Investigating the Potential Impact on Shallow Groundwater Quality of Oily Wastewater Injection in Deep Petroleum Reservoirs: A Multidisciplinary Evaluation at the Val d’Agri Oilfield (Southern Italy)
Abstract
:1. Introduction
Study Area
2. Materials and Methods
2.1. Isotopic Analyses
2.2. Chemical Analyses: Organic Compounds
2.3. Preliminary Characterization of Microbial Communities through Biomolecular Analyses Carried Out in 2016: 16S rDNA Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) and Next-Generation Sequencing (NGS)
2.3.1. DNA Extraction
2.3.2. 16S rDNA Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE)
2.3.3. Next-Generation Sequencing (NGS) Carried Out in 2016 for Samples Collected before the PCLRs Were Tampered with
2.4. Characterization of Bacterial Communities through Next-Generation Sequencing (NGS) after the PCLRs Were Tampered with
3. Results
3.1. Isotopic Analyses
s(yx) = 4.56 ‰, n = 21, p (A = 0) = 0.39
3.2. Chemical Analyses of Organic Compounds
3.3. Preliminary Investigations on Microbial Communities through PCR-DGGE and Next-Generation Sequencing
3.4. Bacterial Community Analysis through Next-Generation Sequencing (NGS) after the PCLRs Were Tampered with
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frohlich, C. Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas. Proc. Natl. Acad. Sci. USA 2012, 109, 13934–13938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buttinelli, M.; Improta, L.; Bagh, S.; Chiarabba, C. Inversion of inherited thrusts by wastewater injection induced seismicity at the Val d’Agri oilfield (Italy). Sci. Rep. 2016, 6, 37165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Improta, L.; Bagh, S.; De Gori, P.; Valoroso, L.; Pastori, M.; Piccinini, D.; Chiarabba, C.; Anselmi, M.; Buttinelli, M. Reservoir structure and wastewater-induced seismicity at the Val d’Agri Oilfield (Italy) shown by three-dimensional Vp and Vp/Vs local earthquake tomography. J. Geophys. Res. Solid Earth 2017, 122, 9050–9082. [Google Scholar] [CrossRef]
- Hager, B.H.; Dieterich, J.; Frohlich, C.; Juanes, R.; Mantica, S.; Shaw, J.H.; Bottazzi, F.; Caresani, F.; Castineira, D.; Cominelli, A.; et al. A process-based approach to understanding and managing triggered seismicity. Nature 2021, 595, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Stabile, T.A.; Vlček, J.; Wcisło, M.; Serlenga, V. Analysis of the 2016–2018 fluid-injection induced seismicity in the High Agri Valley (Southern Italy) from improved detections using template matching. Sci. Rep. 2021, 11, 20630. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, J.L.; Ellsworth, W.L.; McGarr, A.; Benz, H.M. The 2001–present induced earthquake sequence in the Raton Basin of northern New Mexico and southern Colorado. Bull. Seismol. Soc. Am. 2014, 104, 2162–2181. [Google Scholar] [CrossRef] [Green Version]
