Sustainable Viticulture in the Valdepeñas Protected Designation of Origin: From Soil Quality to Management in Vitis vinifera
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Vineyard Soil Characteristics
3.2. Vineyard Soil Management; from the Past to the Future through the Present in the Valdepeñas PDO Vineyard Soils
3.3. Future in the Valdepeñas Vineyards and Suitability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costantini, E.A.C.; Barbetti, R. Environmental and visual impact analysis of viticulture and olive tree cultivation in the Province of Siena (Italy). Eur. J. Agron. 2008, 28, 412–426. [Google Scholar] [CrossRef]
- Abad, J.; Hermoso de Mendoza, I.; Marín, D.; Orcaray, L.; Santesteban, L.G. Cover crops in viticulture. A systematic review (1): Implications in agronomic performance. OENO One 2021, 55, 295–312. [Google Scholar] [CrossRef]
- Dumitriu, G.D.; Teodosiu, C.; Cotea, V.V. Management of Pesticides from Vineyard to Wines: Focus on Wine Safety and Pesticides Removal by Emerging Technologies; IntechOpen: London, UK, 2021; pp. 1–27. [Google Scholar]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, S. Gestión del Suelo en Viñedo Mediante Cubiertas Vegetales. Incidencia Sobre el Control del Rendimiento y Vigor. Aspectos Ecofisiológicos, Nutricionales, Microclimáticos y de Calidad del Mosto y del Vino. Ph.D. Thesis, Universidad de La Rioja, Logroño, Spain, 2013. [Google Scholar]
- Warner, K.D. The quality of sustainability: Agroecological partnerships and the geographic branding of California winegrapes. J. Rural Stud. 2007, 23, 142–155. [Google Scholar] [CrossRef]
- Isaak, R. The making of the ecopreneur. Greener Manag. Int. 2002, 38, 81–91. [Google Scholar] [CrossRef]
- Baiano, A. An Overview on Sustainability in the Wine Production Chain. Beverages 2021, 7, 15. [Google Scholar] [CrossRef]
- Hannah, L.; Roehrdanz, P.R.; Ikegami, M.; Shepard, A.V.; Shaw, M.R.; Tabord, G.; Zhi, L.; Marquet, P.A.; Hijmans, R.J. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. USA 2013, 110, 6907–6912. [Google Scholar] [CrossRef] [Green Version]
- Viers, J.H.; Williams, J.N.; Nicholas, K.A.; Barbosa, O.; Kotze, I.; Spence, L.; Webb, L.B.; Merenlender, A.; Reyn-olds, M. Vinecology: Pairing wine with nature. Conserv. Lett. 2013, 6, 287–299. [Google Scholar] [CrossRef]
- Litskas, V.; Mandoulaki, A.; Vogiatzakis, I.N.; Tzortzakis, N.; Stavrinides, M. Sustainable viticulture: First determination of the environmental footprint of grapes. Sustainability 2020, 12, 8812. [Google Scholar] [CrossRef]
- Maicas, S.; Mateo, J.J. Sustainability of Wine Production. Sustainability 2020, 12, 559. [Google Scholar] [CrossRef] [Green Version]
- OIV (International Organization of Vine and Wine). State of the World Vine and Wine Sector. 2021. Available online: https://www.oiv.int/sites/default/files/documents/eng-state-of-the-world-vine-and-wine-sector-april-2022-v6_0.pdf (accessed on 4 January 2022).
- Gobierno de Castilla-La Mancha. Datos del Registro Vitícola de Castilla-La Mancha. Available online: https://www.castillalamancha.es/node/204661 (accessed on 27 January 2022).
- Cooperativas Agroalimentarias Castilla-La Mancha. Castilla-La Mancha, Entre las Regiones que más Vino Produce y Menos Consume. Available online: https://www.agroalimentariasclm.coop/prensa/actualidad-del-sector/2082-castilla-la-mancha,-entre-las-regiones-que-m%C3%A1s-vino-produce-y-menos-consume (accessed on 27 January 2022).
- Caixabank Research. Castilla-La Mancha. Available online: https://www.caixabankresearch.com/es/search?buscar=Castilla-La%20Mancha (accessed on 27 January 2022).
