Biopolymer-Based Hydrogels for Harvesting Water from Humid Air: A Review
Abstract
:1. Introduction
2. Non-Biopolymer-Based Hydrogels
3. Hydrogels Based on Cellulose and Its Derivatives
4. Hydrogels Based on Chitosan
5. Hydrogels Based on Other Biopolymers
6. Opportunities, Challenges, and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Teng, Y.; Yang, J.; Zuo, R.; Wang, J. Impact of urbanization and industrialization upon surface water quality: A pilot study of Panzhihua mining town. J. Earth Sci. 2011, 22, 658. [Google Scholar] [CrossRef]
- Kim, J.W. The environmental impact of industrialization in East Asia and strategies toward sustainable development. Sustain. Sci. 2006, 1, 107–114. [Google Scholar] [CrossRef]
- Vorosmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Afroz, R.; Masud, M.M.; Akhtar, R.; Duasa, J.B. Water pollution: Challenges and future direction for water resource management policies in Malaysia. Environ. Urban. Asia 2014, 5, 63–81. [Google Scholar] [CrossRef]
- Postel, S.L. Entering an era of water scarcity: The challenges ahead. Ecol. Appl. 2000, 10, 941–948. [Google Scholar] [CrossRef]
- Chenoweth, J. A reassessment of indicators of national water scarcity. Water Int. 2008, 33, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Kummu, M.; Guillaume, J.H.A.; de Moel, H.; Eisner, S.; Florke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.E.; Ward, P.J. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 2016, 6, 38495. [Google Scholar] [CrossRef] [Green Version]
- Alhazmy, M.M. Minimum work requirement for water production in humidification-dehumidification desalination cycle. Desalination 2007, 214, 102–111. [Google Scholar] [CrossRef]
- Donat, M.G.; Angelil, O.; Ukkola, A.M. Intensification of precipitation extremes in the world’s humid and water-limited regions. Environ. Res. Lett. 2019, 14, 065003. [Google Scholar] [CrossRef]
- Abimbola, T.O.; Yusof, K.W.; Takaijudin, H.; Abdurrasheed, A.S.; Al-Qadami, E.H.H.; Ishola, S.A.; Owoseni, T.A.; Akilu, S. A concise review of major desalination techniques: Features and limitations. In Proceedings of the International Conference on Civil, Offshore and Environmental Engineering, Singapore, 13 June 2021. [Google Scholar]
- Tu, Y.; Wang, R.; Zhang, Y.; Wang, J. Progress and expectation of atmospheric water harvesting. Joule 2018, 2, 1452–1475. [Google Scholar] [CrossRef] [Green Version]
- Asim, N.; Badiei, M.; Alghoul, M.A.; Mohammad, M.; Samsudin, N.A.; Amin, N.; Sopian, K. Sorbent-based air water-harvesting systems: Progress, limitation, and consideration. Rev. Environ. Sci. Biotechnol. 2021, 20, 257–279. [Google Scholar] [CrossRef]
- Khalil, B.; Adamowski, J.; Shabbir, A.; Jang, C.; Rojas, M.; Reilly, K.; Ozga-Zielinski, B. A review: Dew water collection from radiative passive collectors to recent developments of active collectors. Sustain. Water Resour. Manag. 2016, 2, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Howell, T.A. Enhancing water use efficiency in irrigated agriculture. Agron. J. 2001, 93, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Ruskin, R. Method to Irrigate Using Hydrogels in the Soil to Draw Water from the Atmosphere. United States Patent Application 0200359584, 19 November 2020. [Google Scholar]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Chen, G. Agricultural waste-derived superabsorbent hydrogels: Preparation, performance, and socioeconomic impacts. J. Clean. Prod. 2019, 251, 119669. [Google Scholar] [CrossRef]
- Li, S.; Chen, G. Contemporary strategies for enhancing nitrogen retention and mitigating nitrous oxide emission in agricultural soils: Present and future. Environ. Dev. Sustain. 2019, 22, 2703–2741. [Google Scholar] [CrossRef]