- Abou-Sayed, A.S.; Andrews, D.E.; Buhidma, I.M. Evaluation of oily waste injection below the permafrost in Prudhoe Bay field. In Proceedings of the SPE California Regional Meeting, Bakersfield, CA, USA, 5–7 April 1989. [Google Scholar] [CrossRef]
- Kholy, S.M.; Sameh, O.; Mounir, N.; Shams, M.; Mohamed, I.M.; Abou-Sayed, A.; Abou-Sayed, O. Evaluating the Feasibility of Waste Slurry Injection in an Oil Prospect in the Western Desert, Egypt. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 18–21 March 2019. [Google Scholar] [CrossRef]
- Colella, A. Anomalous deep waters gurgling to the surface and impacting soils in the Val d’Agri oil field, Southern Italy. Int. J. Ecosyst. Ecol. Sci. 2014, 4, 533–542. [Google Scholar]
- Avagliano, D.; Coraggio, F.; Martinenghi, C.P.; Barbieri, C.; Previde Massara, E.; Musto, M.A.; Caputi, A.; Palladino, G.; Prosser, G.; Celico, F. L’importanza del modello geologico-concettuale negli studi ambientali: Il caso delle manifestazioni sorgive nell’area di Contrada La Rossa (Montemurro—Potenza). In Geologia dell’Ambiente; SIGEA Italian Society of Environmental Geology: Rome, Italy, 2022; ISSN 1591-5352. (In Italian) [Google Scholar]
- Giano, S.I.; Maschio, L.; Alessio, M.; Ferranti, L.; Improta, S.; Schiattarella, M. Radiocarbon dating of active faulting in the Agri high valley, Southern Italy. J. Geodyn. 2000, 29, 371–386. [Google Scholar] [CrossRef]
- Daddezio, G.; Karner, D.B.; Burrato, P.; Insinga, D.; Maschio, L.; Ferranti, L.; Renne, P.R. Tephrochronology in faulted Middle Pleistocene tephra layer in the Val d’Agri area (Southern Italy). Ann. Geophys. 2009, 49, 1029–1040. Available online: http://hdl.handle.net/2122/2122 (accessed on 31 March 2023).
- Giocoli, A.; Stabile, T.A.; Adurno, I.; Perrone, A.; Gallipoli, M.R.; Gueguen, E.; Norelli, E.; Piscitelli, S. Geological and geophysical characterization of the south-eastern side of the High Agri Valley (southern Apennines, Italy). Nat. Hazards Earth Syst. Sci. Discuss 2014, 2, 6271–6294. [Google Scholar] [CrossRef]
- Rizzo, P.; Bucci, A.; Sanangelantoni, A.M.; Iacumin, P.; Celico, F. Coupled Microbiological–Isotopic Approach for Studying Hydrodynamics in Deep Reservoirs: The Case of the Val d’Agri Oilfield (Southern Italy). Water 2020, 12, 1483. [Google Scholar] [CrossRef]
- Rizzo, P.; Malerba, M.; Bucci, A.; Sanangelantoni, A.M.; Remelli, S.; Celico, F. Potential enhancement of the in-situ bioremediation of contaminated sites through the isolation and screening of bacterial strains in natural hydrocarbon springs. Water 2020, 12, 2090. [Google Scholar] [CrossRef]
- Remelli, S.; Rizzo, P.; Celico, F.; Menta, C. Natural surface hydrocarbons and soil faunal biodiversity: A bioremediation perspective. Water 2020, 12, 2358. [Google Scholar] [CrossRef]
- Merlini, S.; Mostardini, F. Appennino centro-meridionale: Sesioni geologiche e proposta di modello strutturale. In Geologia Dell’Italia; Centrale Congresso Nazionale: Rome, Italy, 1986; Volume 73, Available online: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8170990 (accessed on 31 March 2023).
