The Spatial Spillover Effect of Logistics and Manufacturing Co-Agglomeration on Regional Economic Resilience: Evidence from China’s Provincial Panel Data
Abstract
:1. Introduction
2. Literature Review
3. Research Methods and Data Sources
3.1. Benchmark Model Construction
3.2. Variable Definitions
3.3. Data Sources and Descriptive Statistics
3.3.1. Data Sources
3.3.2. Descriptive Statistics
3.4. Spatial Autocorrelation Test
3.5. Selection of Spatial Weight Matrix
3.6. Spatial Panel Model Setting
4. Empirical Analysis
4.1. Analysis of the Spatial Evolution Characteristics of EcoResi and LMCA Level
4.1.1. The Trend of EcoResi by Region
4.1.2. The Trend of LMCA Level by Region
4.2. The Impact of LMCA on EcoResi
4.2.1. Analysis Results of Classical Econometric Models
4.2.2. Analysis of Spatial Spillover Effects
4.2.3. Analysis of Regional Spatial Spillover Effect
4.3. Robustness Test
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | Moran’s I | sd | z | p-Value |
---|---|---|---|---|
2006 | 0.1459 | 0.0758 | 2.3800 | 0.0173 |
2007 | 0.1310 | 0.0687 | 2.4098 | 0.0160 |
2008 | 0.1345 | 0.0671 | 2.5185 | 0.0118 |
2009 | 0.1399 | 0.0690 | 2.5262 | 0.0115 |
2010 | 0.1474 | 0.0700 | 2.5968 | 0.0094 |
2011 | 0.1216 | 0.0681 | 2.2922 | 0.0219 |
2012 | 0.1036 | 0.0627 | 2.2027 | 0.0276 |
2013 | 0.1202 | 0.0673 | 2.2991 | 0.0215 |
2014 | 0.1286 | 0.0680 | 2.3994 | 0.0164 |
2015 | 0.1301 | 0.0684 | 2.4081 | 0.0160 |
2016 | 0.1303 | 0.0670 | 2.4585 | 0.0140 |
2017 | 0.1313 | 0.0650 | 2.5519 | 0.0107 |
2018 | 0.1290 | 0.0633 | 2.5821 | 0.0098 |
2019 | 0.1337 | 0.0660 | 2.5459 | 0.0109 |
2020 | 0.1503 | 0.0693 | 2.6660 | 0.0077 |
Year | Moran’s I | sd | z | p-Value |
---|---|---|---|---|
2006 | −0.0067 | 0.1095 | 0.2542 | 0.7993 |
2007 | 0.0106 | 0.1085 | 0.4154 | 0.6778 |
2008 | 0.1171 | 0.1099 | 1.3798 | 0.1676 |
2009 | 0.0235 | 0.1093 | 0.5304 | 0.5958 |
2010 | 0.1609 | 0.1093 | 1.7871 | 0.0739 |
2011 | 0.2367 | 0.1114 | 2.4334 | 0.0150 |
2012 | 0.2841 | 0.1084 | 2.9388 | 0.0033 |
2013 | 0.3405 | 0.1066 | 3.5186 | 0.0004 |
2014 | 0.4072 | 0.1087 | 4.0642 | 0.0000 |
2015 | 0.3098 | 0.1111 | 3.0992 | 0.0019 |
2016 | 0.2610 | 0.1107 | 2.6704 | 0.0076 |
2017 | 0.1293 | 0.1107 | 1.4793 | 0.1391 |
2018 | 0.1716 | 0.1113 | 1.8521 | 0.0640 |
2019 | 0.0464 | 0.1055 | 0.7662 | 0.4435 |
2020 | 0.0875 | 0.1061 | 1.1495 | 0.2504 |
Year | Moran’s I | sd | z | p-Value |
---|---|---|---|---|
2006 | 0.2079 | 0.1104 | 2.1962 | 0.0281 |
2007 | 0.2078 | 0.1103 | 2.1977 | 0.0280 |
2008 | 0.2101 | 0.1102 | 2.2202 | 0.0264 |
2009 | 0.2114 | 0.1101 | 2.2329 | 0.0256 |
2010 | 0.2092 | 0.1100 | 2.2144 | 0.0268 |
2011 | 0.2067 | 0.1100 | 2.1923 | 0.0284 |
2012 | 0.2006 | 0.1100 | 2.1364 | 0.0326 |
2013 | 0.1921 | 0.1100 | 2.0586 | 0.0395 |
2014 | 0.1838 | 0.1101 | 1.9827 | 0.0474 |
2015 | 0.1765 | 0.1101 | 1.9171 | 0.0552 |
2016 | 0.1733 | 0.1100 | 1.8893 | 0.0589 |
2017 | 0.1713 | 0.1100 | 1.8704 | 0.0614 |
2018 | 0.1764 | 0.1100 | 1.9165 | 0.0553 |
2019 | 0.1804 | 0.1100 | 1.9533 | 0.0508 |
2020 | 0.1791 | 0.1100 | 1.9415 | 0.0522 |
Year | Moran’s I | sd | z | p-Value |
---|---|---|---|---|
2006 | 0.2568 | 0.1084 | 2.6878 | 0.0072 |
2007 | 0.2619 | 0.1082 | 2.7387 | 0.0062 |
2008 | 0.2669 | 0.1073 | 2.8098 | 0.0050 |
2009 | 0.2747 | 0.1075 | 2.8747 | 0.0040 |
2010 | 0.2775 | 0.1069 | 2.9192 | 0.0035 |
2011 | 0.2746 | 0.1061 | 2.9122 | 0.0036 |
2012 | 0.2589 | 0.1065 | 2.7551 | 0.0059 |
2013 | 0.2545 | 0.1069 | 2.7040 | 0.0069 |
2014 | 0.2538 | 0.1073 | 2.6864 | 0.0072 |
2015 | 0.2694 | 0.1070 | 2.8391 | 0.0045 |
2016 | 0.2711 | 0.1068 | 2.8606 | 0.0042 |