- Cheng, W.; Hu, X.; Zhao, Y.; Wu, M.; Hu, Z.; Yu, X. Preparation and swelling properties of poly(acrylic acid-co-acrylamide) composite hydrogels. e-Polymers 2016, 17, 95–106. [Google Scholar] [CrossRef]
- Narjary, B.; Aggarwal, P.; Singh, A.; Chakraborty, D.; Sing, R. Water availability in different soils in relation to hydrogel application. Geoderma 2012, 187–188, 94–101. [Google Scholar] [CrossRef]
- Kalhapure, A.; Kumar, R.; Singh, V.P.; Pandey, D.S. Hydrogels: A boon for increasing agricultural productivity in water-stressed environment. Curr. Sci. 2016, 111, 1773–1779. [Google Scholar]
- Couto, D.; Freitas, M.; Costa, V.M.; Chiste, R.C.; Almeida, A.; Lopez-Quintela, M.A.; Rivas, J.; Freitas, P.; Silva, P.; Carvalho, F.; et al. Biodistribution of polyacrylic acid-coated iron oxide nanoparticles is associated with proinflammatory activation and liver toxicity. J. Appl. Toxicol. 2016, 36, 1321–1331. [Google Scholar] [CrossRef]
- Derewlany, L.O.; Koren, G. Biotransformation of carcinogenic arylamines and arylamides by human placenta. J. Lab. Clin. Med. 1994, 124, 134–141. [Google Scholar]
- Tomadoni, B.; Casalongue, C.; Alvarez, V.A. Biopolymer-Based Hydrogels for Agricultural Applications: Swelling Behavior and Slow Release of Agrochemicals. In Polymers for Agri-Food Applications; Gutierrez, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Zhao, F.; Zhou, X.; Liu, Y.; Shi, Y.; Dai, Y.; Yu, G. Super moisture-absorbent gels for all-weather atmospheric water harvesting. Adv. Mater. 2019, 31, 1806446. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Guo, Y.; Guan, W.; Lu, H.; Shi, W.; Yu, G. Polyzwitterionic hydrogels for efficient atmospheric water harvesting. Angew. Chem. 2022, 61, e202200271. [Google Scholar] [CrossRef]
- Mittal, H.; Alili, A.A.; Alhassan, S.M. Utilization of clay based super-porous hydrogel composites in atmospheric water harvesting. Appl. Clay Sci. 2022, 230, 106712. [Google Scholar] [CrossRef]
- Mittal, H.; Alili, A.A.; Alhassan, S.M. Hybrid super-porous hydrogel composites with high water vapor adsorption capacity—Adsorption isotherm and kinetics studies. J. Environ. Chem. Eng. 2021, 9, 106611. [Google Scholar] [CrossRef]
- Aleid, S.; Wu, M.; Li, R.; Wang, W.; Zhang, C.; Zhang, L.; Wang, P. Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting. ACS Mater. Lett. 2022, 4, 511–520. [Google Scholar] [CrossRef]
- Lyu, T.; Wang, Z.; Liu, R.; Chen, K.; Liu, H.; Tian, Y. Microporous hydrogel for high-performance atmospheric water harvesting. ACS Appl. Mater. Interfaces 2022, 14, 32433–32443. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.N.; Rab, M.F.; Nazrul Islam, A.K.M.; Asmatulu, E.; Rahman, M.M.; Asmatulu, R. Nanostructured hybrid hydrogels for solar-driven clean water harvesting from the atmosphere. Materials 2022, 15, 7538. [Google Scholar] [CrossRef]
- Zainal, S.H.; Mohd, N.H.; Suhaili, N.; Anuar, F.H.; Lazim, A.M.; Othaman, R. Preparation of cellulose-based hydrogel: A review. J. Mater. Res. Technol. 2021, 10, 935–952. [Google Scholar] [CrossRef]
- Wang, M.; Sun, T.; Wan, D.; Dai, M.; Ling, S.; Wang, J.; Liu, Y.; Fang, Y.; Xu, S.; Yeo, J.; et al. Solar-powered nanostructured biopolymer hygroscopic aerogels for atmospheric water harvesting. Nano Energy 2021, 80, 105569. [Google Scholar] [CrossRef]
- Gong, F.; Li, H.; Zhou, Q.; Wang, M.; Wang, W.; Lv, Y.; Xiao, R.; Papavassiliou, D.V. Agricultural waste-derived moisture-absorber for all-weather atmospheric water collection and electricity generation. Nano Energy 2020, 74, 104922. [Google Scholar] [CrossRef]
- Guo, Y.; Guan, W.; Lei, C.; Lu, H.; Shi, W.; Yu, G. Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments. Nat. Commun. 2022, 13, 2761. [Google Scholar] [CrossRef] [PubMed]