- Butler, R.W.H.; Corrado, S.; Mazzoli, S.; De Donatis, M.; Di Bucci, D.; Naso, G.; Scrocca, D.; Nicolai, C.; Zucconi, V. Time and space variability of «thin-skinned» and «thick-skinned» thrust tectonics in the Apennines (Italy). Rend. Lincei 2000, 11, 5–39. [Google Scholar] [CrossRef]
- Menardi Noguera, A.; Rea, G. Deep structure of the Campanian–Lucanian arc (southern Apennine, Italy). Tectonophysics 2000, 324, 239–265. [Google Scholar] [CrossRef]
- Wavrek, D.A.; Mosca, F. Compositional grading in the oil column: Advances from a mass balance and quantitative molecular analysis. Geol. Soc. Lond. Spec. Publ. 2004, 237, 207–220. [Google Scholar] [CrossRef]
- Rizzo, P.; Severini, E.; Bucci, A.; Bocchia, F.; Palladino, G.; Riboni, N.; Sanangelantoni, A.M.; Francese, R.; Giorgi, M.; Iacumin, P.; et al. How do turbidite systems behave from the hydrogeological point of view? New insights and open questions coming from an interdisciplinary work in Southern Italy. PLoS ONE 2022, 17, e0268252. [Google Scholar] [CrossRef]
- Boenzi, F.; Ciaranfi, N. Stratigrafia di dettaglio del Flysch di Gorgoglione (Lucania). Mem. Della Soc. Geol. Ital. 1970, 9, 65–79. [Google Scholar]
- Lentini, F.; Carbone, S.; Di Stefano, A.; Guarnieri, P. Stratigraphical and structural constraints in the Lucanian Apennines (Southern Italy): Tools for reconstructing the geological evolution. J. Geodyn. 2002, 34, 141–158. [Google Scholar] [CrossRef]
- Tavarnelli, E.; Prosser, G. The complete Apennines orogenic cycle preserved in a transient single outcrop near San Fele, Lucania, Southern Italy. J. Geol. Soc. 2003, 160, 429–434. [Google Scholar] [CrossRef]
- Giannandrea, P.; Loiacono, F.; Maiorano, P.; Liler, F. Carta Geologica del Settore Orientale del Bacino di Gorgoglione (Eastern Sector); Litografia Artistica Cartografica Srl: Florence, Italy, 2009. [Google Scholar]
- Maffione, M.; Speranza, F.; Cascella, A.; Longhitano, S.G.; Chiarella, D. A~125 post-early Serravallian counterclockwise rotation of the Gorgoglione Formation (Southern Apennines, Italy): New constraints for the formation of the Calabrian Arc. Tectonophysics 2013, 590, 24–37. [Google Scholar] [CrossRef]
- Romano, G.; Balasco, M.; Siniscalchi, A.; Gueguen, E.; Petrillo, Z.; Tripaldi, S. Geological and geo-structural characterization of the Montemurro area (Southern Italy) inferred from audiomagnetotelluric survey. Geomat. Nat. Hazards Risk 2018, 9, 1156–1171. [Google Scholar] [CrossRef] [Green Version]
- Pantaleone, D.V.; Vincenzo, A.; Fulvio, C.; Silvia, F.; Cesaria, M.; Giuseppina, M.; Ilaria, M.; Vincenzo, P.; Rosa, S.A.; Gianpietro, S.; et al. Hydrogeology of continental Southern Italy. J. Maps 2018, 14, 230–241. [Google Scholar] [CrossRef] [Green Version]
- Petrella, E.; Aquino, D.; Fiorillo, F.; Celico, F. The effect of low-permeability fault zones on groundwater flow in a compartmentalized system. Experimental evidence from a carbonate aquifer (Southern Italy). Hydrol. Process. 2014, 29, 1577–1587. [Google Scholar] [CrossRef]
- U.S. EPA. Method 5021A (SW-846 Update V): Volatile Organic Compounds in Various Sample Matrices Using Equilibrium Headspace Analysis; U.S. Environmental Protection Agency: Washington, DC, USA, 2014.
- U.S. EPA. Method 8260C: Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS); U.S. Environmental Protection Agency: Washington, DC, USA, 2006.
- U.S. EPA. Method 3511 (SW-846 Update V): Organic Compounds in Water by Microextraction; U.S. Environmental Protection Agency: Washington, DC, USA, 2014.
- U.S. EPA. Method 8270D (SW-846 Update V): Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry; U.S. Environmental Protection Agency: Washington, DC, USA, 2014.
- ISO 17943; Water quality—Determination of Volatile Organic Compounds in Water—Method Using Headspace Solid-Phase Micro-Extraction (HS-SPME) followed by Gas Chromatography-Mass Spectrometry (GC-MS). International Organization for Standardization: Geneva, Switzerland, 2016.
