Enhancing Efficiency of Grid-Connected Solar Photovoltaic System with Particle Swarm Optimization & Long Short-Term Memory Hybrid Technique
Abstract
:1. Introduction
- Mathematical modeling of the PSO-LSTM MPPT model has been carried out in this research article.
- The validation of the proposed PSO-LSTM MPPT with other established models under partial shading conditions has been performed as an integral part of this paper.
- Hardware implementation of the model has been carried out for robustness evaluation of the model under different weather conditions.
2. Problem Formulation
2.1. N-R Type Boundary Control
2.2. Robin Type Boundary Value
3. Bench Marking Model
3.1. Case-1: GA-MPPT
Algorithm 1: Evaluating MPP for perturb s. using GA |
|
3.2. Case-2: PSO-MPPT
4. Simulation and Result Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Priya, T.H.; Parimi, A.M.; Rao, U.M. Development of hybrid controller for photovoltaic based DC-DC boost converter in DC grid connected applications. In Proceedings of the 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, India, 18–19 March 2016; pp. 1–6. [Google Scholar]
- Hou, W.; Jin, Y.; Zhu, C.; Li, G. A novel maximum power point tracking algorithm based on glow worm swarm optimization for photovoltaic systems. Int. J. Photoenergy 2016, 2016, 4910862. [Google Scholar] [CrossRef]
- Pilawa-Podgurski, R.C.N.; Perreault, D.J. Submodule integrated distributed maximum power point tracking for solar photovoltaic applications. IEEE Trans. Power. Electron. 2013, 28, 2957–2967. [Google Scholar] [CrossRef]
- Kheldoun, A.B.R.B.; Bradai, R.; Boukenoui, R.; Mellit, A. Anewgolden section method based maximum power point tracking algorithm for photovoltaic systems. Energy Convers Manag. 2016, 111, 125–136. [Google Scholar] [CrossRef]
- Sundareswaran, K.; Peddapati, S.; Palani, S. Application of random search method for maximum power point tracking in partially shaded photovoltaic systems. IET Renew Power Gener. 2014, 14, 670–678. [Google Scholar] [CrossRef]
- Amir, A.; Selvaraj, J.; Rahim, N. Study of the MPP tracking algorithms: Focusing the numerical method techniques. Renew. Sustain. Energy Rev. 2016, 62, 350–371. [Google Scholar] [CrossRef]
- Dash, R.; Paikray, P.; Swain, S.C. Active power filter for harmonic mitigation in a distributed power generation system. In Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21–22 April 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Tajuddin, M.F.N.; Arif, M.S.; Ayob, S.M.; Salam, Z. Perturbative methods for maximum power point tracking (MPPT) of photovoltaic (PV) systems: A review. Int. J. Energy Res. 2015, 39, 1153–1178. [Google Scholar] [CrossRef]
- Chapman, P.; Esram, T. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energy Convers. 2007, 22, 439–449. [Google Scholar]
- Patnaik, B.; Swain, S.C.; Dash, R.K. An Experimental Analysis of Solar PV on Higher Concentration of Methane. In Proceedings of the 2022 IEEE India Council International Subsections Conference (INDISCON), Bhubaneswar, India, 15–17 July 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Sera, D.; Kerekes, T.; Teodorescu, R.; Blaabjerg, F. Improved MPPT algorithms for rapidly changing environmental conditions. In Proceedings of the 2006 12th International Power Electronics and Motion Control Conference, Portoroz, Slovenia, 30 August–1 September 2006; pp. 1614–1619. [Google Scholar]