2017 | 0.2720 | 0.1071 | 2.8615 | 0.0042 |
2018 | 0.2601 | 0.1076 | 2.7383 | 0.0062 |
2019 | 0.2526 | 0.1075 | 2.6718 | 0.0075 |
2020 | 0.2634 | 0.1073 | 2.7762 | 0.0055 |
References
- Yan, R. Research on the collaborative development of modern logistics and manufacturing under the new development pattern: Micro-site behavior analysis based on enterprises in big cities. Guizhou Soc. Sci. 2021, 382, 135–144. [Google Scholar]
- Zhao, C.Y.; Wang, S.P. The impact of economic agglomeration on the economic resilience of cities. J. Zhongnan Univ. Econ. Law 2021, 1, 102–114. [Google Scholar]
- Kitsos, A.; Carrascal-Incera, A.; Ortega-Argilés, R. The role of embeddedness on regional economic resilience: Evidence from the UK. Sustainability 2019, 11, 3800. [Google Scholar] [CrossRef]
- Li, L.; Zhang, P.; Tan, J.; Guan, H. Review on the evolution of resilience concept and research progress on regional economic resilience. Hum. Geogr. 2019, 34, 1–7+151. [Google Scholar] [CrossRef]
- Brown, L.; Greenbaum, R.T. The role of industrial diversity in economic resilience: An empirical examination across 35 Years. Urban Stud. 2017, 54, 1347–1366. [Google Scholar] [CrossRef]
- Rocchetta, S.; Mina, A. Technological coherence and the adaptive resilience of regional economies. Reg. Stud. 2019, 53, 1421–1434. [Google Scholar] [CrossRef]
- Yan, F.; Wang, T. Professional agglomeration, collaborative agglomeration and regional economic growth of logistics and manufacturing industries. Enterp. Econ. 2021, 4, 88–97. [Google Scholar] [CrossRef]
- Feng, Y.; Lee, C.C.; Peng, D.Y. Does regional integration improve economic resilience? Evidence from urban agglomerations in China. Sustain. Cities Soc. 2023, 88, 104273. [Google Scholar] [CrossRef]
- Chen, Y.W.; Wu, W.K. Research on the relationship between industrial agglomeration, industrial diversification and urban economic resilience. Sci. Technol. Prog. Policy 2021, 38, 64–73. [Google Scholar]
- Wang, Z.X.; Wei, W. Regional economic resilience in China: Measurement and determinants. Reg. Stud. 2021, 55, 1228–1239. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Y. The effect of innovative human capital on green total factor productivity in the Yangtze River Delta: An empirical analysis based on the spatial Durbin model. China Popul. Resour. Environ. 2020, 30, 106–120. [Google Scholar] [CrossRef]
- Reggiani, A.; De Graaff, T.; Nijkamp, P. Resilience: An evolutionary approach to spatial economic systems. Netw. Spat. Econ. 2002, 2, 211–229. [Google Scholar] [CrossRef]
- Simmie, J. The economic resilience of regions: Towards an evolutionary approach. Camb. J. Reg. Econ. Soc. 2009, 3, 27–43. [Google Scholar] [CrossRef]
- Martin, R.; Sunley, P. On the notion of regional economic resilience: Conceptualization and explanation. J. Econ. Geogr. 2015, 15, 1–42. [Google Scholar] [CrossRef]
- Xu, Y.; Warner, M. Understanding employment growth in the recession: The geographic diversity of state rescaling. Camb. J. Reg. Econ. Soc. 2015, 8, 359. [Google Scholar] [CrossRef]
- Adger, W.N. Social capital, collective action, and adaptation to climate change. Econ. Geogr. 2009, 79, 327–345. [Google Scholar] [CrossRef]
- Hauser, C.; Tappeiner, G.; Walde, J. The learning region: The impact of social capital and weak ties on innovation. Reg. Stud. 2007, 41, 75–88. [Google Scholar] [CrossRef]
- Quan, T.; Quan, T. A Study of the Spatial Mechanism of Financial Agglomeration Affecting Green Low-Carbon Development: Evidence from China. Sustainability 2023, 15, 965. [Google Scholar] [CrossRef]