- APAT CNR IRSA 5160B Man 29/2003; Metodi Analitici per le Acque, Vol. 2—Sez. 5000: Costituenti Organici. The Agency for the Protection of the Environment and for Technical Services: Roma, Italy, 2004; ISBN 88-448-0083-7. Available online: https://www.irsa.cnr.it/wp/wp-content/uploads/2022/04/Vol2_Sez_5000_Organici.pdf (accessed on 31 March 2023). (In Italian)
- Chong, C.W.; Dunn, M.J.; Convey, P.; Tan, G.Y.A.; Wong, R.C.S.; Tan, I.K.P. Environmental influences on bacterial diversity of soils on Signy Island, maritime Antarctic. Polar Biol. 2009, 32, 1571–1582. [Google Scholar] [CrossRef]
- Hernàndez-Diaz, R.; Petrella, E.; Bucci, A.; Naclerio, G.; Feo, A.; Sferra, G.; Chelli, A.; Zanini, A.; Gonzalez-Hernandez, P.; Celico, F. Integrating hydrogeological and microbiological data and modelling to characterize the hydraulic features and behaviour of coastal carbonate aquifers: A case in western Cuba. Water 2019, 11, 1989. [Google Scholar] [CrossRef] [Green Version]
- DeLong, E.F. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 1992, 89, 5685–5689. [Google Scholar] [CrossRef] [Green Version]
- Coolen, M.J.; Hopmans, E.C.; Rijpstra, W.I.C.; Muyzer, G.; Schouten, S.; Volkman, J.K.; Damsté, J.S.S. Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: Response of methanogens and methanotrophs to environmental change. Org. Geochem. 2004, 35, 1151–1167. [Google Scholar] [CrossRef]
- Takahashi, S.; Tomita, J.; Nishioka, K.; Hisada, T.; Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS ONE 2014, 9, e105592. [Google Scholar] [CrossRef] [Green Version]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Gonzalez Peña, A.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Longinelli, A.; Selmo, E. Isotopic composition of precipitation in Italy: A first overall map. J. Hydrol. 2003, 270, 75–88. [Google Scholar] [CrossRef]
- Paternoster, M.; Liotta, M.; Favara, R. Stable isotope ratios in meteoric recharge and groundwater at Mt. Vulture volcano, Southern Italy. J. Hydrol. 2008, 348, 87–97. [Google Scholar] [CrossRef]
- Petrella, E.; Capuano, P.; Carcione, M.; Celico, F. A high-altitude temporary spring in a compartmentalized carbonate aquifer: The role of low-permeability faults and karst conduits. Hydrol. Process. 2009, 23, 3354–3364. [Google Scholar] [CrossRef]
- Petrella, E.; Celico, F. Mixing of water in a carbonate aquifer, Southern Italy, analysed through stable isotope investigations. Int. J. Speleol. 2013, 42, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Candela, S.; Mazzoli, S.; Megna, A.; Santini, S. Finite element modelling of stress field perturbations and interseismic crustal deformation in the Val d’Agri region, southern Apennines, Italy. Tectonophysics 2015, 657, 245–259. [Google Scholar] [CrossRef]
