Study on the Impact and Mechanism of Industrial Internet Pilot on Digital Transformation of Manufacturing Enterprises
Abstract
:1. Introduction
2. Literature Review and Research Hypothesis
2.1. Literature Review
2.2. Research Hypothesis
2.2.1. Industrial Internet and Enterprise Digital Transformation
2.2.2. Digital Cohort Effect Empowerment
2.2.3. Talent Introduction Effect Empowerment
2.2.4. Technology Absorption Effect Empowerment
2.2.5. Innovation Integration Effect Empowerment
3. Study Design
3.1. Method Selection and Model Setting
3.2. Selection of Variables
3.2.1. Explanatory Variables
3.2.2. Explanatory Variables
3.2.3. Control Variables
3.3. Sample Selection and Data Sources
4. Analysis of Empirical Results
4.1. Sample Profile and Descriptive Statistics
4.2. Score Propensity Matching and Balance Tests
4.3. Baseline Regression Analysis
4.4. Robustness Tests
4.4.1. Parallel Trend Test
4.4.2. Placebo Test
4.4.3. Replacement of Explanatory Variables
5. Further Analysis
5.1. Impact Mechanism Test
- (1)
- Latitude of cohort effect
- (2)
- Talent introduction latitude
- (3)
- Technology absorption latitude
- (4)
- Innovation integration latitude
5.2. Heterogeneity Analysis
6. Conclusions and Discussion
6.1. Conclusions
6.2. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, Z.Y. Research on new manufacturing model to promote high-quality development of China’s industry in the context of digital economy. Theor. Discuss. 2018, 99–104. [Google Scholar] [CrossRef]
- Zhou, J. Intelligent manufacturing—The main direction of “Made in China 2025”. China Mech. Eng. 2015, 26, 2273–2284. [Google Scholar]
- Dixit, A.; Jakhar, S.K.; Kumar, P. Does lean and sustainable manufacturing lead to Industry 4.0 adoption: The mediating role of ambidextrous innovation capabilities. Technol. Forecast. Soc. Chang. 2022, 175, 1–9. [Google Scholar] [CrossRef]
- Huang, J.F. Understanding and planning contemporary technological and industrial change with smart and connected thinking. Econ. Manag. Stud. 2017, 38, 80–89. [Google Scholar]
- Tan, X.J.; He, J.J.; He, S.X. Industrial interconnection towards cloud-based supply chain information collaboration. Comput. Syst. Appl. 2020, 29, 6. [Google Scholar]
- Zhao, J.; Qi, X.R.; Wu, J.F.; Wu, C. Theory, analysis, evaluation and implementation platform of future industrial Internet loosely coupled structures. Comput. Integr. Manuf. Syst. 2021, 27, 1249–1255. [Google Scholar]
- Tan, X.J.; He, J.J.; Wang, W.Q. Research on collaborative scheduling of industrial interconnection based on Q-Learning algorithm. Ind. Eng. Manag. 2021, 170, 1–10. [Google Scholar]
- He, J.J.; Wu, X.M.; Li, J.X.; He, S.X. Multi-energy conversion based on game theory in the industrial interconnection. PLoS ONE 2021, 16, e0245622. [Google Scholar] [CrossRef]
- Zuo, W.M.; Qiu, X.X. Industrial Internet industry cluster ecosystem construction—A qualitative study based on text mining. Sci. Technol. Prog. Countermeas. 2022, 39, 83–93. [Google Scholar]
- Wang, L.Y.; Li, S.N.; Wang, J.D. Quantitative evaluation of China’s industrial Internet industrial policy—Based on PMC index model. Ind. Technol. Econ. 2022, 41, 151–160. [Google Scholar]
- Feng, L.Q.; He, B.X.; Sun, H.Q. The effect of industrial internet support policies on the R&D investment of enterprises. J. Jishou Univ. Soc. Sci. Ed. 2023, 44, 78–88. [Google Scholar]
- Shang, H.T.; Song, A.L. Does industrial Internet industrial policy promote digital transformation of enterprises. Scientol. Res. 2023, 1–26. [Google Scholar] [CrossRef]
- Du, Y.; Cao, L.; Tan, C. How can platformization help manufacturing enterprises cross the digital divide of transformation and upgrading?—Based on exploratory case study of zongshen group. Manag. World 2022, 38, 117–139. [Google Scholar]
- Lu, F.C.; Chen, H. Industrial Internet, firm growth and value creation. Econ. Manag. 2023, 45, 5–24. [Google Scholar]
