buku-statistik-2017-2021 (accessed on 8 February 2023).
- Nasir, S.; Hussein, M.Z.; Zainal, Z.; Yusof, N.A.; Zobir, S.A.M. Electrochemical Energy Storage Potentials of Waste Biomass: Oil Palm Leaf- and Palm Kernel Shell-Derived Activated Carbons. Energies 2018, 11, 3410. [Google Scholar] [CrossRef] [Green Version]
- Hoang, V.N.; Nguyen, T.T.; Wilson, C.; Ho, T.Q.; Khanal, U. Scale and Scope Economies in Small Household Rice Farming in Vietnam. J. Integr. Agric. 2021, 20, 3339–3351. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Gotsis, A.; Wan, S.; Sarigiannidis, P.; Nikolaidis, S.; Goudos, S.K. Smart Irrigation System for Precision Agriculture—The AREThOU5A IoT Platform. IEEE Sens. J. 2021, 21, 17539–17547. [Google Scholar] [CrossRef]
- Qu, X.; Kojima, D.; Nishihara, Y.; Wu, L.; Ando, M. Can Harvest Outsourcing Services Reduce Field Harvest Losses of Rice in China? J. Integr. Agric. 2021, 20, 1396–1406. [Google Scholar] [CrossRef]
- Arellano, P.; Stratoulias, D. Hyperspectral Vegetation Indices to Detect Hydrocarbon Pollution; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780081028940. [Google Scholar]
- Yamamoto, Y.; Shigetomi, Y.; Ishimura, Y.; Hattori, M. Forest Change and Agricultural Productivity: Evidence from Indonesia. World Dev. 2019, 114, 196–207. [Google Scholar] [CrossRef]
- Yeny, I.; Garsetiasih, R.; Suharti, S.; Gunawan, H.; Sawitri, R.; Karlina, E.; Narendra, B.H.; Surati; Ekawati, S.; Djaenudin, D.; et al. Examining the Socio-Economic and Natural Resource Risks of Food Estate Development on Peatlands: A Strategy for Economic Recovery and Natural Resource Sustainability. Sustainability 2022, 14, 3961. [Google Scholar] [CrossRef]
- Chen, S.; Lan, X. Tractor vs. Animal: Rural Reforms and Technology Adoption in China. J. Dev. Econ. 2020, 147, 102536. [Google Scholar] [CrossRef]
- Rohani, A.; Abbaspour-Fard, M.H.; Abdolahpour, S. Prediction of Tractor Repair and Maintenance Costs Using Artificial Neural Network. Expert Syst. Appl. 2011, 38, 8999–9007. [Google Scholar] [CrossRef]
- Takeshima, H.; Houssou, N.; Diao, X. Effects of Tractor Ownership on Returns-to-Scale in Agriculture: Evidence from Maize in Ghana. Food Policy 2018, 77, 33–49. [Google Scholar] [CrossRef]
- Ruzzante, S.; Labarta, R.; Bilton, A. Adoption of Agricultural Technology in the Developing World: A Meta-Analysis of the Empirical Literature. World Dev. 2021, 146, 105599. [Google Scholar] [CrossRef]
- Ministry of Agriculture Indonesia. Available online: https://ppid.pertanian.go.id/doc/1/Draft%20Renstra%202020-2024%20edited%20BAPPENAS%20(Final).pdf (accessed on 27 February 2023).
- The World Bank. Available online: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?end=2020&locations=ID&most_recent_year_desc=true&start=1960 (accessed on 27 February 2023).