- White, P.J.; Crawford, J.W.; Díaz, M.C.; García, R. Soil Management for Sustainable Agriculture. Appl. Environ. Soil Sci. 2012, 2012, 850739. [Google Scholar] [CrossRef] [Green Version]
- Brunori, E.; Farina, R.; Biasi, R. Sustainable viticulture: The carbon-sink function of the vineyard agro-ecosystem. Agric. Ecosyst. Environ. 2016, 223, 10–21. [Google Scholar] [CrossRef]
- Patiño-Zúñiga, L.; Ceja-Navarro, J.A.; Govaerts, B.; Luna-Guido, M.; Sayre, K.D.; Dendooven, L. The effect of different tillage and residue management practices on soil characteristics, inorganic n dynamics and emissions of N2O, CO2 and CH4 in the central highlands of Mexico: A laboratory study. Plant Soil 2009, 314, 231–241. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Veiga, A.; Caetano, A.; Gonzalez-Pelayo, O.; Karine-Boulet, A.; Abrantes, N. Assessment of the impact of distinct vineyard management practices on soil physical-chemical properties. Air Soil Water Res. 2020, 13, 1178622120944847. [Google Scholar] [CrossRef]
- Gatti, M.; Garavani, A.; Squeri, C.; Capri, C.; Diti, I.; D’Ambrosio, R. Inter-row floor management is a powerful factor for optimizing vine balance in a non-irrigated organic barbera vineyard in northern Italy. Eur. J. Agron. 2020, 136, 126490. [Google Scholar] [CrossRef]
- Steenwerth, K.; Belina, K.M. Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem. Appl. Soil Ecol. 2008, 40, 359–369. [Google Scholar] [CrossRef]
- Mitchell, J.P.; Shrestha, A.; Mathesius, K.; Scow, K.M.; Southard, R.J.; Haney, R.L. Cover cropping and no-tillage improve soil health in an arid irrigated cropping system in California’s San Joaquin valley, USA. Soil Tillage Res. 2017, 165, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Gee, G.W.; Bauder, J.W. Particle-Size analysis. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American Society of Agronomy (ASA)-Soil Science Society of America (SSSA): Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Thomas, G.W. Exchangeable cations. In Methods of Soil Analysis, Part 2; Page, A.L., Miller, R.H., Keeney, D.H., Eds.; American Society of Agronomy (ASA)-Soil Science Society of America (SSSA): Madison, WI, USA, 1982; pp. 159–165. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.H., Eds.; American Society of Agronomy (ASA): Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture (USDA): Washington, DC, USA, 1954. [Google Scholar]
- Soil Survey Staff. Key to Soil Taxonomy, 12th ed.; United States Department of Agriculture (USDA)—Natural Resources Conservation Service (NRCS): Washington, DC, USA, 2014. [Google Scholar]
- Van Leeuwen, C.; Roby, J.P.; De Rességuier, L. Soil-related terroir factors: A review. OENO One 2018, 52, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Vogel, H.-J.; Wollschläger, U.; Helming, K.; Heinrich, U.; Willms, M.; Wiesmeier, M.; Russell, D.; Franko, U. Assessment of soil functions affected by soil management. In Atlas of Ecosystem Services; Schröter, M., Bonn, A., Klotz, S., Seppelt, R., Baessler, C., Eds.; Springer: Cham, Switzerland, 2019; pp. 77–82. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources, Update International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Lazcano, C.; Decock, C.; Wilson, S.G. Defining and Managing for Healthy Vineyard Soils, Intersections with the Concept of Terroir. Front. Environ. Sci. 2020, 8, 68. [Google Scholar] [CrossRef]