- Guo, R.B.; Zhao, J. A threshold effect test on the impact of industrial Internet development on China’s manufacturing upgrading. Stat. Decis. Mak. 2022, 38, 135–138. [Google Scholar]
- Xu, X.C.; Zhang, M.H. Research on the measurement of the size of China’s digital economy—Based on the perspective of international comparison. China Ind. Econ. 2020, 23–41. [Google Scholar]
- Zhao, T.; Zhang, Z.; Liang, S.K. Digital economy, entrepreneurial activity and highquality development—Empirical evidence from Chinese cities. Manag. World 2020, 36, 65–76. [Google Scholar]
- Xia, X.; Chen, Z.; Zhang, H.L.; Zhao, M.J. High-quality development of agriculture: Digital empowerment and realization path. China Rural Econ. 2019, 2–15. [Google Scholar]
- Li, C.F.; Li, D.D.; Zhou, C. The mechanism of the role of digital economy in driving the transformation and upgrading of manufacturing industry—An analysis based on the perspective of industrial chain. Bus. Res. 2020, 73–82. [Google Scholar]
- Zhuang, C.Y.; Chen, G.H.; Liang, J.; Hou, J.; Cai, B.Q. Internet capabilities, dual strategy flexibility and knowledge creation performance. Scientol. Res. 2020, 38, 1837–1846+1910. [Google Scholar]
- Chi, M.M.; Wang, J.J.; Wang, W.J. Research on the influence mechanism of corporate innovation performance in the context of digital transformation—A mixed method based on NCA and SEM. Scientol. Res. 2022, 40, 319–331. [Google Scholar]
- He, F.; Liu, H.X. Assessment of the performance-enhancing effect of digital change in real enterprises from the perspective of digital economy. Reform 2019, 137–148. [Google Scholar]
- Qi, I.D.; Xiao, X. Enterprise management changes in the digital economy era. Manag. World 2020, 36, 135–152+250. [Google Scholar]
- Chen, J.; Huang, S.; Liu, Y.H. From empowerment to enablement—Enterprise operation management in digital environment. Manag. World 2020, 36, 117–128+222. [Google Scholar]
- Gregory Vial. Understanding digital transformation: A review and a research agenda. J. Strateg. Inf. Syst. 2019, 28, 118–144. [Google Scholar] [CrossRef]
- Jong Hyuk Park. Advances in Future Internet and the Industrial Internet of Things. Symmetry 2019, 11, 244. [Google Scholar] [CrossRef]
- Ma, N.F.; Yao, X.F.; Wang, K.S. Status and prospects of research on smart manufacturing for future Internet. China Sci. Technol. Sci. 2022, 52, 55–75. [Google Scholar]
- Silva, I.; Viegas, C. An Effective Extension of Anti-Collision Protoco for RFID in the Industrial Internet of Things (IIoT). Sensors 2018, 18, 4426. [Google Scholar]
- Beneath the iceberg: The second in a series of studies on China’s industrial Internet 2019. In Ariadne Consulting Series Research Report (No. 12, 2019); Shanghai IResearch Market Consulting Co., Ltd.: Shanghai, China, 2019; pp. 222–281.
- Lv, M.Y.; Cheng, Q.Y. The impact of industrial Internet platform development on the transformation and upgrading of manufacturing industry: Effect and mechanism. Humanit. Mag. 2022, 318, 63–74. [Google Scholar]
- Shi, Z.M.; Du, L. An empirical study on the impact of industrial Internet platform on industrial convergence. Sci. Technol. Prog. Policy 2020, 39, 59–68. [Google Scholar]
- Zhao, Y.; Lai, W.Y. Analysis of factors influencing China’s industrial Internet implementation capability based on TOE theory. Manag. Mod. 2021, 41, 25–28. [Google Scholar]
- Dou, D.P.; Kuang, Z.J. Servitization of manufacturing and global value chain location enhancement—An analysis based on manufacturing firms. Int. Bus. Res. 2022, 13, 46–58. [Google Scholar]
- Wang, Y.R.; Duan, Y.T.; Zhuo, S.F. Impact of Industrial Internet on Digital Innovation of Enterprises—Double Difference Validation Based on Propensity Score Matching. Science and Technology Progress and Countermeasures 1–10. Available online: http://kns.cnki.net/kcms/detail/42.1224.G3.20210624.1134.006.html (accessed on 2 March 2022).