- Martin, R. Regional economic resilience, hysteresis and recessionary shocks. J. Econ. Geogr. 2012, 12, 1–32. [Google Scholar] [CrossRef]
- Whitley, R. The institutional structuring of innovation strategies: Business systems, firm types and patterns of technical change in different market economies. Organ. Stud.-ORGAN STUD 2000, 21, 855–886. [Google Scholar] [CrossRef]
- Huggins, R.; Thompson, P. Local entrepreneurial resilience and culture: The role of social values in fostering economic recovery. Camb. J. Reg. Econ. Soc. 2015, 8, 313–330. [Google Scholar] [CrossRef]
- Chi, Y.; Fang, Y.H.; Liu, J. Spatial–temporal evolution characteristics and economic effects of China’s cultural and tourism industries’ collaborative agglomeration. Sustainability 2022, 14, 15119. [Google Scholar] [CrossRef]
- Tan, J.; Hu, X.; Hassink, R.; Ni, J. Industrial structure or agency: What affects regional economic resilience? Evidence from resource-based cities in China. Cities 2020, 106, 102906. [Google Scholar] [CrossRef]
- Duan, W.; Madasi, J.D.; Khurshid, A.; Ma, D. Industrial structure conditions economic resilience. Technol. Forecast. Soc. Chang. 2022, 183, 121944. [Google Scholar] [CrossRef]
- Peng, R.; Liu, T.; Cao, G. Spatial pattern of urban economic resilience in eastern coastal China and industrial explanation. Geogr. Res. 2021, 40, 1732–1748. [Google Scholar] [CrossRef]
- Petrakos, G.; Psycharis, Y. The spatial aspects of economic crisis in Greece. Camb. J. Reg. Econ. Soc. 2015, 9, 137–152. [Google Scholar] [CrossRef]
- Doran, J.; Fingleton, B. US Metropolitan Area Resilience: Insights from dynamic spatial panel estimation. Environ. Plan. A Econ. Space 2017, 50, 111–132. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, C. Influencing factors of regional economic resilience in the 2008 financial crisis: A case study of Zhejiang and Jiangsu Provinces. Prog. Geogr. 2017, 36, 986–994. [Google Scholar] [CrossRef]
- Sun, J.; Sun, X. Research progress of regional economic resilience and exploration of its application in China. Geogr. Res. 2017, 37, 1–9. [Google Scholar] [CrossRef]
- Davies, S. Regional resilience in the 2008–2010 downturn: Comparative evidence from European countries. Camb. J. Reg. Econ. Soc. 2011, 4, 369–382. [Google Scholar] [CrossRef]
- Hirschman, A. On the Strategy of Economic Development; Yale University Press: New Haven, CT, USA, 1958. [Google Scholar]
- Bergman, E.M.; Feser, E.J. Industrial and Regional Clusters: Concepts and Comparative Applications; West Virginal University Press: Morgantown, WV, USA, 1999; Available online: https://researchrepository.wvu.edu/rri-web-book/5/ (accessed on 6 August 2022).
- Li, G.; Jin, F.; Chen, Y.; Jiao, J.; Liu, S. Location characteristics and differentiation mechanism of logistics industry based on points of interest: A case study of Beijing. Acta Geogr. Sin. 2017, 72, 1091–1103. [Google Scholar] [CrossRef]
- Perroux, F. Economic space: Theory and applications. Q. J. Econ. 1950, 64, 89–104. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Z. Level and effect on co-agglomeration of producer service and manufacturing industry: Empirical evidence from the eastern area of China. Financ. Trade Res. 2014, 25, 49–57. [Google Scholar]
- Zeng, W.; Li, L.; Huang, Y. Industrial collaborative agglomeration, marketization, and green innovation: Evidence from China’s provincial panel data. J. Clean. Prod. 2021, 279, 123598. [Google Scholar] [CrossRef]
- Liu, M. The Influence of Collaborative Agglomeration of Logistics Industry and Manufacturing Industry on High-quality Economic Development: The Empirical Research on 283 Cities at the Prefecture Level and Above. China Bus. Mark. 2021, 35, 22–31. [Google Scholar] [CrossRef]