- Lyu, Z.; Shao, N.; Akinyemi, T.; Whitman, W.B. Methanogenesis. Curr. Biol. 2018, 28, R727–R732. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Xia, L.-P.; Wang, L.-Y.; Liu, J.-F.; Gu, J.-D.; Mu, B.-Z. Diversity and distribution of sulfate-reducing bacteria in four petroleum reservoirs detected by using 16S rRNA and dsrAB genes. Int. Biodeterior. Biodegrad. 2012, 76, 58–66. [Google Scholar] [CrossRef]
- Grassia, G.S.; McLean, K.M.; Glénat, P.; Bauld, J.; Sheehy, A.J. A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol. Ecol. 1996, 21, 47–58. [Google Scholar] [CrossRef]
- Dahle, H.; Birkeland, N.K. Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int. J. Syst. Evol. Microbiol. 2006, 56, 1539–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekins, B.A.; Brennan, J.C.; Tillitt, D.E.; Cozzarelli, I.M.; Illig, J.M.; Martinović-Weigelt, D. Biological effects of hydrocarbon degradation intermediates: Is the total petroleum hydrocarbon analytical method adequate for risk assessment? Environ. Sci. Technol. 2020, 54, 11396–11404. [Google Scholar] [CrossRef] [PubMed]
Analytes | Results (µg/L) | Methods | Limit by Italian Law (µg/L) |
---|---|---|---|
Benzene | 9610 ± 1100 | EPA 5021A + 8260C | 1 |
Toluene | 8960 ± 540 | EPA 5021A + 8260C | 15 |
Ethylbenzene | 720 ± 70 | EPA 5021A + 8260C | 50 |
M- + p-xylene | 1510 ± 220 | EPA 5021A + 8260C | 10 |
Styrene | 45 ± 6 | EPA 5021A + 8260C | 25 |
Benzo (a) pyrene | <0.003 | EPA 3511 + 8270D | 0.01 |
Benzo (b) fluoranthene | <0.01 | EPA 3511 + 8270D | 0.1 |
Benzo (k) fluoranthene | <0.005 | EPA 3511 + 8270D | 0.05 |
Benzo (a) anthracene | <0.01 | EPA 3511 + 8270D | 0.1 |
Benzo (g, h, i) perylene | <0.003 | EPA 3511 + 8270D | 0.01 |
Dibenzo (a, h) anthracene | <0.003 | EPA 3511 + 8270D | 0.01 |
Indeno (1,2,3-c, d) pyrene | <0.01 | EPA 3511 + 8270D | 0.1 |
Pyrene | <0.05 | EPA 3511 + 8270D | 50 |
Chrysene | <0.05 | EPA 3511 + 8270D | 5 |
Chlorobenzene | <0.1 | EPA 5021A + 8260C | 40 |
1,2-dichlorobenzene | <0.1 | EPA 5021A + 8260C | 270 |
1,4-dichlorobenzene | <0.1 | EPA 5021A + 8260C | 0.5 |
1,2,4-trichlorobenzene | <0.5 | EPA 5021A + 8260C | 190 |
1,2,4,5-tetrachlorobenzene | <0.1 | EPA 3511 + 8270D | 1.8 |
Pentachlorobenzene | <0.1 | EPA 3511 + 8270D | 5 |
2- chlorophenol | <0.5 | Internal method + ISO 17943 | 180 |
2,4- dichlorophenol | <0.5 | Internal method + ISO 17943 | 110 |
2,4,6- trichlorophenol | <0.5 | Internal method + ISO 17943 | 5 |
Pentachlorophenol | <0.05 | Internal method + ISO 17943 | 0.5 |
Total hydrocarbons | 70.8 ± 4.3 (as n-hexane) | APAT CNR IRSA 5160B Man 29 2003 | 350 (as n-hexane) |
Analytes | Results (µg/L) | Methods | Limit by Italian Law (µg/L) |
---|---|---|---|
Benzene | <0.1 | EPA 5021A + 8260C | 1 |
Toluene | <1 | EPA 5021A + 8260C | 15 |
Ethylbenzene | <1 | EPA 5021A + 8260C | 50 |
M- + p-xylene | <1 | EPA 5021A + 8260C | 10 |
Styrene | <1 | EPA 5021A + 8260C | 25 |
Benzo (a) pyrene | <0.003 | EPA 3511 + 8270D | 0.01 |
Benzo (b) fluoranthene | <0.01 | EPA 3511 + 8270D | 0.1 |
Benzo (k) fluoranthene | <0.005 | EPA 3511 + 8270D | 0.05 |
Benzo (a) anthracene | <0.01 | EPA 3511 + 8270D | 0.1 |