- Zhao, H.X.; Wang, M.J.; Wang, G.T. The Impact of Ecological Embedding of Industrial Internet Platforms on the Performance of Participating Firms’ Exploratory Innovation [J/OL]. Science and Technology Progress and Countermeasures 1–10. Available online: http://kns.cnki.net/kcms/detail/42.1224.G3.20220413.1545.009.html (accessed on 13 May 2022).
- Hess, T.; Matt, C.; Benlian, A.; Wiesboeck, F. Options for formulating a digital transformation strategy. Mis Quart. Exec. 2016, 15, 123–139. [Google Scholar]
- Majchrzak, A.; Markus, M.L.; Wareham, J. designing for digital transformation: Lessons for information systems research from the study of ICT and societal challenges. Mis Quart. 2016, 40, 267–277. [Google Scholar] [CrossRef]
- Lv, W.; Chen, J.; Liu, J. Smart manufacturing model and enterprise platform construction of industrial internet--a case study based on Haier Group. China Soft Sci. 2019, 1–13. [Google Scholar]
- Cai, C.W.; Qi, Y.D. Research on the empowerment path of industrial Internet for China’s manufacturing industry. Contemp. Econ. Manag. 2021, 43, 40–48. [Google Scholar]
- Tang, G.F.; Li, D. Research on reconstructing the service-oriented value creation system of manufacturing industry in the context of industrial internet. Econ. Vert. 2020, 61–68. [Google Scholar]
- Wu, J.; Chen, T.; Gong, Y.W.; Yang, Y.X. Theoretical framework and research outlook on digital transformation of enterprises. J. Manag. 2021, 18, 1871–1880. [Google Scholar]
- Qiu, Y.; Guo, Z.M. A study on the mechanism and policy of digital economy to promote the value chain climbing of SMEs in China. Int. Trade 2019, 12–20+66. [Google Scholar]
- Wang, C.; Song, L.; Li, S.K. Industrial Internet platform: Development trends and challenges. China Eng. Sci. 2018, 20, 15–19. [Google Scholar] [CrossRef]
- Wang, F.T.; Hao, X.L.; Yuan, Y. Digital business ecosystem characteristics: A comparison of data control and data coordination models. South. Econ. 2022, 41, 1–17. [Google Scholar]
- Chen, Q.J.; Wang, Y.M.; Wan, M.F. Research on peer effect and influencing factors of enterprise digital transformation. J. Manag. 2021, 18, 653–663. [Google Scholar]
- Li, Y.H.; Lan, Q.F.; Wu, W.F. Research on the supply chain diffusion mechanism of digital transformation of customer companies. China Ind. Econ. 2022, 417, 146–165. [Google Scholar]
- He, S.L.; Li, J.; Zhou, Y.; Zhang, X. Current situation of industrial Internet platform application and development countermeasures. Sci. Technol. Manag. Res. 2021, 41, 132–137. [Google Scholar]
- Sun, X.; Wu, Z.G. Research on the evolution of digital employment, development bottlenecks and strategies to promote digital employment. Ind. Econ. Rev. 2021, 43, 119–128. [Google Scholar]
- Sun, X.B.; Su, J.H.; Qian, Y.; Zhang, D. Current status and future prospects of data empowerment research. Res. Dev. Manag. 2020, 32, 155–166. [Google Scholar]
- Zheng, Y.H.; Sun, Y.M.; Yin, J.F. Industrial Internet Platform Data Empowerment, Absorptive Capacity and Digital Transformation of Manufacturing Enterprises. Science and Technology Progress and Countermeasures:1–12. Available online: http://kns.cnki.net/kcms/detail/42.1224.G3.20220714.1750.006.html (accessed on 6 April 2023).