- Dou, J.; Liu, Y. Can Co-agglomeration between producer services and manufactures promote the urban economic growth? Based on the panel data of China’s 285 cities. Mod. Financ. Econ.-J. Tianjin Univ. Financ. Econ. 2016, 315, 92–102. [Google Scholar]
- Chen, G.; Chen, J. Industrial correlation, spatial geography and co-agglomeration of secondary and tertiary industries: Experience investigation from 212 cities in China. Manag. World 2012, 4, 82–100. [Google Scholar]
- Ke, S.; He, M.; Yuan, C. Synergy and co-agglomeration of producer services and manufacturing: A panel data analysis of Chinese cities. Reg. Stud. J. Reg. Stud. Assoc. 2014, 48, 1829–1841. [Google Scholar] [CrossRef]
- Yuan, Y.; Gao, K. The synergetic agglomeration of industries, spatial knowledge spillovers and regional innovation efficiency. Stud. Sci. Sci. 2020, 38, 1966–1975+2007. [Google Scholar] [CrossRef]
- Zhang, H.; Han, A.; Yang, Q. Spatial effect analysis of synergetic agglomeration of manufacturing and producer services in China. J. Quant. Tech. Econ. 2017, 34, 3–20. [Google Scholar]
- Briguglio, L.; Cordina, G.; Farrugia, N.; Vella, S. Economic vulnerability and resilience: Concepts and measurements. Oxf. Dev. Stud. 2009, 37, 229–247. [Google Scholar] [CrossRef]
- Wang, S.P.; Zhao, C.Y. City resilience and city exports: An empirical study based on panel data of Chinese city. J. Shanxi Univ. Financ. Econ. 2016, 38, 1–14. [Google Scholar] [CrossRef]
- Faggian, A.; Gemmiti, R.; Jaquet, T.; Santini, I. Regional economic resilience: The experience of the Italian local labor systems. Ann. Reg. Sci. 2018, 60, 393–410. [Google Scholar] [CrossRef]
- Ellison, G.; Glaeser, E.L. Geographic concentration in us manufacturing industries: A dartboard approach. J. Political Econ. 1997, 105, 889–927. [Google Scholar] [CrossRef]
- Ellison, G.; Glaeser, E.L.; Kerr, W. What causes industry agglomeration? Evidence from co-agglomeration patterns. Am. Econ. Rev. 2010, 100, 1195–1213. [Google Scholar] [CrossRef]
- Tang, C.; Qiu, J.; Zhang, L.; Li, H. Spatial econometric analysis on the influence of elements flow and industrial collaborative agglomeration on regional economic growth: Based on manufacturing and producer services. Econ. Geogr. 2021, 41, 146–154. [Google Scholar] [CrossRef]
- Han, Y.; Wu, L. Disentangling FDI innovation spillovers to Chinese agricultural firms: A threshold regression analysis based on absorptive capacity. J. Int. Trade 2020, 8, 132–146. [Google Scholar] [CrossRef]
- Central Committee of the Communist Party of China. Communiqué of the Third Plenary Session of the Eleventh Central Committee (1978); Xinhua News Agency: Beijing, China, 2009.
- Liu, B.; Lin, T. The theoretical and empirical study of the relationship between logistics outsourcing and productivity of manufacturing industry. China Ind. Econ. 2010, 9, 67–77. [Google Scholar]
- Young, A. Gold into base metals: Productivity growth in the People’s Republic of China during the reform period. J. Political Econ. 2003, 111, 1220–1261. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, G.; Zhang, J. The Estimation of China’s provincial capital stock: 1952–2000. Econ. Res. J. 2004, 10, 35–44. [Google Scholar]
- Myrdal, G. Myrdal, G. Economic Theory and Underdeveloped Regions; Gerald Duckworth & Co. Ltd.: London, UK, 1957. [Google Scholar]
