Using Detailing Concept to Assess Railway Functional Safety
Abstract
:1. Introduction
- -
- -
- -
- -
- Change of force impulses over time;
- -
- Changes in the deformability process over time.
2. Research Methods
3. Research Results
3.1. The First Direction of Detailing
- 1.
- Since energy exchange occurs during the impact, one of its characteristics is the law of change of the acting physical quantity over time. This value characterizes the intensity of the impact of the force impulse and allows describing such characteristics of the impact as “legato” and “staccato” in music or “soft” and “hard/sharp” in mechanical systems.
- 2.
- The action of a constant force per unit time on an object, regardless of the time of its impact, is characterized by the same value of the amount of motion per unit time, which serves as a potential for performing the same amount of work of the object per unit time. This means that it transfers the same amount of energy per unit time during the action of the force. If the force has a variable value in time, then the impulses of the variable forces cause the exchange of a variable amount of energy per unit time during the duration of the force.
3.2. The Second Direction of Detailing
4. Discussion, Conclusions and Future Recommendation
- -
- Modeling of time-space processes occurring both inside each element of the structure and in the track structure as a whole under the influence of both external and internal influences;
- -
- Modifying of models by changing the geometric and physical-mechanical characteristics of structural elements for certain operating conditions;
- -
- Optimizing the risks associated with unsuccessful trials;
- -
- Controlling deformability parameters in dynamic processes;
- -
- Expanding existing methods for diagnosing dynamic systems;
- -
- Optimizing costs for the manufacture and operation of simulation objects, as well as damage prediction during continued operation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coelho, B.Z.; Varandas, J.N.; Hijma, M.P.; Zoeteman, A. Towards network assessment of permanent railway track deformation. Transp. Geotech. 2021, 29, 100578. [Google Scholar] [CrossRef]
- Neuhold, J.; Landgraf, M.; Marschnig, S.; Veit, P. Measurement Data-Driven Life-Cycle Management of Railway Track. Transp. Res. Rec. 2020, 2674, 685–696. [Google Scholar] [CrossRef]
- Söderholm, P.; Nilsen, T. Systematic risk-Analysis to support a living maintenance programme for railway infrastructure. J. Qual. Maint. Eng. 2017, 23, 326–340. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, P.; Yang, G.; Chen, L.; Li, J. BIC-Based Data-Driven Rail Track Deterioration Adaptive Piecewise Modeling Framework. Front. Mater. 2021, 8, 620484. [Google Scholar] [CrossRef]
- Goodarzi, S.; Kashani, H.F.; Oke, J.; Ho, C.L. Data-driven methods to predict track degradation: A case study. Constr. Build. Mater. 2022, 344, 128166. [Google Scholar] [CrossRef]
- Bondarenko, I. Modeling for establishment of evaluation conditions of functional safety of the railway track. East.-Eur. J. Enterp. Technol. 2016, 1, 79. [Google Scholar] [CrossRef] [Green Version]
- Kostovasilis, D.; Ntotsios, E.; Hussein, M.F.M.; Thompson, D.J.; Squicciarini, G. A holistic approach for the design and assessment of railway tracks. In Proceedings of the IX International Conference on Structural Dynamics (EURODYN 2014), Porto, Portugal, 30 June–2 July 2014. [Google Scholar]
- Lipecki, T.; Jamińska-Gadomska, P.; Sumorek, A.; Błazik-Borowa, E.; Bęc, J. A system for measuring environmental data in full-scale. J. Phys. Conf. Ser. 2018, 1101, 012019. [Google Scholar] [CrossRef] [Green Version]