- Sun, X.B.; Zhang, M.C.; Wang, Y.X. A case study on the mechanism of industrial internet platform empowerment for data-based business ecosystem construction. Manag. Rev. 2022, 34, 322–337. [Google Scholar]
- Huawei Technologies, IDC. Digital Platform White Paper—Digital Platforms Break through Enterprise Digital Transformation. 19 March 2019. Available online: https://e.huawei.com/cn/material/enterprise/ee02c2a1ab2a4e949fd78c9d470288fc (accessed on 21 October 2020).
- Wang, T.N.; Wang, Y. Information technology investment, CEO overconfidence and firm performance. Manag. Rev. 2017, 29, 70–81. [Google Scholar]
- Wu, F.; Hu, H.Z.; Lin, H.Y.; Ren, X.Y. Corporate digital transformation and capital market performance—Empirical evidence from stock liquidity. Manag. World 2021, 37, 130–144. [Google Scholar]
- Jiang, T. Mediating and moderating effects in empirical studies of causal inference. China Ind. Econ. 2022, 410, 100–120. [Google Scholar]
- Wen, Z.L.; Ye, B.J. Mediation effect analysis: Methodology and model development. Adv. Psychol. Sci. 2014, 22, 731–745. [Google Scholar] [CrossRef]
- Huo, C.H.; Lv, M.X.; Xu, X.N. The “cohort effect” of digital transformation and high-quality development of enterprises: Empirical evidence based on listed manufacturing companies. Sci. Technol. Prog. Countermeas. 2023, 40, 77–87. [Google Scholar]
- Yang, W.; Kong, D. Min. Intra-firm pay gap and human capital restructuring. Financ. Res. 2019, 150–168. [Google Scholar]
- Huang, K.F.; Lin, K.H.; Wu, L.Y.; Yu, P.H. Absorptive capacity and autonomous R&D climate roles in firm innovation. J. Bus. Res. 2015, 68, 87–94. [Google Scholar]
- Liu, J.; Cao, J.; Zhang, J.Y. Exclusive or shared? R&D internationalization and firm innovation value capture: Evidence from patent citation data of listed firms. Int. Trade Issues 2022, 477, 157–174. [Google Scholar]
- Zhang, J.; Zheng, W.P. Has the innovation catch-up strategy inhibited patent quality in China? Econ. Res. 2018, 53, 28–41. [Google Scholar]
Variables | Variable Name | Variable Symbols | Variable Description |
---|---|---|---|
Explained variables | Level of digital transformation of enterprises | DT1 DT2 | Ln [1+ (investment in information technology hardware + investment in information technology software)/main business revenue]. Ln (number of keywords characterizing digital transformation in the annual report + 1). |
Explanatory variables | Industrial interconnection pilot companies | A value of 1 is assigned to the pilot demonstration projects selected for the Industrial Internet in the current year, and 0 to the opposite. | |
Control variables | Size of business | Size | Natural logarithm of the enterprise’s total assets at the end of the year. |
Profitability | ROA | Return on net assets = net profit/total assets. | |
Debt capacity | LEV | Gearing ratio = total liabilities/total assets. | |
Growth capacity | Growth | Operating income growth rate = increase in operating income for the year/operating income for the previous year. | |