- Tereshchenko, A.G. Deliquescence: Hygroscopicity of water-soluable crystalline solids. J. Pharm. Sci. 2015, 104, 3639–3652. [Google Scholar] [CrossRef]
- Yao, W.; Zhu, X.; Xu, Z.; Davis, R.A.; Liu, G.; Zhong, H.; Lin, X.; Dong, P.; Ye, M.; Shen, J. Loofah sponge-derived hygroscopic photothermal absorber for all-weather atmospheric water harvesting. ACS Appl. Mater. Interfaces 2022, 14, 4680–4689. [Google Scholar] [CrossRef]
- Chaudhuri, S.D.; Dey, A.; Upganlawar, S.; Chakrabarty, D. Influence of clay concentration on the absorption and rheological attributes of modified cellulose /acrylic acid based hydrogel and the application of such hydrogel. Mater. Chem. Phys. 2022, 282, 125942. [Google Scholar] [CrossRef]
- Bauli, C.R.; Lima, G.F.; de Souza, A.G.; Ferreira, R.R.; Rosa, D.S. Eco-friendly carboxymethyl cellulose hydrogels filled with nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber growing. Colloids Surf. A Physicochem. Eng. Asp. 2021, 623, 126771. [Google Scholar] [CrossRef]
- Liu, J.; Xiong, J.; Huang, Q.; Lu, T.; Chen, W.; Li, M. Eco-friendly synthesis of robust bioinspired cotton fabric with hybrid wettability for integrated water harvesting and water purification. J. Clean. Prod. 2022, 350, 131524. [Google Scholar] [CrossRef]
- Thakur, N.; Ranganath, A.S.; Sopiha, K.; Baji, A. Thermoresponsive cellulose acetate−poly(N-isopropylacrylamide) core−shell fibers for controlled capture and release of moisture. ACS Appl. Mater. Interfaces 2017, 9, 29224–29233. [Google Scholar] [CrossRef]
- Loo, S.L.; Vasquez, L.; Athanassiou, A.; Fragouli, D. Polymeric hydrogels—A promising platform in enhancing water security for a sustainable future. Adv. Mater. Interfaces 2021, 8, 2100580. [Google Scholar] [CrossRef]
- Yu, F.; Chen, Z.; Guo, Z.; Irshad, M.S.; Yu, L.; Qian, J.; Mei, T.; Wang, X. Molybdenum carbide/carbon-based chitosan hydrogel as an effective solar water evaporation accelerator. ACS Sustain. Chem. Eng. 2020, 8, 7139–7149. [Google Scholar] [CrossRef]
- Fan, L.; Yang, H.; Yang, J.; Peng, M.; Hu, J. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr. Polym. 2016, 146, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Li, M.; Wang, X.; Wang, Z.; Pi, M.; Cui, W.; Ran, R. Recyclable physical hydrogels as durable and efficient solar-driven evaporators. Chem. Eng. J. 2022, 450, 138257. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, N.; Li, X.; Li, J.; Pei, W.; Xu, Y.; Hou, Y.; Zheng, Y. Water harvesting of bioinspired microfibers with rough spindle-knots from microfluidics. Small 2019, 16, 1901819. [Google Scholar] [CrossRef] [PubMed]
- Gaserod, O.; Smidsrod, O.; Skjak-Braek, G. Microcapsules of alginate-chitosan—I: A quantitative study of the interaction between alginate and chitosan. Biomaterials 1998, 19, 1815–1825. [Google Scholar] [CrossRef]
- Entezari, A.; Ejeian, M.; Wang, R. Super atmospheric water harvesting hydrogel with alginate chains modified with binary salts. ACS Mater. Lett. 2020, 2, 471–477. [Google Scholar] [CrossRef]
- Kim, S.; Liang, Y.; Kang, S.; Choi, H. Solar-assisted smart nanofibrous membranes for atmospheric water harvesting. Chem. Eng. J. 2021, 425, 131601. [Google Scholar] [CrossRef]
- Jian, Y.; Handschuh-Wang, S.; Zhang, J.; Lu, W.; Zhou, X.; Chen, T. Biomimetic anti-freezing polymeric hydrogels: Keeping soft-wet materials active in cold environments. Mater. Horiz. 2021, 8, 351–369. [Google Scholar] [CrossRef]
- Mittal, H.; Alili, A.A.; Alhassan, S.M.; Naushad, M. Advances in the role of natural gums-based hydrogels in water purification, desalination and atmospheric-water harvesting. Int. J. Biol. Macromol. 2022, 222, 2888–2921. [Google Scholar] [CrossRef]