- Zhang, Z.; Zhao, R.Y. Research on the spatial spillover effect of financial industry agglomeration on regional economic resilience. Contemp. Econ. Manag. 2021, 43, 89–97. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Y.Z.; Kumari, S.; Song, Z. Research on the Spatial Spillover Effect of Transportation Infrastructure on Urban Resilience in Three Major Urban Agglomerations in China. Sustainability 2023, 15, 5543. [Google Scholar] [CrossRef]
- Williamson, J.G. Regional inequality and the process of national development: A description of patterns. Econ. Dev. Cult. Change 1965, 13, 3–45. [Google Scholar] [CrossRef]
- Li, G.Z.; Liu, M.C. Spatiotemporal evolution and influencing factors of economic resilience: Evidence from resource-based cities in China. Sustainability 2022, 14, 10434. [Google Scholar] [CrossRef]
- Friedmann, J. Regional Development Policy: A Case Study of Venezuela; MIT Press: Cambridge, MA, USA, 1966. [Google Scholar]
- Ren, C.Q.; Sun, D.Q.; Zhai, G.F.; Li, Y. A comprehensive assessment and spatial difference of China’s provincial economic vulnerability. Econ. Geogr. 2019, 39, 37–46. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, L. Research on the industrial upgrading effect and regional differences of China’s logistics industry and manufacturing industry integration development on manufacturing industry. Inq. Into Econ. Issues 2022, 2, 94–111. [Google Scholar]
Variable | Mean | Std. Dev. | Min | p25 | p50 | p75 | Max | Obs |
---|---|---|---|---|---|---|---|---|
EcoResi | 1.009 | 0.399 | −0.784 | 0.855 | 1.042 | 1.208 | 3.742 | 450 |
LMCA | 2.621 | 0.472 | 0.997 | 2.423 | 2.626 | 2.876 | 3.95 | 450 |
Intnet | 0.429 | 0.195 | 0.059 | 0.279 | 0.446 | 0.566 | 0.814 | 450 |
EmploDens | 22.785 | 48.608 | 0.015 | 2.954 | 7.382 | 19.861 | 304.464 | 450 |
HR | 8.975 | 1.076 | 5.307 | 8.493 | 8.98 | 9.442 | 12.341 | 450 |
LnK | 9.973 | 2.017 | 0.01 | 9.635 | 10.412 | 10.894 | 11.982 | 450 |
FDIR | 0.409 | 0.395 | 0.057 | 0.155 | 0.234 | 0.52 | 1.77 | 450 |
Wage | 5.425 | 2.642 | 1.658 | 3.265 | 5.059 | 7.187 | 13.499 | 450 |
Open | 0.297 | 0.342 | 0.018 | 0.092 | 0.142 | 0.35 | 1.539 | 450 |
Transp | 27.992 | 14.576 | 3.273 | 17.516 | 26.244 | 34.375 | 77.087 | 450 |
FAInv | 1.363 | 1.225 | 0.041 | 0.453 | 0.966 | 1.903 | 5.332 | 450 |
Year | Moran’s I | sd | z | p-Value |
---|---|---|---|---|
2006 | 0.3742 | 0.1028 | 3.9745 | 0.0001 |
2007 | 0.3825 | 0.1033 | 4.0367 | 0.0001 |
2008 | 0.3946 | 0.1036 | 4.1403 | 0.0000 |
2009 | 0.4243 | 0.1043 | 4.4005 | 0.0000 |
2010 | 0.4089 | 0.1038 | 4.2701 | 0.0000 |
2011 | 0.3478 | 0.1042 | 3.6679 | 0.0002 |
2012 | 0.3620 | 0.1016 | 3.9026 | 0.0001 |
2013 | 0.3308 | 0.0984 | 3.7129 | 0.0002 |
2014 | 0.3434 | 0.1024 | 3.6916 | 0.0002 |
2015 | 0.3128 | 0.1006 | 3.4522 | 0.0006 |
2016 | 0.2445 | 0.0983 | 2.8391 | 0.0045 |
2017 | 0.2725 | 0.0946 | 3.2463 | 0.0012 |
2018 | 0.2789 | 0.1021 | 3.0693 | 0.0021 |
2019 | 0.3151 | 0.0960 | 3.6420 | 0.0003 |
2020 | 0.3698 | 0.0979 | 4.1315 | 0.0000 |
Region | Provinces |
---|---|
Eastern region | Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and Hainan |
Central region | Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, and Hunan |
Western region | Sichuan, Chongqing, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, Guangxi, and Inner Mongolia |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variable | OLS Mix | Individual Fixed | Time Fixed | Individual and Time Double Fixed | RE |
LMCA | 0.009 *** | 0.036 ** | 0.030 *** | 0.030 ** | 0.069 *** |
(4.12) | (2.26) | (3.44) | (2.21) | (2.76) | |
Intnet | −0.504 ** | −0.228 | −0.670 ** | −0.837 | −0.211 |
(−2.11) | (−0.58) | (−2.13) | (−1.54) | (−0.81) | |
EmploDens | −0.001 | 0.003 | −0.002 ** | 0.002 | 0.000 |
(−0.85) | (1.48) | (−2.27) | (0.91) | (0.43) | |