Percentage of fixed assets | Fixed | Percentage of fixed assets = fixed assets/total assets. | |
Board size | Board | Total number of board members. | |
Annual dummy variables | Year | ||
Industry dummy variables | Ind | ||
Regional dummy variables | Province | ||
Intermediate variables | Cohort effect empowerment | CE | Average value of digital transformation for companies in the same subsector. |
Technology absorption empowerment | TA | Number of technical staff as a percentage. | |
Talent introduction empowerment | TI | Number of postgraduate and above employees/total number of employees. | |
Innovation integration empowerment | PW | Patent knowledge width. |
Variables | Observations | Average | Standard Deviation | Minimum Value | Median | Maximum Value |
---|---|---|---|---|---|---|
DT1 | 11,605 | 0.820 | 1.345 | 0.000 | 0.340 | 9.907 |
DT2 | 11,605 | 1.078 | 1.242 | 0.000 | 0.693 | 4.875 |
treat | 11,605 | 0.013 | 0.112 | 0.000 | 0.000 | 1.000 |
list | 11,605 | 0.047 | 0.211 | 0.000 | 0.000 | 1.000 |
Size | 11,605 | 22.205 | 1.170 | 19.831 | 22.082 | 26.027 |
LEV | 11,605 | 0.412 | 0.190 | 0.044 | 0.406 | 0.901 |
ROA | 11,605 | 0.037 | 0.066 | −0.424 | 0.037 | 0.221 |
Growth | 11,605 | 0.146 | 0.272 | −0.366 | 0.088 | 2.571 |
Board | 11,605 | 8.471 | 1.627 | 0.000 | 9.000 | 18.000 |
Fixed | 11,605 | 0.224 | 0.131 | 0.015 | 0.201 | 0.633 |
DT | DT2 | Treat | Size | LEV | ROA | Growth | Board | Fixed | |
---|---|---|---|---|---|---|---|---|---|
DT1 | 1 | ||||||||
DT2 | 0.216 *** | 1 | |||||||
treat | 0.0636 *** | 0.102 *** | |||||||
size | −0.0637 *** | 0.0860 *** | 0.287 *** | 1 | |||||
LEV | −0.0801 *** | −0.0112 | 0.120 *** | 0.468 *** | 1 | ||||
ROA | −0.0797 *** | 0.0008 | 0.0302 *** | 0.0298 *** | −0.363 *** | 1 | |||
Growth | 0.0260 *** | 0.0714 *** | −0.00204 | 0.0448 *** | 0.00428 | 0.247 *** | 1 | ||
Board | −0.0579 *** | −0.0714 *** | 0.0917 *** | 0.280 *** | 0.155 *** | 0.0190 ** | −0.0326 *** | 1 | |
Fixed | −0.0559 *** | −0.272 *** | −0.0136 | 0.100 *** | 0.145 *** | −0.109 *** | −0.170 *** | 0.0955 *** | 1 |
Year | Observations | DT1 | DT2 | ||||
---|---|---|---|---|---|---|---|
Average | Min | Max | Average | Min | Max | ||
2012 | 1027 | 0.741 | 0 | 9.195 | 0.448 | 0 | 3.638 |
2013 | 1120 | 0.752 | 0 | 8.209 | 0.549 | 0 | 3.738 |
2014 | 1105 | 0.670 | 0 | 6.059 | 0.760 | 0 | 3.871 |
2015 | 1159 | 0.836 | 0 | 9.907 | 1.088 | 0 | 4.143 |
2016 | 1254 | 0.847 | 0 | 8.637 | 1.159 | 0 | 4.466 |
2017 | 1336 | 0.812 | 0 | 7.948 | 1.305 | 0 | 4.718 |
2018 | 1550 | 0.873 | 0 | 8.907 | 0.909 | 0 | 4.745 |
2019 | 1551 | 0.874 | 0 | 7.912 | 1.482 | 0 | 4.875 |
2020 | 1503 | 0.898 | 0 | 8.426 | 1.619 | 0 | 4.875 |
Full sample | 11,605 | 0.820 | 0 | 9.907 | 1.078 | 0 | 4.875 |
Variables | Does It Match | Average Value | Standard Deviation/ % | Bias Reduction Rate/ % | t-Test | ||
---|---|---|---|---|---|---|---|
Processing Group | Control Group | t | p > |t| | ||||
Size | Not matched | 23.726 | 22.131 | 130.6 | 32.26 | 0.000 | |
After matching | 23.722 | 23.721 | 0.1 | 100.0 | 0.01 | 0.992 | |
LEV | Not matched | 0.51494 | 0.40663 | 61.1 | 13.04 | 0.000 | |