- Jiménez-Ballesta, R.; Bravo, S.; Amoros, J.A.; Pérez-de-los-Reyes, C.; García-Pradas, J.; Sanchez, M.; García-Navarro, F.J. A morphological approach to evaluating the nature of vineyard soils in semiarid Mediterranean environment. Eur. J. Soil Sci. 2021, 73, e13201. [Google Scholar] [CrossRef]
- Martínez-Casasnovas, J.A.; Ramos, M.C. The cost of soil erosion in vineyard fields in the Penedès–Anoia Region (NE Spain). Catena 2006, 68, 194–199. [Google Scholar] [CrossRef]
- Blavet, D.; De Noni, G.; Le Bissonnais, Y.; Leonard, M.; Maillo, L.; Laurent, J.Y.; Asseline, J.; Leprun, J.C.; Arshad, M.A.; Roose, E. Effect of land use and management on the early stages of soil water erosion in French Mediterranean vineyards. Soil Tillage Res. 2009, 106, 124–136. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Escalona, J.-M.; Pou, A.; Fuentes, S.; Flexas, J.; Bota, J. Improving water use efficiency of vineyards in semi-arid regions. A review. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar] [CrossRef] [Green Version]
- Mirás-Avalos, J.M.; Buesa, I.; Llacer, E.; Jiménez-Bello, M.A.; Risco, D.; Castel, J.R.; Intrigliolo, D.S. Water versus source–sink relationships in a semiarid tempranillo vineyard: Vine performance and fruit composition. Am. J. Enol. Vitic. 2017, 68, 11–22. [Google Scholar] [CrossRef]
- Wheeler, S.J.; Pickering, G.J. Optimizing grape quality through soil management practices. Food Agric. Environ. 2003, 1, 190–197. [Google Scholar]
- Bünemann, E.K.; Schwenke, G.D.; van Zwieten, L. Impact of agricultural inputs on soil organisms—A review. Aust. J. Soil Res. 2006, 44, 379–406. [Google Scholar] [CrossRef] [Green Version]
- Cheik, S.; Jouquet, P. Integrating local knowledge into soil science to improve soil fertility. Soil Use Manag. 2020, 36, 561–564. [Google Scholar] [CrossRef]
- Gil-Sotres, F.; Trasar-Cepeda, C.; Leirós, M.C.; Seoane, S. Different approaches to evaluating soil quality using biochemical properties. Soil Biol. Biochem. 2005, 37, 877–887. [Google Scholar] [CrossRef]
- Schulte, R.P.O.; Creamer, R.E.; Donnellan, T.; Farrelly, N.; Fealy, R.; O’Donoghue, C.; O’huallachain, D. Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environ. Sci. Policy 2014, 38, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, S.J.; Black, G.J.; Pickering, A.S. Vineyard floor management improves wine quality in highly vigorous Vitis vinifera ‘Cabernet Sauvignon’ in New Zealand. N. Z. J. Crop Hortic. Sci. 2005, 33, 317–328. [Google Scholar] [CrossRef]
- Guerra, B.; Steenwerth, K. Influence of floor management technique on grapevine growth, disease pressure, and juice and wine composition: A review. Am. J. Enol. Vitic. 2012, 63, 149–164. [Google Scholar] [CrossRef]
- García-Castellanos, B.; García-García, B.; García-García, J. Evaluation of the Sustainability of Vineyards in Semi-Arid Climates: The Case of Southeastern Spain. Agronomy 2022, 12, 3213. [Google Scholar] [CrossRef]
- Bonanomi, G.; D’Ascoli, R.; Antignani, V.; Capodilupo, M.; Cozzolino, L.; Arzaioli, R.; Puopolo, G.; Rutigliano, F.A.; Scelza, R.; Scotti, R.; et al. Assessing soil quality under intensive cultivation and tree orchards in Southern Italy. Appl. Soil Ecol. 2011, 47, 184–194. [Google Scholar] [CrossRef]
- Bogoni, M.; Panont, A.; Valenti, L.; Scienza, A. Effects of soil physical and chemical conditions on grapevine nutritional status. Hortic. Act. 1995, 383, 299–312. [Google Scholar] [CrossRef]