HR | −0.119 *** | 0.271 *** | −0.158 *** | 0.111 | −0.059 |
(−3.27) | (2.65) | (−4.32) | (0.96) | (−1.23) | |
LnK | 0.038 ** | −0.567 *** | 0.064 *** | −0.692 *** | −0.070 ** |
(1.97) | (−4.89) | (3.20) | (−5.08) | (−2.33) | |
FDIR | −0.072 | −0.215 * | 0.065 | −0.082 | −0.013 |
(−1.02) | (−1.80) | (0.87) | (−0.65) | (−1.18) | |
Wage | 0.059 *** | 0.086 *** | 0.121 *** | 0.071 | 0.016 *** |
(3.53) | (3.55) | (4.68) | (1.63) | (3.90) | |
Open | 0.186 * | 0.399 ** | 0.080 | 0.416 ** | 0.080 |
(1.91) | (2.11) | (0.67) | (2.09) | (0.72) | |
Transp | 0.000 | 0.004 | −0.000 | 0.002 | 0.001 |
(0.05) | (1.23) | (−0.03) | (0.70) | (0.42) | |
FAInv | −0.019 | 0.004 | −0.015 | 0.008 | 0.043 |
(−0.90) | (0.13) | (−0.70) | (0.26) | (1.48) | |
_cons | 1.584 *** | 2.606 * | 1.390 *** | 5.588 *** | 2.350 *** |
(6.81) | (1.78) | (5.85) | (2.94) | (4.19) | |
id | No | Yes | No | Yes | No |
year | No | No | Yes | Yes | No |
N | 450 | 450 | 450 | 450 | 450 |
Adj R2 | 0.059 | 0.267 | 0.151 | 0.326 | 0.313 |
LM Test | Geographical Distance Matrix | Economic Geographical Distance Matrix | ||
---|---|---|---|---|
t-Value | p-Value | t-Value | p-Value | |
Moran’s I | 3.950 | 0.000 | 4.925 | 0.000 |
LM-error | 12.276 | 0.000 | 21.792 | 0.000 |
R-lmerror | 3.052 | 0.081 | 12.348 | 0.000 |
LM-Lag | 14.207 | 0.000 | 10.518 | 0.001 |
R-lmlag | 1.122 | 0.290 | 1.073 | 0.300 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
EcoResi | SDM | Weighted SDM | SLM | SEM |
LMCA | 0.021 *** | 0.065 *** | 0.004 *** | 0.003 ** |
(3.24) | (3.49) | (2.67) | (2.50) | |
Intnet | −0.081 *** | −0.160 ** | −0.057 ** | −0.056 ** |
(−3.05) | (−2.47) | (−2.22) | (−2.17) | |
EmploDens | −0.000 ** | −0.000 | −0.000 *** | −0.000 ** |
(−2.57) | (−0.26) | (−2.62) | (−2.49) | |
HR | −0.006 * | −0.008 | −0.010 *** | −0.010 *** |
(−1.65) | (−1.09) | (−3.24) | (−2.92) | |
LnK | 0.004 * | −0.005 | 0.007 *** | 0.007 *** |
(1.91) | (−0.99) | (4.07) | (4.04) | |
FDIR | −0.002 | −0.007 | 0.007 | 0.006 |
(−0.33) | (−0.50) | (1.17) | (1.03) | |
Wage | 0.010 *** | 0.005 | 0.010 *** | 0.010 *** |
(3.80) | (0.91) | (4.66) | (4.67) | |
Open | −0.003 | 0.029 * | −0.005 | −0.008 |
(-0.33) | (1.67) | (−0.53) | (−0.81) | |
Transp | 0.000 | −0.001 ** | −0.000 | −0.000 |
(0.05) | (−2.47) | (−0.29) | (−0.13) | |
FAInv | −0.006 *** | 0.005 | −0.003 ** | −0.004 ** |
(−2.69) | (1.31) | (−1.96) | (−2.00) | |
Spatial: | ||||
rho | 0.067 | 0.067 | 0.160 *** | |
(1.09) | (1.09) | (2.72) | ||
lambda | 0.160 ** | |||
(2.52) | ||||
Variance: | ||||
sigma2_e | 0.001 *** | 0.001 *** | 0.001 *** | 0.001 *** |
(15.24) | (15.24) | (15.21) | (15.21) | |
N | 450 | 450 | 450 | 450 |
Adj R2 | 0.033 | 0.033 | 0.021 | 0.022 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variable | Eastern Region | Western Region | Central Region | Nationwide |
LMCA | 0.001 | 0.027 *** | 0.072 ** | 0.021 *** |
(0.06) | (2.79) | (2.41) | (3.24) | |
Intnet | −0.022 | −0.118 * | −0.762 *** | −0.081 *** |
(−0.50) | (−1.78) | (−4.46) | (−3.05) | |
EmploDens | −0.000 | −0.004 * | 0.000 | −0.000 ** |
(−0.12) | (−1.69) | (0.04) | (−2.57) | |
HR | −0.004 | 0.009 | 0.030 ** | −0.006 * |
(−0.44) | (0.90) | (2.32) | (−1.65) | |
LnK | −0.007 | 0.006 | 0.069 ** | 0.004 * |
(−0.89) | (1.26) | (2.37) | (1.91) | |
FDIR | −0.015 | 0.078 *** | 0.031 | −0.002 |
(−1.39) | (2.74) | (0.98) | (−0.33) | |
Wage | 0.002 | 0.019 *** | −0.015 | 0.010 *** |
(0.59) | (3.08) | (−1.03) | (3.80) | |
Open | 0.012 | 0.088 | 0.005 | −0.003 |
(0.76) | (1.41) | (0.05) | (−0.33) | |
Transp | −0.001 ** | −0.000 | 0.000 | 0.000 |
(−2.40) | (−0.87) | (0.73) | (0.05) | |