After matching | 0.5155 | 0.52115 | −3.2 | 94.8 | −0.54 | 0.590 | |
ROA | Not matched | 0.04595 | 0.0368 | 16.3 | 3.16 | 0.002 | |
After matching | 0.04562 | 0.04563 | −0.0 | 100.0 | −0.00 | 0.999 | |
Growth | Not matched | 0.14348 | 0.14638 | −1.2 | −0.24 | 0.809 | |
After matching | 0.14344 | 0.14721 | −1.5 | −30.1 | −0.27 | 0.786 | |
Board | Not matched | 9.1429 | 8.4384 | 38.4 | 9.86 | 0.000 | |
After matching | 9.1468 | 9.1929 | −2.5 | 93.5 | −0.36 | 0.718 | |
Fixed | Not matched | 0.21625 | 0.2246 | −6.0 | −1.44 | 0.149 | |
After matching | 0.21651 | 0.21884 | −1.7 | 72.2 | −0.26 | 0.792 |
Variables | DID | PSM-DID | ||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
treat | 0.3837 *** | 0.4181 *** | 0.3889 *** | 0.4188 *** | 0.3811 ** | 0.3899 ** | 0.3872 ** | 0.3941 ** |
(0.1044) | (0.1025) | (0.1051) | (0.1033) | (0.1841) | (0.1819) | (0.1747) | (0.1727) | |
Size | 0.1344 *** | 0.1421 *** | −0.0045 | −0.0133 | ||||
(0.0359) | (0.0347) | (0.0116) | (0.0126) | |||||
LEV | −0.4393 *** | −0.4767 *** | −0.8004 *** | −0.7802 *** | ||||
(0.1279) | (0.1307) | (0.0882) | (0.0909) | |||||
ROA | −2.4253 *** | −2.4344 *** | −2.4978 *** | −2.2354 *** | ||||
(0.2419) | (0.2492) | (0.2598) | (0.2668) | |||||
Growth | 0.1316 *** | 0.1281 *** | 0.2455 *** | 0.2647 *** | ||||
(0.0496) | (0.0497) | (0.0571) | (0.0612) | |||||
Board | −0.0142 | −0.0097 | −0.0031 | −0.0010 | ||||
(0.0109) | (0.0107) | (0.0073) | (0.0075) | |||||
Fixed | 1.1265 *** | 1.0574 *** | 0.2017 * | 0.2962 *** | ||||
(0.1663) | (0.1674) | (0.1090) | (0.1107) | |||||
Year | YES | YES | YES | YES | YES | YES | YES | YES |
Industry | NO | NO | NO | NO | YES | YES | YES | YES |
Province | NO | NO | NO | NO | NO | NO | YES | YES |
Firm | YES | YES | YES | YES | NO | NO | NO | NO |
_cons | 0.8154 *** | −2.0503 *** | 0.8091 *** | −2.2329 *** | 0.8256 *** | 1.2917 *** | 0.8236 *** | 1.4255 *** |
(0.0077) | (0.7931) | (0.0077) | (0.7550) | (0.0121) | (0.2414) | (0.0121) | (0.2645) | |
N | 11,605 | 11,605 | 11,440 | 11,440 | 11,441 | 11,441 | 10,939 | 10,939 |
adj. | 0.6312 | 0.6419 | 0.6324 | 0.6422 | 0.1239 | 0.1391 | 0.1505 | 0.1644 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
DID | DID | PSM-DID | PSM-DID | |
treat | 0.2046 ** (0.0931) | 0.2137 ** (0.0930) | 0.2104 ** (0.0935) | 0.2195 ** (0.0933) |
Size | 0.2407 *** (0.0243) | 0.2541 *** (0.0250) | ||
Lev | 0.0908 (0.0871) | 0.1434 (0.0891) | ||
Roa | −0.2133 (0.1600) | −0.1379 (0.1709) | ||
Growth | −0.0696 ** (0.0315) | −0.0772 ** (0.0313) | ||
Board | 0.0211 ** (0.0089) | 0.0198 ** (0.0091) | ||
Fixed | −0.5479 *** (0.1225) | −0.6521 *** (0.1259) | ||
_cons | 1.0756 *** (0.0066) | −4.3436 *** (0.5298) | 1.0778 *** (0.0066) | −4.6371 *** (0.5452) |
Firm | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes |
N | 11,606 | 11,606 | 11,442 | 11,442 |
R2_a | 0.6826 | 0.6887 | 0.6847 | 0.6912 |
Variables | Cohort Effect Empowerment | Technology Absorption Empowerment | Talent Introduction Empowerment | Innovation Integration Empowerment | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DT | CE | DT | DT | TI | DT | DT | TA | DT | DT | PW | DT | |