- Likar, M.; Vogel-Mikuš, K.; Potisek, M.; Hančević, K.; Radi’c, T.; Nečemer, M.; Regvar, M. Importance of soil and vineyard management in the determination of grapevine mineral composition. Sci. Total Environ. 2015, 505, 724–731. [Google Scholar] [CrossRef]
- Pardini, A.; Faiello, C.; Longhi, F.; Mancuso, S.; Snowball, R. Cover crop species and their management in vine-yards and olive groves. Adv. Hortic. Sci. 2002, 16, 225–234. [Google Scholar]
- Saladin, G.; Magné, C.; Clément, C. Stress reactions in Vitis vinifera L. following soil application of the herbicide flumioxazin. Chemosphere 2003, 53, 199–206. [Google Scholar] [CrossRef]
- Mailly, F.; Hossard, L.; Barbier, J.M.; Thiollet-Scholtus, M.; Gary, C. Quantifying the impact of crop protection practices on pesticide use in wine-growing systems. Eur. J. Agron. 2017, 84, 23–34. [Google Scholar] [CrossRef]
- Pickering, G.J.; Wheeler, S. The effects of soil management techniques on grape and wine quality. In Fruits Growth, Nutrition, and Quality; Dris, R., Ed.; WFL Meri-Rastilantie 3 C: Helsinki, Finland, 2006. [Google Scholar]
- Shellie, K.C. Vine and berry response of Merlot (Vitis vinifera L.) to differential water stress. Am. J. Enol. Vitic. 2006, 57, 514–518. [Google Scholar] [CrossRef]
- Morlat, R.; Chaussod, R. Long-term additions of organic amendments in a Loire valley vineyard. I. Effects on properties of a calcareous sandy soil. Am. J. Enol. Vitic. 2008, 59, 353–363. [Google Scholar] [CrossRef]
- Brown, S.; Cotton, M. Changes in soil properties and carbon content following compost application: Results of on-farm sampling. Compost Sci. Util. 2011, 19, 87–96. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Said-Pullicino, D.; Agulló, E.; Andreu, J.; Paredes, C.; Moral, R. Application of winery and distillery waste composts to a Jumilla (SE Spain) vineyard: Effects on the characteristics of a calcareous sandy-loam soil. Agric. Ecosyst. Environ. 2011, 140, 80–87. [Google Scholar] [CrossRef]
- Rubio, R.; Pérez-Murcia, M.D.; Agulló, E.; Bustamante, M.A.; Sánchez, C.; Paredes, C.; Moral, R. Recycling of agro-food wastes into vineyards by composting: Agronomic validation in field conditions. Soil Sci. Plant Anal. 2013, 44, 502–516. [Google Scholar] [CrossRef]
- Calleja-Cervantes, M.E.; Fernández-González, A.J.; Irigoyen, I.; Fernández-López, M.; Aparicio-Tejo, P.M.; Menéndez, S. Thirteen years of continued application of composted organic wastes in a vineyard modify soil quality characteristics. Soil Biol. Biochem. 2015, 90, 241–254. [Google Scholar] [CrossRef]
- Mondini, C.; Fornasier, F.; Sinicco, T.; Sivilotti, P.; Gaiotti, F.; Mosetti, D. Organic amendment effectively recovers soil functionality in degraded vineyards. Eur. J. Agron. 2018, 101, 210–221. [Google Scholar] [CrossRef]
- Whelan, A.; Kechavarzi, C.; Coulon, F.; Sakrabani, R.; Lord, R. Influence of compost amendments on the hydraulic functioning of brownfield soils. Soil Use Manag. 2013, 29, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Celik, I.; Ortas, I.; Kilic, S. Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil Tillage Res. 2004, 78, 59–67. [Google Scholar] [CrossRef]
- Kong, A.Y.Y.; Six, J.; Bryant, D.C.; Denison, R.F.; van Kessel, C. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci. Soc. Am. J. 2005, 69, 1078–1085. [Google Scholar] [CrossRef]