FAInv | 0.001 | −0.015 ** | −0.002 | −0.006 *** |
(0.27) | (−2.56) | (−0.24) | (−2.69) | |
Wx: | ||||
LMCA | −0.018 | 0.183 *** | 0.068 ** | 0.065 *** |
(−0.65) | (3.99) | (2.46) | (3.49) | |
Intnet | 0.063 | −0.299 * | −1.312 *** | −0.160 ** |
(0.70) | (−1.71) | (−5.12) | (−2.47) | |
EmploDens | 0.000 | −0.008 | −0.006 *** | −0.000 |
(0.80) | (−1.07) | (−2.91) | (−0.26) | |
HR | −0.025 ** | −0.011 | 0.043 | −0.008 |
(−2.54) | (−0.44) | (1.48) | (−1.09) | |
LnK | 0.004 | −0.002 | 0.166 *** | −0.005 |
(0.31) | (−0.27) | (2.89) | (−0.99) | |
FDIR | −0.013 | 0.036 | 0.044 | −0.007 |
(−0.81) | (0.49) | (1.13) | (−0.50) | |
Wage | 0.005 | 0.035 *** | 0.041 * | 0.005 |
(0.77) | (2.64) | (1.78) | (0.91) | |
Open | 0.027 | 0.182 | 0.387 ** | 0.029 * |
(1.00) | (1.11) | (2.34) | (1.67) | |
Transp | −0.000 | −0.001 | −0.001 | −0.001 ** |
(−0.64) | (−1.56) | (−0.56) | (−2.47) | |
FAInv | −0.005 | 0.026 | 0.001 | 0.005 |
(−0.81) | (1.53) | (0.16) | (1.31) | |
Spatial: | ||||
rho | −0.211 *** | −0.159 | −0.148 | 0.067 |
(−2.75) | (−1.40) | (−1.62) | (1.09) | |
Variance: | ||||
sigma2_e | 0.001 *** | 0.001 *** | 0.000 *** | 0.001 *** |
(8.99) | (9.45) | (7.68) | (15.24) |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Eastern Region | Western Region | Central Region | Nationwide | |
LR_Direct: | ||||
LMCA | 0.003 | 0.021 *** | 0.068 ** | 0.022 *** |
(1.21) | (3.33) | (2.34) | (3.31) | |
Intnet | −0.031 | −0.111 * | −0.680 *** | −0.085 *** |
(−0.67) | (−1.69) | (−4.10) | (−3.28) | |
EmploDens | −0.000 | −0.003 | 0.001 | −0.000 *** |
(−0.19) | (−1.36) | (0.42) | (−2.58) | |
HR | −0.001 | 0.009 | 0.028 ** | −0.007 * |
(−0.15) | (0.96) | (2.19) | (−1.78) | |
LnK | −0.008 | 0.006 | 0.055 ** | 0.003 * |
(−0.94) | (1.42) | (2.13) | (1.95) | |
FDIR | −0.014 | 0.078 *** | 0.029 | −0.002 |
(−1.28) | (2.78) | (0.97) | (−0.31) | |
Wage | 0.002 | 0.018 *** | −0.017 | 0.010 *** |
(0.39) | (2.99) | (−1.11) | (3.73) | |
Open | 0.009 | 0.080 | −0.033 | −0.003 |
(0.57) | (1.27) | (−0.33) | (−0.33) | |
Transp | −0.001 ** | −0.000 | 0.000 | 0.000 |
(−2.34) | (−0.60) | (0.87) | (0.04) | |
FAInv | 0.001 | −0.016 *** | −0.002 | −0.005 *** |
(0.39) | (−2.94) | (−0.22) | (−2.65) | |
LR_Indirect: | ||||
LMCA | −0.016 | 0.165 *** | 0.055 ** | 0.070 *** |
(−0.65) | (3.91) | (2.29) | (3.43) | |
Intnet | 0.064 | −0.237 | −1.125 *** | −0.172 ** |
(0.77) | (−1.41) | (-4.33) | (−2.44) | |
EmploDens | 0.000 | −0.008 | −0.006 *** | −0.000 |
(0.88) | (−1.10) | (−3.04) | (−0.35) | |
HR | −0.022 ** | −0.012 | 0.036 | −0.009 |
(−2.18) | (−0.56) | (1.26) | (−1.20) | |
LnK | 0.004 | −0.003 | 0.150 *** | −0.005 |
(0.35) | (−0.40) | (2.95) | (−1.02) | |
FDIR | −0.009 | 0.024 | 0.039 | −0.007 |
(−0.57) | (0.35) | (1.04) | (−0.43) | |
Wage | 0.005 | 0.030 ** | 0.041 * | 0.006 |
(0.77) | (2.47) | (1.84) | (1.17) | |
Open | 0.021 | 0.160 | 0.370 ** | 0.029 |
(0.85) | (1.10) | (2.31) | (1.52) | |
Transp | −0.000 | −0.001 | −0.001 | −0.001 ** |
(−0.38) | (−1.53) | (−0.76) | (−2.43) | |
FAInv | −0.005 | 0.026 * | 0.002 | 0.005 |
(−0.79) | (1.74) | (0.26) | (1.22) | |
LR_Total: | ||||
LMCA | −0.013 | 0.185 *** | 0.123 *** | 0.092 *** |
(−0.40) | (3.56) | (2.63) | (3.93) | |
Intnet | 0.033 | −0.347 ** | −1.805 *** | −0.257 *** |
(0.40) | (−2.14) | (−5.82) | (−3.41) | |
EmploDens | 0.000 | −0.011 * | −0.005 ** | −0.000 |
(0.63) | (−1.77) | (−2.12) | (−1.14) | |
HR | −0.023 *** | −0.003 | 0.064 ** | −0.015 ** |
(−3.15) | (−0.13) | (2.11) | (−2.25) | |
LnK | −0.003 | 0.003 | 0.205 *** | −0.002 |
(−0.28) | (0.35) | (3.15) | (−0.35) | |
FDIR | −0.022 | 0.102 | 0.068 | −0.009 |
(−1.56) | (1.37) | (1.24) | (−0.52) | |