(1) | (2) | (3) | (1) | (2) | (3) | (1) | (2) | (3) | (1) | (2) | (3) | |
Treat | 0.4192 *** | 0.0619 ** | 0.4134 *** | 0.4496 *** | 0.7659 * | 0.4300 ** | 0.4338 *** | 0.5276 *** | 0.6080 ** | 0.5592 ** | 0.1212 *** | 0.5449 ** |
(0.1575) | (0.0293) | (0.1587) | (0.1679) | (0.4021) | (0.1682) | (0.1616) | (0.1286) | (0.3087) | (0.2199) | (0.0235) | (0.2201) | |
CE | 0.0924 * | |||||||||||
(0.0482) | ||||||||||||
TI | 0.0256 * | |||||||||||
(0.0135) | ||||||||||||
TA | 0.0278 *** | |||||||||||
(0.0029) | ||||||||||||
PW | 0.1176 *** | |||||||||||
(0.0416) | ||||||||||||
Size | 0.1345 ** | 0.0017 | 0.1344 ** | 0.1336 ** | 0.7259 *** | 0.1150 * | 0.1431 *** | 0.7849 *** | −0.0288 | 0.1020 ** | 0.0523 *** | 0.0958 * |
(0.0538) | (0.0181) | (0.0537) | (0.0651) | (0.2262) | (0.0655) | (0.0545) | (0.0231) | (0.0243) | (0.0518) | (0.0094) | (0.0517) | |
LEV | −0.4366 ** | 0.1199 ** | −0.4477 ** | −0.5133 ** | −1.6079 ** | −0.4722 ** | −0.4195 ** | −0.1098 | −0.6224 *** | −0.2436 | −0.0832 ** | −0.2338 |
(0.1903) | (0.0575) | (0.1903) | (0.2122) | (0.6798) | (0.2078) | (0.1880) | (0.1244) | (0.1649) | (0.1841) | (0.0334) | (0.1841) | |
ROA | −2.4325 *** | −0.1689 ** | −2.4169 *** | −2.6549 *** | −0.7772 | −2.6350 *** | −2.3706 *** | 1.1383 *** | −2.6349 *** | −2.1160 *** | −0.0644 | −2.1084 *** |
(0.2783) | (0.0699) | (0.2768) | (0.3392) | (0.5676) | (0.3362) | (0.2791) | (0.2407) | (0.3831) | (0.2944) | (0.0562) | (0.2939) | |
Growth | 0.1365 *** | −0.0094 | 0.1374 *** | 0.1396 ** | −0.1544 | 0.1435 ** | 0.1406 *** | −0.0011 | 0.2616 *** | 0.1242 ** | 0.0228 * | 0.1216 ** |
(0.0502) | (0.0155) | (0.0503) | (0.0650) | (0.1078) | (0.0650) | (0.0510) | (0.0419) | (0.0614) | (0.0592) | (0.0121) | (0.0589) | |
Board | −0.0140 | 0.0073 | −0.0147 | 0.0007 | 0.0761 | −0.0012 | −0.0116 | 0.0148 | −0.0111 | −0.0275* | 0.0029 | −0.0278 * |
(0.0179) | (0.0056) | (0.0180) | (0.0230) | (0.0477) | (0.0226) | (0.0179) | (0.0118) | (0.0148) | (0.0159) | (0.0034) | (0.0159) | |
Fixed | 1.1416 *** | −0.2145 ** | 1.1614 *** | 1.0983 *** | −0.8249 | 1.1194 *** | 1.2089 *** | −0.0741 | 0.2960 | 0.9358 *** | −0.0419 | 0.9407 *** |
(0.2279) | (0.0905) | (0.2266) | (0.2939) | (0.6342) | (0.2915) | (0.2326) | (0.1632) | (0.1996) | (0.2399) | (0.0475) | (0.2399) | |
_cons | −2.0604 * | 1.8025 *** | −2.2269 * | −2.0451 | −11.9929** | −1.7385 | −2.2944 * | −11.5574 *** | 1.2822 ** | −1.3676 | −0.8180 *** | −1.2714 |
(1.1923) | (0.3894) | (1.1887) | (1.4623) | (4.9223) | (1.4700) | (1.2104) | (0.4717) | (0.5005) | (1.1489) | (0.2068) | (1.1494) | |
Year | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Firm | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 11,531 | 11,531 | 11,531 | 8224 | 8224 | 8224 | 11,318 | 11,318 | 11,318 | 8060 | 8060 | 8060 |
R2_a | 0.6390 | 0.9236 | 0.6393 | 0.6675 | 0.8966 | 0.6684 | 0.6391 | 0.5550 | 0.1033 | 0.6632 | 0.3957 | 0.6636 |
Variables | Nature of Property Rights | Diversification of Operations | Intensity of Elements | Geographical Location | ||||