- Salomé, C.; Coll, P.; Lardo, E.; Metay, A.; Villenave, C.; Marsden, C.; Blanchart, E.; Hinsinger, P.; Le Cadre, E. The soil quality concept as a framework to assess management practices in vulnerable agroecosystems: A case study in Mediterranean vineyards. Ecol. Indic. 2016, 61, 456–465. [Google Scholar] [CrossRef]
- Ramos, M.C. Effects of compost amendment on the available soil water and grape yield in vineyards planted after land levelling. Agric. Water Manag. 2017, 191, 67–76. [Google Scholar] [CrossRef]
- Larchevêque, M.; Baldy, V.; Montès, N.; Fernandez, C.; Bonin, G.; Ballini, C. Short-term effects of sew-age-sludge compost on a degraded mediterranean soil. Soil Sci. Soc. Am. J. 2006, 70, 1178–1188. [Google Scholar] [CrossRef]
- Hunt, J.F.; Ohno, T.; He, Z.; Honeycutt, C.W.; Dail, D.B. Inhibition of phosphorus sorption to goethite, gibbsite, and kaolin by fresh and decomposed organic matter. Biol. Fertil. Soils. 2007, 44, 277–288. [Google Scholar] [CrossRef]
- Wilson, S.G.; Lambert, J.-J.; Dahlgren, R.A. Seasonal phosphorus dynamics in a volcanic soil of Northern California. Soil Sci. Soc. Am. J. 2016, 80, 1222–1230. [Google Scholar] [CrossRef] [Green Version]
- Skinner, P.W.; Cook, J.A.; Matthews, M.A. Phosphorus fertilizer applications under phosphorus-limited. Vitis 1988, 27, 95–109. [Google Scholar]
- Pérez-de-los-Reyes, C.; Amorós, J.A.; García-Navarro, F.J.; Bravo, S.; Sánchez, C.; Chocano, D.; Jiménez-Ballesta, R. Changes in water retention properties due to the application of sugar foam in red soils. Agric. Water Manag. 2011, 98, 1834–1839. [Google Scholar] [CrossRef]
- Longbottom, M.L.; Petrie, P.R. Role of vineyard practices in generating and mitigating greenhouse gas emissions: Greenhouse gas emissions in vineyards. Aust. J. Grape Wine Res. 2015, 21, 522–536. [Google Scholar] [CrossRef]
- Lazcano, C.; Gómez-Brandón, M.; Revilla, P.; Domínguez, J. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol. Fertil. Soils 2013, 49, 723–733. [Google Scholar] [CrossRef]
- Mpelasoka, B.S.; Schachtman, D.P.; Treeby, M.T.; Thomas, M.R. A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Aust. J. Grape Wine Res. 2003, 9, 154–168. [Google Scholar] [CrossRef]
- Pinamonti, F. Compost mulch effects on soil fertility, nutritional status and performance of grapevine. Nutr. Cycl. Agroecosyst. 1998, 51, 239–248. [Google Scholar] [CrossRef]
- Chan, K.Y.; Fahey, D.J. Effect of composted mulch application on soil and wine grape potassium status. Soil Res. 2011, 49, 455–461. [Google Scholar] [CrossRef]
- Goulet, E.; Dousset, S.; Chaussod, R.; Bartoli, F.; Doledec, A.F.; Andreux, F. Water-stable aggregates and organic matter pools in a calcareous vineyard soil under four soil-surface management systems. Soil Use Manag. 2006, 20, 318–324. [Google Scholar] [CrossRef]
- Korboulewsky, N.; Dupouyet, S.; Bonin, G. Environmental risks of applying sewage sludge compost to vine-yards: Carbon, heavy metals, nitrogen, and phosphorus accumulation. J. Environ. Qual. 2002, 31, 1522–1527. [Google Scholar] [CrossRef]
- Bravo, S.; García, F.J.; Amorós, J.A.; Pérez-de-los-Reyes, C.; Higueras, P. Effect of the addition of sewage sludge as a fertilizer on a sandy vineyard soil. J. Soils Sediments 2015, 16, 1360–1365. [Google Scholar] [CrossRef]
- Morgan, R.K.; Bowden, R. Copper accumulation in soils from two different-aged apricot orchards in Central Otago, New Zealand. Int. J. Environ. Stud. 1993, 43, 161–167. [Google Scholar] [CrossRef]