- Rastello De Boissenson, M.; Leonard, M.; Huber, P.; Marchal, P.; Stequert, A.; Castel, C.; Favre, E.; Dellacherie, E. Physical alginate hydrogels based on hydrophobic or dual hydrophobic/ionic interactions: Bead formation, structure, and stability. J. Colloid Interface Sci. 2004, 273, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Shanker, R.; Ramakrishna, C.; Seth, P.K. Microbial degradation of acrylamide monomer. Arch. Microbiol. 1990, 154, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.S.; Zhu, J.Y.; Deng, Y.; Ragauskas, A.J. Hydrogels prepared from cross-linked nanofibrillated cellulose. ACS Sustain. Chem. Eng. 2014, 2, 772–780. [Google Scholar] [CrossRef]
- Mittal, H.; Kaith, B.S.; Jindal, R.; Mishra, S.B.; Mishra, A.K. A comparative study on the effect of different reaction conditions on graft co-polymerization, swelling, and thermal properties of Gum ghatti-based hydrogels. J. Therm. Anal. Calorim. 2015, 119, 131–144. [Google Scholar] [CrossRef]
- Chang, X.; Li, S.; Li, N.; Wang, S.; Li, J.; Guo, C.; Yu, L.; Murto, P.; Xu, X. Marine biomass-derived, hygroscopic and temperature-responsive hydrogel beads for atmospheric water harvesting and solar-powered irrigation. J. Mater. Chem. A 2022, 10, 18170–18184. [Google Scholar] [CrossRef]
- Weigend Rodriguez, R.; Pomponi, F.; Webster, K.; D’Amico, B. The future of the circular economy and the circular economy of the future. Built Environ. Proj. Asset Manag. 2020, 10, 529–546. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, X.; Li, C.; Liu, H.; Cheng, Y.; Lu, J.; Zhang, K.; Wang, H. Super-swelling lignin-based biopolymer hydrogels for soil water retention from paper industry waste. Int. J. Biol. Macromol. 2019, 135, 815–820. [Google Scholar] [CrossRef]
- Bhaladhare, S.; Das, D. Cellulose: A fascinating biopolymer for hydrogel synthesis. J. Mater. Chem. B 2022, 10, 1923–1945. [Google Scholar] [CrossRef]
- Skrzypczak, D.; Mikula, K.; Kossinska, N.; Widera, B.; Warchol, J.; Moustakas, K.; Chojnacka, K.; Witek-Krowiak, A. Biodegradable hydrogel materials for water storage in agriculture—Review of recent research. Desalination Water Treat. 2020, 194, 324–332. [Google Scholar] [CrossRef]
- Olander, F.; Thogersen, J. Understanding of consumer behaviour as a prerequisite for environmental protection. J. Consum. Policy 1995, 18, 345–385. [Google Scholar] [CrossRef]
Biopolymer Type | Additive(s) | Relative Humidity in the Environment | Water Harvested/Generated per Unit Weight of Hydrogel (g/g) | Reference |
---|---|---|---|---|
Nanofibrillated cellulose | Graphene (1%) and LiCl | 18–95% | 0.3–2.36 | [34] |
Cellulose and hemicellulose | LiCl | 20–80% | 0.46–1.84 * | [35] |
Hydroxypropyl cellulse and konjac glucomannan | LiCl | 15–30% | 5.8–13.3 * | [36] |
Bacterial cellulose | Carbon nanotube | 90% | 2.65 | [38] |
Cellulose acetate | Poly(N-isopropylacrylamide) | 7–90% | Up to 20.8 * | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Hernandez, S.; Salazar, N. Biopolymer-Based Hydrogels for Harvesting Water from Humid Air: A Review. Sustainability 2023, 15, 848. https://doi.org/10.3390/su15010848
Li S, Hernandez S, Salazar N. Biopolymer-Based Hydrogels for Harvesting Water from Humid Air: A Review. Sustainability. 2023; 15(1):848. https://doi.org/10.3390/su15010848
Chicago/Turabian StyleLi, Simeng, Samuel Hernandez, and Natalia Salazar. 2023. "Biopolymer-Based Hydrogels for Harvesting Water from Humid Air: A Review" Sustainability 15, no. 1: 848. https://doi.org/10.3390/su15010848
APA StyleLi, S., Hernandez, S., & Salazar, N. (2023). Biopolymer-Based Hydrogels for Harvesting Water from Humid Air: A Review. Sustainability, 15(1), 848. https://doi.org/10.3390/su15010848