- Narsingoju, K.; Busa, V.; Kumar, G.V. Simulation analysis of maximum power control of photovoltaic power system. Int. J. Adv. Electr. Electron Eng. 2012, 1, 9–14. [Google Scholar]
- Patnaik, B.; Swain, S.C.; Dash, R. A Study on Effect of GHG on the Performance of Grid Connected Solar PV System. In Proceedings of the 2022 IEEE India Council International Subsections Conference (INDISCON), Bhubaneswar, India, 15–17 July 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Sakib, N.; Kabir, M.W.U.; Subbir, M.; Alam, S. A comparative study of flower pollination algorithm and bat algorithm on continuous optimization problems. Int. J. Appl. Inf. Syst. 2014, 7, 13–19. [Google Scholar] [CrossRef]
- Yang, B.; Zhong, L.; Zhang, X.; Shu, H.; Yu, T.; Li, H.; Jiang, L.; Sun, L. Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition. J Clean Prod. 2019, 215, 1203–1222. [Google Scholar] [CrossRef]
- Kumar, C.; Rao, R. A novel global MPP tracking of a photovoltaic system based on whale optimization algorithm. Int. J. Renew. Energy Dev. 2016, 5, 225–232. [Google Scholar] [CrossRef]
- Mohanty, S.; Subudhi, B.; Ray, P.K. A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions. IEEE Trans. Sustain. Energy 2016, 7, 181–188. [Google Scholar] [CrossRef]
- Mansoor, M.; Feroz Mirza, A.; Ling, Q. Harris hawk optimization-based MPPT control for PV systems under partial shading conditions. J. Clean Prod. 2020, 274, 122857. [Google Scholar] [CrossRef]
- El-Helw, H.M.; Magdy, A.; Marei, M.I. A hybrid maximum power point tracking technique for partially shaded photovoltaic arrays. IEEE Access 2017, 5, 11900–11908. [Google Scholar] [CrossRef]
- Paul, R.; Dash, R.; Swain, S.C. Design & Analysis of Current Controller for SPV Grid Connected System through Hysteresis CCT. In Proceedings of the 2018 International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC), Bhubaneswar, India, 22–24 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, C.-H.; Gu, J.-C.; Yang, M.-T. A Simplified LSTM Neural Networks for One Day-Ahead Solar Power Forecasting. IEEE Access 2021, 9, 17174–17195. [Google Scholar] [CrossRef]
- Kong, W.C.; Dong, Z.Y.; Jia, Y.W.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network. IEEE Trans. Smart Grid 2019, 10, 841–851. [Google Scholar] [CrossRef]
- Premkumar, M.; Sowmya, R. Certain study on MPPT algorithms to track the global MPP under partial shading on solar PVmod- 431 ule/array. Int. J. Comput. Digit. Syst. 2019, 8, 405–416. [Google Scholar] [CrossRef]
- Ali, S.; Bhargava, A.; Saxena, A.; Kumar, P. A Hybrid Marine Predator Sine Cosine Algorithm for Parameter Selection of Hybrid Active Power Filter. Mathematics 2023, 11, 598. [Google Scholar] [CrossRef]
- Aziz, R.M.; Mahto, R.; Goel, K.; Das, A.; Kumar, P.; Saxena, A. Modified Genetic Algorithm with Deep Learning for Fraud Transactions of Ethereum Smart Contract. Appl. Sci. 2023, 13, 697. [Google Scholar] [CrossRef]
- Sahoo, S.; Swain, S.C.; Dash, R. A Novel Flower Pollination Method for Unit Price Estimation in a Microgrid. In Proceedings of the 2022 3rd International Conference for Emerging Technology (INCET), Belgaum, India, 27–29 May 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Abd-Elazim, S.M.; Ali, E.S. Imperialist competitive algorithm for optimal STATCOM design in a multimachine power system. Int. J. Electr. Power Energy Syst. 2016, 76, 136–146. [Google Scholar] [CrossRef]