- Novak, J.M.; Watts, D.; Stone, K.C. Copper and zinc accumulation, profile distribution, and crop removal in coastal plain soils receiving long-term, intensive applications of swine manure. Trans. ASAE 2004, 47, 1513–1522. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Jin, J.-Y. Status of heavy metals in agricultural soils as affected by different patterns of land use. Environ. Monit. Assess. 2007, 139, 317–327. [Google Scholar] [CrossRef]
- Fernández-Calviño, D.; Nóvoa-Muñoz, J.C.; López-Periago, E.; Arias-Estévez, M. Changes in copper content and distribution in young, old and abandoned vineyard acid soils due to land use changes. Land Degrad. Dev. 2008, 19, 165–177. [Google Scholar] [CrossRef]
- Brunetto, G.; Bastos de Melo, G.W.; Terzano, R.; Del Buono, D.; Astolfi, S.; Tomasi, N.; Pii, Y.; Mimmo, T.; Cesco, S. Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere 2016, 162, 293–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimi, B.; Masson, V.; Guilland, C.; Leroy, E.; Pellegrinelli, S.; Giboulot, E.; Maron, P.A.; Ranjard, L. Ecotoxicity of copper input and accumulation for soil biodiversity in vineyards. Environ. Chem. Lett. 2021, 19, 2013–2030. [Google Scholar] [CrossRef]
- Miotto, A.; Ceretta, C.A.; Brunetto, G.; Nicoloso, F.T.; Girotto, E.; Farias, J.G.; Tiecher, T.L.; De Conti, L.; Trentin, G. Copper uptake, accumulation and physiological changes in adult grapevines in response to excess copper in soil. Plant Soil 2013, 374, 593–610. [Google Scholar] [CrossRef] [Green Version]
- Brunetto, G.; Ferreira, P.; Melo, G.; Ceretta, C. Heavy metals in vineyards and orchad soils. Rev. Bras. Frutic. 2017, 39, e263. [Google Scholar] [CrossRef] [Green Version]
- Sparks, D.L. Environmental Soil Chemistry, 2nd ed.; Academic Press: San Diego, CA, USA, 2003; 352p. [Google Scholar]
- Reimann, C.; Birke, M.; Demetriades, A.; Filzmoser, P.; O’Connor, P. Chemistry of Europe’s Agricultural Soils: Part A: Methodology and Interpretation of the GEMAS Data Set; Geologisches Jahrbuch (Reihe B) Schweizerbarth: Hannover, Germany, 2014; 528p. [Google Scholar]
- Ripoche, A.; Celette, F.; Cinna, J.P.; Gary, C. Design of intercrop management plans to fulfill production and environmental objectives in vineyards. Eur. J. Agron. 2010, 32, 30–39. [Google Scholar] [CrossRef]
- Sweet, R.M.; Schreiner, R.P. Alleyway cover crops have little influence on Pinot noir grapevines (Vitis vinifera L.) in two western Oregon vineyards. Am. J. Enol. Vitic. 2010, 61, 240–252. [Google Scholar] [CrossRef]
- Costa, J.M.; Vaz, M.; Escalona, J.; Egipto, R.; Lopes, C.; Medrano, H.; Chaves, M.M. Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agric. Water Manag. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- Thomson, L. Influence of reduced irrigation on beneficial invertebrates in vineyards. Aust. J. Exp. Agric. 2006, 46, 1389–1395. [Google Scholar] [CrossRef]
- Holland, T.C.; Reynolds, A.G.; Bowen, P.A.; Bogdanoff, C.P.; Marciniak, M.; Brown, R.B.; Hart, M.M. The response of soil biota to water availability in vineyards. Pedobiologia 2012, 56, 9–14. [Google Scholar] [CrossRef]
- Sadras, V.; Morán, M.; Petrie, P. Resilience of grapevine yield in response to warming. OENO One 2017, 51, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Fiera, C.; Ulrichb, W.; Popescuc, D.; Buchholzd, J.; Quernerd, P.; Buneae, C.I.; Straussf, P.; Bauerf, T.; Kratschmerd, S.; Winter, S.; et al. Tillage intensity and herbicide application influence surface-activespringtail (Collembola) communities in Romanian vineyards. Agric. Ecosyst. Environ. 2020, 300, 107006. [Google Scholar] [CrossRef]