- Panuju, D.R.; Mizuno, K.; Trisasongko, B.H. The Dynamics of Rice Production in Indonesia 1961. J. Saudi Soc. Agric. Sci. 2013, 12, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Majeed, Y.; Diverres Naranjo, G.; Gambacorta, E.M.T. Assessment for Crop Water Stress with Infrared Thermal Imagery in Precision Agriculture: A Review and Future Prospects for Deep Learning Applications. Comput. Electron. Agric. 2021, 182, 106019. [Google Scholar] [CrossRef]
- Jat, R.D.; Jat, H.S.; Nanwal, R.K.; Yadav, A.K.; Bana, A.; Choudhary, K.M.; Kakraliya, S.K.; Sutaliya, J.M.; Sapkota, T.B.; Jat, M.L. Conservation Agriculture and Precision Nutrient Management Practices in Maize-Wheat System: Effects on Crop and Water Productivity and Economic Profitability. Field Crop. Res. 2018, 222, 111–120. [Google Scholar] [CrossRef]
- Mahmud, M.S.A.; Abidin, M.S.Z.; Mohamed, Z.; Rahman, M.K.I.A.; Iida, M. Multi-Objective Path Planner for an Agricultural Mobile Robot in a Virtual Greenhouse Environment. Comput. Electron. Agric. 2019, 157, 488–499. [Google Scholar] [CrossRef]
- Oliver, Y.M.; Robertson, M.J.; Wong, M.T.F. Integrating Farmer Knowledge, Precision Agriculture Tools, and Crop Simulation Modelling to Evaluate Management Options for Poor-Performing Patches in Cropping Fields. Eur. J. Agron. 2010, 32, 40–50. [Google Scholar] [CrossRef]
- Adnan, N.; Nordin, S.M.; Anwar, A. Transition Pathways for Malaysian Paddy Farmers to Sustainable Agricultural Practices: An Integrated Exhibiting Tactics to Adopt Green Fertilizer. Land Use Policy 2020, 90, 104255. [Google Scholar] [CrossRef]
- Zangina, U.; Buyamin, S.; Aman, M.N.; Abidin, M.S.Z.; Mahmud, M.S.A. A Greedy Approach to Improve Pesticide Application for Precision Agriculture Using Model Predictive Control. Comput. Electron. Agric. 2021, 182, 105984. [Google Scholar] [CrossRef]
- Sutardi; Apriyana, Y.; Rejekiningrum, P.; Alifia, A.D.; Ramadhani, F.; Darwis, V.; Setyowati, N.; Setyono, D.E.D.; Gunawan; Malik, A.; et al. The Transformation of Rice Crop Technology in Indonesia: Innovation and Sustainable Food Security. Agronomy 2022, 13, 1. [Google Scholar] [CrossRef]
- Rokhmatuloh; Supriatna; Wibowo, A.; Shidiq, I.P.A. Spatial Analysis of Rice Phenology Using Sentinel 2 and UAV in Parakansalak, Sukabumi District, Indonesia. Int. J. Geomate 2020, 19, 205–210. [Google Scholar] [CrossRef]
- Iwahashi, Y.; Sigit, G.; Utoyo, B.; Lubis, I.; Junaedi, A.; Trisasongko, B.H.; Wijaya, I.M.A.S.; Maki, M.; Hongo, C.; Homma, K. Drought Damage Assessment for Crop Insurance Based on Vegetation Index by Unmanned Aerial Vehicle (UAV) Multispectral Images of Paddy Fields in Indonesia. Agric. 2023, 13, 113. [Google Scholar] [CrossRef]
- Wakabayashi, H.; Motohashi, K.; Kitagami, T.; Tjahjono, B.; Dewayani, S.; Hidayat, D.; Hongo, C. Flooded Area Extraction of Rice Paddy Field in Indonesia Using Sentinel-1 SAR Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2019, 42, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Hongo, C.; Sigit, G.; Shikata, R.; Tamura, E. Estimation of Water Requirement for Rice Cultivation Using Satellite Data. Int. Geosci. Remote Sens. Symp. 2015, 2015, 4660–4663. [Google Scholar] [CrossRef]
- Safarina, A.B.; Karnisah, I. Kusnandar Two Threshold Smart Irrigation System for Increasing Crop Yield. Indones. J. Geogr. 2023, 55, 172–178. [Google Scholar] [CrossRef]
- Dachyar, M.; Zagloel, T.Y.M.; Saragih, L.R. Knowledge Growth and Development: Internet of Things (IoT) Research, 2006. Heliyon 2019, 5, e02264. [Google Scholar] [CrossRef] [Green Version]