- Patnaik, B.; Swain, S.C.; Rout, U.K.; Dash, R. Performance of Solar PV under higher Concentration of Carbon dioxide and Methane. In Proceedings of the 2022 Trends in Electrical, Electronics, Computer Engineering Conference (TEECCON), Bengaluru, India, 26–27 May 2022; pp. 113–118. [Google Scholar] [CrossRef]
- Ballaji, A.; Dash, R.; Subburaj, V.; Kalvakurthi, J.R.; Swain, D.; Swain, S.C. Design & Development of MPPT Using PSO With Predefined Search Space Based on Fuzzy Fokker Planck Solution. IEEE Access 2022, 10, 80764–80783. [Google Scholar] [CrossRef]
- Patnaik, B.; Swain, S.C.; Rout, U.K.; Dash, R. An Experimental Investigation of Co2 Concentration on Solar PV Performance using SVM. In Proceedings of the 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, 27–29 November 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Ramadan, A.; Kamel, S.; Hassan, M.H.; V´eliz, T.M.; Eltamaly, A.M. Parameter Estimation of Static/Dynamic Photovoltaic Models Using a Developed Version of Eagle Strategy Gradient-Based Optimizer. Sustainability 2021, 13, 13053. [Google Scholar] [CrossRef]
- Dash, R.; Behera, P.R.; Ali, S.M. Hybrid system for meeting global energy demand with solar PV and wind system. In Proceedings of the 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari, India, 10–11 July 2014; pp. 388–392. [Google Scholar] [CrossRef]
- Dash, R.; Swain, S.C. Effective Power quality improvement using Dynamic Activate compensation system with Renewable grid interfaced sources. Ain Shams Eng. J. 2018, 9, 2897–2905. [Google Scholar] [CrossRef]
- Abdul-Kalaam, R.; Muyeen, S.; Al-Durra, A. Review of maximum power point tracking techniques for photovoltaic system. Glob. J. Control Eng. Technol. 2016, 2, 8–18. [Google Scholar]
- Swain, S.C.; Dash, R.; Ali, S.M.; Mohanta, A.K. Performance evaluation of photovoltaic system based on solar cell modelling. In Proceedings of the 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015], Nagercoil, India, 19–20 March 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Premkumar, M.; Sumithira, T.R. Humpback whale assisted hybrid maximum power point tracking algorithm for partially shaded 445 solar photovoltaic systems. J. Power Electron. 2018, 18, 1498–1511. [Google Scholar]
n = 10 | n = 20 | n = 30 | |
---|---|---|---|
Population Size | 100 | 200 | 300 |
Probability of Cross over | 0.7 | 0.71 | 0.75 |
Elite Size | 1% | 1% | 1% |
% of mutation | 10% | 10% | 10% |
Stopping Criteria | error = 0.1 | error = 0.1 | error = 0.1 |
Cross Over | Uniformly Mapped | Uniformly Mapped | Uniformly Mapped |
Cross Over Type | CC = 0.1 | CC = 1 | CC = 1 |
Selection Criteria | Stochastic Movement | Stochastic Movement | Brownian Movement |
Fitness | 90% | 90% | 100% |
Sr. No, | Parameter | Rating |
---|---|---|
1 | Wattage rating of solar Panel | 400 wp |
2 | Open circuit voltage at STC | 43.2 V |
3 | MPP voltage at STC | 38.7 V |
4 | Short circuit current of panel | 6.79 A |
5 | MPP current at STC | 6.51 A |
6 | No. of series connected panels | 7 |
7 | No. of parallel connected panels | 66 |
8 | DC-DC converter output voltage | 407 V |
9 | Boost converter rating | 4 KW |
10 | Inductor rating | 6 mH |
11 | Filter inductance | 252 NH |
12 | Inverter type | 3 level, VSI |
% Type of Activation | Voc | Time | |||
---|---|---|---|---|---|
0.9Voc | 0.8Voc | 0.7Voc | 0.9 T | 0.8 T | |
sigmoid | 38.88 | 34.56 | 30.24 | 13.76 | 12.04 |
tanh | 38.10 | 33.17 | 29.63 | 13.23 | 12.00 |
ReLu | 38.91 | 34.59 | 31.14 | 13.16 | 12.03 |