- Pou, A.; Gulias, J.; Moreno, M.; Thomas, M.; Medrano, H.; Cifre, J. Cover cropping in Vitis vinifera L. cv. Manto Negro vineyards under Mediterranean conditions: Effects on plant vigour, yield and grape quality. OENO One 2011, 45, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Caffaro, F.; Cremasco, M.M.; Roccato, M.; Cavallo, E. Drivers of farmers’ intention to adopt technological innovations in Italy: The role of information sources, perceived usefulness, and perceived ease of use. J. Rural Stud. 2020, 76, 264–271. [Google Scholar] [CrossRef]
- Tey, Y.S.; Brindal, M. Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precis. Agric. 2012, 13, 713–730. [Google Scholar] [CrossRef]
- Garcia, L.; Celette, F.; Gary, C.; Ripoche, A.; Valdés-Gómez, H.; Metay, A. Management of service crops for the provision of ecosystem services in vineyards: A review. Agric. Ecosyst. Environ. 2018, 251, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Tesic, D.; Keller, M.; Hutton, R.J. Influence of vineyard floor management practices on grapevine vegetative growth, yield, and fruit composition. Am. J. Enol. Vitic. 2007, 58, 1–11. [Google Scholar] [CrossRef]
- Griesser, M.; Khalil, S.; De Berardinis, F.; Oriol, F.; Hörmayer, R.; Mayer, N.; Kührer, E.; Forneck, A. Under-vine vegetation in vineyards: A case study considering soil hydrolytic enzyme activity, yield and grape quality in Austria. OENO One 2022, 56, 81–93. [Google Scholar] [CrossRef]
- Abad, J.; de Mendoza, I.H.; Marín, D.; Orcaray, L.; Santesteban, L.G. Cover crops in viticulture. A systematic review (2): Implications on vineyard agronomic performance. OENO One 2021, 55, 1–27. [Google Scholar] [CrossRef]
- Batáry, P.; Báldi, A.; Kleijn, D.; Tscharntke, T. Landscape-moderated biodiversity effects of agrienvironmental management a meta-analysis. Proc. Biol. Sci. 2011, 278, 1894–1902. [Google Scholar]
Selected Morphological Properties of The Soil Profiles; Also Coordinates and Classification | ||
---|---|---|
SOIL 1 FAO: Haplic Leptosol (Calcaric, Novic). USDA: Lithic Xerorthent. Coordinate UTM: (30s) 0479718 x − 4294064 y Coordinate GPS: 38°47′42.3″ N–03°14′00.8″ W Morphology: Ap-R Depth: 32 cm Topography: Sloping Drainage: Moderately drained. | SOIL 2 FAO: Petric Calcisol (Chromic, Novic). USDA: Petric Calcixerept. Coordinate UTM: (30s) 0466319 x − 4304034 y Coordinate GPS: 38°53′04″ N–03°23′19.9″ W Morphology: Ap-Bw-Ckm Depth: 32 cm Topography: Flat Drainage: Moderately drained | SOIL 3 FAO: Petri Calcisol (Skeletic, Chromic). USDA: Petrocalcic Calcixerept Coordinate UTM: (30s) 0467476 x − 4303818 y Coordinate GPS: 38°52′57.5″ N–03°22′30.0″ W Morphology: Ap-Ckm Depth: 40 cm Topography: Flat Drainage: Moderately drained |
SOIL 4 FAO: Calcic Luvisol (Rhodic, Novic). USDA: Calcic Rhodoxeralf Coordinate UTM: (30s) 0463824 x − 4306846 y Coordinate GPS: 38°54′35.2″ N–03°25′02.1″ W Morphology: Ap-Bt-Ck Depth: 95 cm Topography: Nearly level Drainage: Moderately drained | SOIL 5 FAO: Calcic Luvisol (Profundic, Rhodic). USDA: Petrocalcic Rhodoxeralf. Coordinate UTM: (30s) 0451259 x − 42906 23 y Coordinate GPS: 38°45′46.2″ N–03° 33′37.3″ W Morphology: Ap-Bt-Bk-Ckm Depth: 116 cm Topography: Sloping Drainage: Well drained | SOIL 6 FAO: Haplic Regosol (Calcaric, Skeletic). USDA: Typic Xerorthent. Coordinate UTM: (30s) 0455514 x − 4291861y Coordinate GPS: 38°46′27.7″ N–03°30′43.7″ W Morphology: Ap-C Depth: 25 cm Topography: Flat Drainage: Moderately drained |