- Channe, H.; Kothari, S.; Kadam, D. Multidisciplinary Model for Smart Agriculture Using Internet-of-Things (IoT), Sensors, Cloud-Computing, Mobile-Computing & Big-Data Analysis. Int. J. Comput. Appl. Technol. 2015, 6, 374–382. [Google Scholar]
- Babcock, B.A. The Effects of Uncertainty on Optimal Nitrogen Applications. Appl. Econ. Perspect. Policy 1992, 14, 271–280. [Google Scholar] [CrossRef]
- Daponte, P.; De Vito, L.; Glielmo, L.; Iannelli, L.; Liuzza, D.; Picariello, F.; Silano, G. A Review on the Use of Drones for Precision Agriculture. IOP Conf. Ser. Earth Environ. Sci. 2019, 275, 012022. [Google Scholar] [CrossRef]
- Kehui, X.; Deqin, X.; Xiwen, L. Smart Water-Saving Irrigation System in Precision Agriculture Based on Wireless Sensor Network. Trans. CSAE 2010, 26, 170–175. [Google Scholar] [CrossRef]
- Cisternas, I.; Velásquez, I.; Caro, A.; Rodríguez, A. Systematic Literature Review of Implementations of Precision Agriculture. Comput. Electron. Agric. 2020, 176, 105626. [Google Scholar] [CrossRef]
- Banu, S. Precision Agriculture: Tomorrow’s Technology for Today’s Farmer. J. Food Process. Technol. 2015, 6, 474. [Google Scholar] [CrossRef]
- Kumar, S.; Moore, K.B. The Evolution of Global Positioning System (GPS) Technology. J. Sci. Educ. Technol. 2002, 11, 59–80. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A Review on Dairy Cattle Farming: Is Precision Livestock Farming the Compromise for an Environmental, Economic and Social Sustainable Production? J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Ricciardi, V.; Ramankutty, N.; Mehrabi, Z.; Jarvis, L.; Chookolingo, B. How Much of the World’s Food Do Smallholders Produce? Glob. Food Secur. 2018, 17, 64–72. [Google Scholar] [CrossRef]
- Allahyari, M.S.; Mohammadzadeh, M.; Nastis, S.A. Agricultural Experts’ Attitude towards Precision Agriculture: Evidence from Guilan Agricultural Organization, Northern Iran. Inf. Process. Agric. 2016, 3, 183–189. [Google Scholar] [CrossRef] [Green Version]
Variable | North Sumatra | West Java | Central Java | East Java | South Sulawesi | |||||
---|---|---|---|---|---|---|---|---|---|---|
Coeff | SE | Coeff | SE | Coeff | SE | Coeff | SE | Coeff | SE | |
Hand tractor | 0.317 *** | 0.094 | 0.009 | 0.071 | 0.248 *** | 0.042 | 0.063 | 0.148 | 0.051 | 0.048 |
Thresher | 2.343 *** | 0.076 | 0.934 ** | 0.056 | 0.830 ** | 0.042 | 1.562 ** | 0.427 | 1.062 *** | 0.032 |
Water pump | 2.419 *** | 0.761 | 0.090 | 0.325 | 0.061 | 0.084 | 0.670 *** | 0.171 | 0.775 | 0.723 |
Tractor | 12.246 *** | 1.321 | 19.851 *** | 0.861 | 17.409 *** | 0.518 | 13.072 *** | 0.850 | 13.967 *** | 0.991 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herdiansyah, H.; Antriyandarti, E.; Rosyada, A.; Arista, N.I.D.; Soesilo, T.E.B.; Ernawati, N. Evaluation of Conventional and Mechanization Methods towards Precision Agriculture in Indonesia. Sustainability 2023, 15, 9592. https://doi.org/10.3390/su15129592
Herdiansyah H, Antriyandarti E, Rosyada A, Arista NID, Soesilo TEB, Ernawati N. Evaluation of Conventional and Mechanization Methods towards Precision Agriculture in Indonesia. Sustainability. 2023; 15(12):9592. https://doi.org/10.3390/su15129592
Chicago/Turabian StyleHerdiansyah, Herdis, Ernoiz Antriyandarti, Amrina Rosyada, Nor Isnaeni Dwi Arista, Tri Edhi Budhi Soesilo, and Ninin Ernawati. 2023. "Evaluation of Conventional and Mechanization Methods towards Precision Agriculture in Indonesia" Sustainability 15, no. 12: 9592. https://doi.org/10.3390/su15129592