- Sol-Sánchez, M.; Castillo-Mingorance, J.M.; Moreno-Navarro, F.; Mattinzioli, T.; Rubio-Gámez, M.C. Piezoelectric-sensored sustainable pads for smart railway traffic and track state monitoring: Full-scale laboratory tests. Constr. Build. Mater. 2021, 301, 124324. [Google Scholar] [CrossRef]
- Kulupa, M.; Magda, P.; Mrówczyńska, M. Accuracy Characteristics of the Selected Diagnostics Methods and the Adjustment of Geodetic Observations. Civ. Environ. Eng. Rep. 2021, 31, 167–183. [Google Scholar] [CrossRef]
- Borghetti, F.; Petrenj, B.; Trucco, P.; Marchionni, G.; Ponti, M.; Calabrese, V. Multi-level approach to assessing the resilience of road network infrastructure. Int. J. Crit. Infrastruct. 2021, 17, 97. [Google Scholar] [CrossRef]
- Bibik, S.; Strelko, O.; Nesterenko, H.; Muzykin, M.; Kuzmenko, A. Formulation of the mathematical model for the planning system in the carriage of dangerous goods by rail. IOP Conf. Ser. Mater. Sci. Eng. 2020, 985, 012024. [Google Scholar] [CrossRef]
- Babyak, M.; Neduzha, L. Transportation Optimization of Homogeneous Freight in the Transport Systems. In Proceedings of the 26th International Conference Transport Means, Kaunas, Lithuania, 5–7 October 2022; pp. 755–760. [Google Scholar]
- Yan, H.; Gao, C.; Elzarka, H.; Mostafa, K.; Tang, W. Risk assessment for construction of urban rail transit projects. Saf. Sci. 2019, 118, 583–594. [Google Scholar] [CrossRef]
- He, C.; Zhou, S.; Di, H.; Zhang, X. An efficient prediction model for vibrations induced by underground railway traffic and experimental validation. Transp. Geotech. 2021, 31, 100646. [Google Scholar] [CrossRef]
- Zlatov, N.; Sattar, T. The development of a lifelong learning framework for mechatronics engineering. In Proceedings of the 15th International Workshop on Research and Education in Mechatronics (REM), El Gouna, Egypt, 9–11 September 2014; pp. 1–7. [Google Scholar] [CrossRef]
- Papathanasiou, N.; Adey, B.T. Identifying the Input Uncertainties to Quantify When Prioritizing Railway Assets for Risk-Reducing Interventions. CivilEng 2020, 1, 8. [Google Scholar] [CrossRef]
- Eickhoff, B.; Mazzola, L.; Bezin, Y.; Tucker, G.; Stradtmann, H.; Stradtmann, H.; Haigermoser, A.; Chollet, H.; Landais, J. Track loading limits and cross-acceptance of vehicle approvals. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2015, 229, 710–728. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.X.; Shan, M.; Hwang, B.G. Simulation of transportation infrastructures resilience: A comprehensive review. Environ. Sci. Pollut. Res. 2022, 29, 12965–12983. [Google Scholar] [CrossRef]
- Guo, D.; Shan, M.; Owusu, E.K. Resilience Assessment Frameworks of Critical Infrastructures: State-of-the-Art Review. Buildings 2021, 11, 464. [Google Scholar] [CrossRef]
- Pons, J.J.; Sanchis, I.V.; Franco, R.I.; Yepes, V. Life cycle assessment of a railway tracks substructures: Comparison of ballast and ballastless rail tracks. Environ. Impact Assess. Rev. 2020, 85, 106444. [Google Scholar] [CrossRef]
- Hedel, R.; Boustras, G.; Gkotsis, I.; Vasiliadou, I.; Rathke, P. Assessment of the European Programme for Critical Infrastructure Protection in the surface transport sector. Int. J. Crit. Infrastruct. 2018, 14, 311–335. [Google Scholar] [CrossRef]
- Ribeiro, F.B.; Nascimento, F.A.C.; Silva, M.A.V. Environmental performance analysis of railway infrastructure using life cycle assessment: Selecting pavement projects based on global warming potential impacts. J. Clean. Prod. 2022, 365, 132558. [Google Scholar] [CrossRef]