SOIL 7 FAO: Cutanic Luvisol (Rhodic, Novic). USDA: Typic Rhodoxeralf. Coordinate UTM: (30s) 0466042 x − 4277800 y Coordinate GPS: 38°38′53.2″ N–03°23′24.9″ W Morphology: Ap-Bt-C Depth: 77 cm Topography: Flat Drainage: Well drained | SOIL 8 FAO: Calcic Luvisol (Chromic, Novic). USDA: Calcic Rhodoxeralf. Coordinate UTM: (30s) 0471649 x − 4288817 y Coordinate GPS: 38°44′51.1″ N–03°19′34.5″ W Morphology: Ap-Bt-Ck Depth: 78 cm Topography: Nearly level. Drainage: Well drained | SOIL 9 FAO: Haplic Calcisol (Chromic, Novic). USDA: Typic Calcixerept. Coordinate UTM: (30s) 0489166 x − 4296580 y Coordinate GPS: 38°49′04.5″ N–03°07′29.3″ W Morphology: Ap-Bw-Ck Depth: 48 cm Topography: Flat Drainage: Well drained |
SOIL 10 FAO: Haplic Cambisol (Calcaric, Rhodic). USDA: Typic Haploxerept. Coordinate UTM: (30s) 0482521 x − 4296908 y Coordinate GPS: 38°49′14.8″ N–03°12′04.8″ W Morphology: Ap-Bw-C Depth: 72 cm Topography: Nearly level Drainage: Moderately drained |
Sand (%) | Silt (%) | Clay (%) | pH | Organic Carbon (%) | CEC (cmol+·kg−1) | V (%) | ||
---|---|---|---|---|---|---|---|---|
Surface Horizon (n = 10) | MEAN | 50.46 | 32.29 | 17.22 | 8.47 | 0.88 | 16.93 | 100 |
CV | 19.41 | 24.88 | 52.99 | 2.36 | 42.11 | 23.1 | 100 | |
MAX | 60.6 | 50.4 | 35.7 | 8.9 | 1.5 | 13.7 | 100 | |
MIN | 31.9 | 21.4 | 6.3 | 8.2 | 0.3 | 16.88 | 0.00 | |
Subsurface Horizon (n = 9) | MEAN | 39.52 | 33.56 | 27.1 | 8.49 | 0.5 | 20.2 | 100 |
CV | 28.69 | 21.83 | 33.26 | 2.92 | 58.55 | 25.8 | 100 | |
MAX | 54.9 | 44.2 | 37.4 | 8.9 | 0.9 | 13.3 | 100 | |
MIN | 26.3 | 20.2 | 13.7 | 8.2 | 0.1 | 19.52 | 0.00 |
Nitrogen (%) | Phosphorus (mg·kg−1) | Potassium (g·kg−1) | Sulfur (g·kg−1) | Copper (mg·kg−1) | ||
---|---|---|---|---|---|---|
Surface Horizon (n = 10) | MEAN | 0.07 | 11.52 | 19.46 | 0.52 | 25.67 |
CV | 0.38 | 0.38 | 0.19 | 0.19 | 0.25 | |
Subsurface Horizon (n = 9) | MEAN | 0.04 | 10.37 | 20.39 | 0.39 | 25.50 |
CV | 0.55 | 0.24 | 0.29 | 0.37 | 0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Navarro, F.J.; Jiménez-Ballesta, R.; Perales, J.A.L.; Perez, C.; Amorós, J.A.; Bravo, S. Sustainable Viticulture in the Valdepeñas Protected Designation of Origin: From Soil Quality to Management in Vitis vinifera. Sustainability 2023, 15, 9339. https://doi.org/10.3390/su15129339
García-Navarro FJ, Jiménez-Ballesta R, Perales JAL, Perez C, Amorós JA, Bravo S. Sustainable Viticulture in the Valdepeñas Protected Designation of Origin: From Soil Quality to Management in Vitis vinifera. Sustainability. 2023; 15(12):9339. https://doi.org/10.3390/su15129339
Chicago/Turabian StyleGarcía-Navarro, Francisco Jesús, Raimundo Jiménez-Ballesta, Jesús Antonio López Perales, Caridad Perez, Jose Angel Amorós, and Sandra Bravo. 2023. "Sustainable Viticulture in the Valdepeñas Protected Designation of Origin: From Soil Quality to Management in Vitis vinifera" Sustainability 15, no. 12: 9339. https://doi.org/10.3390/su15129339
APA StyleGarcía-Navarro, F. J., Jiménez-Ballesta, R., Perales, J. A. L., Perez, C., Amorós, J. A., & Bravo, S. (2023). Sustainable Viticulture in the Valdepeñas Protected Designation of Origin: From Soil Quality to Management in Vitis vinifera. Sustainability, 15(12), 9339. https://doi.org/10.3390/su15129339