Wage | 0.007 | 0.048 *** | 0.024 | 0.016 *** |
(1.18) | (3.30) | (1.11) | (2.79) | |
Open | 0.031 | 0.240 | 0.337 ** | 0.025 |
(1.20) | (1.34) | (2.56) | (1.21) | |
Transp | −0.001 | −0.001 * | −0.000 | −0.001 ** |
(−1.48) | (−1.73) | (−0.21) | (−2.15) | |
FAInv | −0.004 | 0.010 | 0.001 | −0.000 |
(−0.63) | (0.58) | (0.05) | (−0.09) | |
N | 165 | 165 | 120 | 450 |
Adj R2 | 0.209 | 0.025 | 0.069 | 0.033 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Eastern Region | Western Region | Western Region | Nationwide | |
LMCA | 0.014 | 0.022 ** | 0.089 *** | 0.026 ** |
(0.93) | (2.01) | (3.15) | (2.15) | |
Intnet | −0.009 | −0.124 ** | −0.261 * | −0.030 |
(−0.18) | (−2.16) | (−1.73) | (−0.98) | |
EmploDens | −0.000 | 0.004 *** | 0.001 | −0.000 |
(−0.95) | (2.62) | (0.81) | (−0.81) | |
HR | −0.021 ** | 0.015 * | −0.008 | −0.008 ** |
(−2.23) | (1.82) | (−0.49) | (−2.46) | |
LnK | −0.017 ** | −0.006 | 0.055 * | −0.009 ** |
(−2.43) | (−0.77) | (1.70) | (−2.21) | |
FDIR | −0.002 | 0.045 * | 0.039 | 0.009 |
(−0.17) | (1.90) | (1.05) | (1.28) | |
Wage | 0.007 | 0.006 | 0.023 | 0.007 ** |
(1.38) | (0.84) | (1.27) | (2.49) | |
Open | 0.006 | −0.135 *** | 0.195 | −0.010 |
(0.40) | (−3.00) | (1.15) | (−0.85) | |
Transp | −0.001 | −0.001 *** | 0.001 | 0.000 |
(−1.47) | (−3.09) | (1.11) | (0.17) | |
FAInv | 0.003 | −0.001 | −0.020 *** | 0.004 * |
(0.99) | (−0.15) | (−2.72) | (1.76) | |
Wx: | ||||
LMCA | 0.019 | 0.043 ** | 0.013 ** | 0.019 *** |
(0.59) | (2.10) | (2.25) | (3.02) | |
Intnet | −0.009 | 0.425 ** | 0.071 | −0.168 *** |
(−0.06) | (2.14) | (0.20) | (−3.15) | |
EmploDens | −0.000 | 0.002 | 0.007 ** | 0.000 |
(−0.82) | (0.33) | (2.00) | (1.07) | |
HR | −0.024 | −0.014 | 0.003 | 0.002 |
(−1.64) | (−0.74) | (0.09) | (0.30) | |
LnK | −0.012 | 0.013 | 0.068 | 0.002 |
(−0.36) | (0.83) | (1.07) | (0.17) | |
FDIR | −0.011 | 0.002 | 0.021 | 0.048 ** |
(−0.31) | (0.03) | (0.40) | (2.46) | |
Wage | 0.019 | −0.024 | 0.047 | −0.009 |
(1.51) | (−1.31) | (1.12) | (−1.36) | |
Open | 0.058 | 0.157 | 0.240 | −0.004 |
(1.30) | (1.13) | (1.10) | (−0.15) | |
Transp | 0.002 ** | −0.000 | −0.001 | 0.000 |
(2.34) | (−0.22) | (−0.74) | (0.85) | |
FAInv | −0.005 | −0.026 * | −0.008 | 0.006 |
(−0.69) | (−1.75) | (−0.55) | (1.00) | |
Spatial: | ||||
rho | 0.023 | 0.128 | 0.221 ** | 0.012 |
(0.21) | (1.12) | (1.98) | (0.14) | |
Variance: | ||||
sigma2_e | 0.001 *** | 0.000 *** | 0.001 *** | 0.001 *** |
(9.08) | (9.06) | (7.66) | (15.00) | |
N | 165 | 165 | 120 | 450 |
Adj R2 | 0.045 | 0.216 | 0.161 | 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Su, X.; Liu, J.M. The Spatial Spillover Effect of Logistics and Manufacturing Co-Agglomeration on Regional Economic Resilience: Evidence from China’s Provincial Panel Data. Sustainability 2023, 15, 8208. https://doi.org/10.3390/su15108208
Wang H, Su X, Liu JM. The Spatial Spillover Effect of Logistics and Manufacturing Co-Agglomeration on Regional Economic Resilience: Evidence from China’s Provincial Panel Data. Sustainability. 2023; 15(10):8208. https://doi.org/10.3390/su15108208
Chicago/Turabian StyleWang, Haojun, Xiao Su, and Jun M. Liu. 2023. "The Spatial Spillover Effect of Logistics and Manufacturing Co-Agglomeration on Regional Economic Resilience: Evidence from China’s Provincial Panel Data" Sustainability 15, no. 10: 8208. https://doi.org/10.3390/su15108208
APA StyleWang, H., Su, X., & Liu, J. M. (2023). The Spatial Spillover Effect of Logistics and Manufacturing Co-Agglomeration on Regional Economic Resilience: Evidence from China’s Provincial Panel Data. Sustainability, 15(10), 8208. https://doi.org/10.3390/su15108208