---|---|---|---|---|---|---|---|---|
State-Owned Enterprises | Non-State-Owned Enterprises | Diversified Enterprises | Nondiversified Enterprises | Technology-Intensive Enterprises | Non-Technology-Intensive Enterprises | Eastern Region | Noneastern Region | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Treat | 0.4393 * | 0.3717 ** | 0.4977 * | 0.3781 | 0.5070 *** | 0.2575 | 0.6237 ** | 0.2048 |
(0.2308) | (0.1884) | (0.2583) | (0.2339) | (0.1846) | (0.2846) | (0.2742) | (0.1346) | |
Size | 0.1287 | 0.1567 *** | 0.1861 *** | 0.1116 | 0.1243 | 0.1937 *** | 0.1676 ** | 0.1304 ** |
(0.1311) | (0.0562) | (0.0718) | (0.0982) | (0.0841) | (0.0581) | (0.0814) | (0.0613) | |
LEV | −0.5674 | −0.4250 ** | −0.2299 | −0.7720 *** | −0.7720 ** | −0.0753 | −0.6272 ** | −0.2733 |
(0.4598) | (0.2108) | (0.2624) | (0.2905) | (0.3285) | (0.1816) | (0.3145) | (0.2284) | |
ROA | −2.1901 *** | −2.5532 *** | −1.7627 *** | −3.1039 *** | −2.6823 *** | −1.9724 *** | −2.5674 *** | −2.2704 *** |
(0.6695) | (0.3144) | (0.3548) | (0.4838) | (0.3896) | (0.3262) | (0.4272) | (0.3518) | |
Growth | −0.0668 | 0.1635 *** | 0.1844 *** | 0.0935 | 0.1043 | 0.1795 ** | 0.1873** | 0.0762 |
(0.0825) | (0.0566) | (0.0658) | (0.0969) | (0.0679) | (0.0808) | (0.0810) | (0.0575) | |
Board | −0.0463 | 0.0053 | −0.0168 | −0.0084 | −0.0263 | −0.0063 | −0.0108 | −0.0078 |
(0.0323) | (0.0233) | (0.0229) | (0.0221) | (0.0302) | (0.0178) | (0.0289) | (0.0196) | |
Fixed | 1.3501 ** | 1.1652 *** | 1.2328 *** | 1.6168 *** | 2.0179 *** | 0.7339 *** | 1.5967 *** | 0.7510 *** |
(0.5410) | (0.2500) | (0.3064) | (0.3960) | (0.3977) | (0.2501) | (0.3643) | (0.2712) | |
_cons | −1.7694 | −2.6553 ** | −3.3845 ** | −1.4612 | −1.5074 | −3.7809 *** | −2.7278 | −2.1170 |
(3.0360) | (1.2101) | (1.5515) | (2.1682) | (1.8604) | (1.2774) | (1.7676) | (1.3390) | |
Year | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Firm | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 3038 | 8520 | 6118 | 4827 | 6192 | 5396 | 5889 | 5710 |
R2_a | 0.6994 | 0.6218 | 0.6704 | 0.6799 | 0.6487 | 0.6134 | 0.6337 | 0.6505 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Liu, X. Study on the Impact and Mechanism of Industrial Internet Pilot on Digital Transformation of Manufacturing Enterprises. Sustainability 2023, 15, 7872. https://doi.org/10.3390/su15107872
He J, Liu X. Study on the Impact and Mechanism of Industrial Internet Pilot on Digital Transformation of Manufacturing Enterprises. Sustainability. 2023; 15(10):7872. https://doi.org/10.3390/su15107872
Chicago/Turabian StyleHe, Jianjia, and Xuchen Liu. 2023. "Study on the Impact and Mechanism of Industrial Internet Pilot on Digital Transformation of Manufacturing Enterprises" Sustainability 15, no. 10: 7872. https://doi.org/10.3390/su15107872
APA StyleHe, J., & Liu, X. (2023). Study on the Impact and Mechanism of Industrial Internet Pilot on Digital Transformation of Manufacturing Enterprises. Sustainability, 15(10), 7872. https://doi.org/10.3390/su15107872