Benzo (g, h, i) perylene | <0.003 | EPA 3511 + 8270D | 0.01 |
Dibenzo (a, h) anthracene | <0.003 | EPA 3511 + 8270D | 0.01 |
Indeno (1,2,3-c, d) pyrene | <0.01 | EPA 3511 + 8270D | 0.1 |
Pyrene | <0.05 | EPA 3511 + 8270D | 50 |
Chrysene | <0.05 | EPA 3511 + 8270D | 5 |
Chlorobenzene | <0.1 | EPA 5021A + 8260C | 40 |
1,2-dichlorobenzene | <0.1 | EPA 5021A + 8260C | 270 |
1,4-dichlorobenzene | <0.1 | EPA 5021A + 8260C | 0.5 |
1,2,4-trichlorobenzene | <0.5 | EPA 5021A + 8260C | 190 |
1,2,4,5-tetrachlorobenzene | <0.1 | EPA 3511 + 8270D | 1.8 |
Pentachlorobenzene | <0.1 | EPA 3511 + 8270D | 5 |
2- chlorophenol | <0.5 | Internal method + ISO 17943 | 180 |
2,4- dichlorophenol | <0.5 | Internal method + ISO 17943 | 110 |
2,4,6- trichlorophenol | <0.5 | Internal method + ISO 17943 | 5 |
Pentachlorophenol | <0.05 | Internal method + ISO 17943 | 0.5 |
Total hydrocarbons | <35 | APAT CNR IRSA 5160B Man 29 2003 | 350 (as n-hexane) |
Sample | Final Read Number | |||
---|---|---|---|---|
Sampling Campaigns | ||||
June 2018 | September 2018 | January 2019 | March 2019 | |
CM2 | 84,618 | 34,947 | 63,407 | 57,527 |
PZ1 | 75,283 | 57,530 | - | 65,482 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo, P.; Bucci, A.; Monaco, P.; Sanangelantoni, A.M.; Naclerio, G.; Rossi, M.; Iacumin, P.; Bianchi, F.; Mucchino, C.; Riboni, N.; et al. Investigating the Potential Impact on Shallow Groundwater Quality of Oily Wastewater Injection in Deep Petroleum Reservoirs: A Multidisciplinary Evaluation at the Val d’Agri Oilfield (Southern Italy). Sustainability 2023, 15, 9161. https://doi.org/10.3390/su15129161
Rizzo P, Bucci A, Monaco P, Sanangelantoni AM, Naclerio G, Rossi M, Iacumin P, Bianchi F, Mucchino C, Riboni N, et al. Investigating the Potential Impact on Shallow Groundwater Quality of Oily Wastewater Injection in Deep Petroleum Reservoirs: A Multidisciplinary Evaluation at the Val d’Agri Oilfield (Southern Italy). Sustainability. 2023; 15(12):9161. https://doi.org/10.3390/su15129161
Chicago/Turabian StyleRizzo, Pietro, Antonio Bucci, Pamela Monaco, Anna Maria Sanangelantoni, Gino Naclerio, Mattia Rossi, Paola Iacumin, Federica Bianchi, Claudio Mucchino, Nicolò Riboni, and et al. 2023. "Investigating the Potential Impact on Shallow Groundwater Quality of Oily Wastewater Injection in Deep Petroleum Reservoirs: A Multidisciplinary Evaluation at the Val d’Agri Oilfield (Southern Italy)" Sustainability 15, no. 12: 9161. https://doi.org/10.3390/su15129161
APA StyleRizzo, P., Bucci, A., Monaco, P., Sanangelantoni, A. M., Naclerio, G., Rossi, M., Iacumin, P., Bianchi, F., Mucchino, C., Riboni, N., Avagliano, D., Coraggio, F., Caputi, A., & Celico, F. (2023). Investigating the Potential Impact on Shallow Groundwater Quality of Oily Wastewater Injection in Deep Petroleum Reservoirs: A Multidisciplinary Evaluation at the Val d’Agri Oilfield (Southern Italy). Sustainability, 15(12), 9161. https://doi.org/10.3390/su15129161