Softmax | 38.63 | 33.70 | 30.16 | 13.55 | 12.97 |
Cluster | % Shading (Transient) | MPP max | MPP min | Standard Deviation | Tracking Time (s) |
---|---|---|---|---|---|
C-1 | 10 | 376.8 | 359.1 | 13.09 | 11.93 |
C-2 | 20 | 364.5 | 357.8 | 11.83 | 11.27 |
C-3 | 30 | 322.4 | 304.6 | 18.06 | 13.06 |
C-4 | 40 | 298.6 | 272.9 | 24.33 | 17.18 |
C-5 | 50 | 173.1 | 153.0 | 34.49 | 39.63 |
Condition | Type of MPPT Algorithm | MPP Tracking Time | % of Oscillations | Tracking Efficiency |
---|---|---|---|---|
Normal | GA | 8.33 | 4.11 | 85.88 |
PSO | 6.98 | 3.82 | 89.31 | |
PSO-LSTM | 6.36 | 2.83 | 93.47 | |
Partial Shading | GA | 17.04 | 9.43 | 78.66 |
PSO | 15.81 | 9.68 | 81.05 | |
PSO-LSTM | 9.83 | 9.26 | 83.27 |
Type of Dust | % of Mixture | MPP max | MPP min | SD | Tracking Time (ms) |
---|---|---|---|---|---|
L-Type | 10% | 382.66 | 381.07 | 9.63 | 5.41 |
20% | 373.04 | 372.91 | 9.65 | 5.07 | |
30% | 366.19 | 358.82 | 8.87 | 4.93 | |
M-Type | 10% | 379.93 | 375.04 | 11.44 | 8.10 |
20% | 353.27 | 349.84 | 11.16 | 8.33 | |
30% | 344.64 | 341.73 | 12.29 | 8.67 | |
H-Type | 10% | 352.97 | 339.18 | 23.01 | 12.31 |
20% | 347.11 | 328.09 | 18.84 | 17.44 | |
30% | 323.74 | 304.68 | 18.35 | 24.89 |
Type of Algorithm | % of Dust | MPP Tracking Time | % of Oscillations | Tracking Efficiency |
---|---|---|---|---|
GA | 10 | 17.36 | 7.84 | 89.93 |
20 | 19.98 | 10.07 | 86.22 | |
30 | 23.43 | 11.63 | 77.48 | |
PSO | 10 | 17.27 | 8.03 | 90.96 |
20 | 19.66 | 10.39 | 88.30 | |
30 | 23.19 | 10.58 | 81.54 | |
PSO-LSTM | 10 | 17.16 | 7.42 | 91.36 |
20 | 18.59 | 9.86 | 89.91 | |
30 | 21.64 | 10.18 | 83.43 |
Type of GHG | Weight of GHG | MPP max | MPP min | Standard Deviation | Tracking Time |
---|---|---|---|---|---|
CO_X | 0.8 kg | 381.02 | 379.64 | 9.84 | 6.34 |
1.3 kg | 378.33 | 371.83 | 9.62 | 6.78 | |
1.7 kg | 361.78 | 355.68 | 9.63 | 7.22 | |
NO_X | 0.8 kg | 381.66 | 381.08 | 2.44 | 6.84 |
1.3 kg | 381.39 | 381.00 | 1.85 | 6.81 | |
1.7 kg | 377.19 | 376.94 | 3.82 | 6.69 | |
SO_X | 0.8 kg | 383.48 | 381.13 | 1.04 | 6.91 |
1.3 kg | 379.26 | 379.22 | 1.16 | 6.90 | |
1.7 kg | 381.35 | 380.88 | 2.37 | 6.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jena, R.; Dash, R.; Reddy, K.J.; Parida, P.K.; Dhanamjayulu, C.; Swain, S.C.; Muyeen, S.M. Enhancing Efficiency of Grid-Connected Solar Photovoltaic System with Particle Swarm Optimization & Long Short-Term Memory Hybrid Technique. Sustainability 2023, 15, 8535. https://doi.org/10.3390/su15118535
Jena R, Dash R, Reddy KJ, Parida PK, Dhanamjayulu C, Swain SC, Muyeen SM. Enhancing Efficiency of Grid-Connected Solar Photovoltaic System with Particle Swarm Optimization & Long Short-Term Memory Hybrid Technique. Sustainability. 2023; 15(11):8535. https://doi.org/10.3390/su15118535
Chicago/Turabian StyleJena, Ramakanta, Ritesh Dash, Kalvakurthi Jyotheeswara Reddy, Prasanta Kumar Parida, Chittathuru Dhanamjayulu, Sarat Chandra Swain, and S. M. Muyeen. 2023. "Enhancing Efficiency of Grid-Connected Solar Photovoltaic System with Particle Swarm Optimization & Long Short-Term Memory Hybrid Technique" Sustainability 15, no. 11: 8535. https://doi.org/10.3390/su15118535
APA StyleJena, R., Dash, R., Reddy, K. J., Parida, P. K., Dhanamjayulu, C., Swain, S. C., & Muyeen, S. M. (2023). Enhancing Efficiency of Grid-Connected Solar Photovoltaic System with Particle Swarm Optimization & Long Short-Term Memory Hybrid Technique. Sustainability, 15(11), 8535. https://doi.org/10.3390/su15118535