- Pîrvan, A.I.; Pătru, G.C.; Trancă, D.C.; Contaşel, C.; Rosner, D. Infrastructure independent rail quality diagnosis and monitoring system. In Proceedings of the 2019 18th RoEduNet Conference: Networking in Education and Research (RoEduNet), Galati, Romania, 10–12 October 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Charoenwong, C.; Connolly, D.P.; Odolinski, K.; Costa, P.A.; Galvín, C.P.; Smith, A. The effect of rolling stock characteristics on differential railway track settlement: An engineering-economic model. Transp. Geotech. 2022, 37, 100845. [Google Scholar] [CrossRef]
- Czarnuch, A.; Stembalski, M.; Szydłowski, T.; Batory, D. Method of reconstructing dynamic load characteristics for durability test Indexed by: Of heavy semitrailer under different road conditions. Eksploat. I Niezawodn. 2021, 23, 548–558. [Google Scholar] [CrossRef]
- Goolak, S.; Riabov, I.; Gorobchenko, O.; Yurchenko, V.; Nezlina, O. Improvement of the model of an asynchronous traction motor of an electric locomotive by taking into account power losses. Prz. Elektrotechniczny 2022, 98, 1–10. [Google Scholar] [CrossRef]
- Indraratna, B.; Singh, M.; Nguyen, T.T.; Rujikiatkamjorn, C.; Malisetty, R.S.; Arivalagan, J.; Nair, L. Internal Instability and Fluidisation of Subgrade Soil under Cyclic Loading. Indian Geotech. J. 2022, 52, 1226–1243. [Google Scholar] [CrossRef]
- Villalba, I.; Ricardo, S.; Franco, I.; Martínez, P.; Zuriaga, F.P.S.P. Experimental and numerical investigations of dual gauge railway track behaviour. Constr. Build. Mater. 2021, 299, 123943. [Google Scholar] [CrossRef]
- Urbancová, Z.; Sventeková, E. Assessing vulnerability of key elements of railway infrastructure. Transp. Res. Procedia 2019, 40, 1597–1603. [Google Scholar] [CrossRef]
- Ngamkhanong, C.; Feng, B.; Tutumluer, E.; Hashash, Y.M.A.; Kaewunruen, S. Evaluation of lateral stability of railway tracks due to ballast degradation. Constr. Build. Mater. 2021, 278, 122342. [Google Scholar] [CrossRef]
- Brzeżański, M.; Noga, M.; Szalek, A. Operation of the Fuel Cell Electric Vehicle in Moderate and Low-Temperature Ambient Conditions; SAE Technical Paper; SAE Technical Paper 2022-01-1129; SAE International: Warrendale, PA, USA, 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Ngamkhanong, C.; Kaewunruen, S.; Baniotopoulos, C. Nonlinear buckling instabilities of interspersed railway tracks. Comput. Struct. 2021, 249, 106516. [Google Scholar] [CrossRef]
- Hodás, S.; Pultznerová, A. Modelling of Railway Track Temperature Regime with Real Heat-Technical Values for Different Climatic Characteristics. Civ. Environ. Eng. 2017, 13, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Bosomworth, C.; Spiryagin, M.; Alahakoon, S.; Cole, C.; Sneath, B.; Makin, B. Rail temperature variation under heavy haul operations. Railw. Eng. Sci. 2022, 30, 148–161. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Lv, Q.; Jiao, H.; Xiao, X. Measuring, modelling and optimising an embedded rail track. Appl. Acoust. 2017, 116, 70–81. [Google Scholar] [CrossRef]
- Sañudo, R.; Jardí, I.; Martínez, J.-C.; Sánchez, F.-J.; Miranda, M.; Alonso, B.; dell’Olio, L.; Moura, J.-L. Monitoring Track Transition Zones in Railways. Sensors 2022, 22, 76. [Google Scholar] [CrossRef]
- Ramos, A.; Correia, A.G.; Indraratna, B.; Ngo, T.; Calçada, R.; Costa, P.A. Mechanistic-empirical permanent deformation models: Laboratory testing, modelling and ranking. Transp. Geotech. 2020, 23, 100326. [Google Scholar] [CrossRef] [Green Version]
- Belding, M.; Enshaeian, A.; Rizzo, P. Vibration-Based Approach to Measure Rail Stress: Modeling and First Field Test. Sensors 2022, 22, 7447. [Google Scholar] [CrossRef]
- Moliner, E.; Martínez-Rodrigo, M.D.; Galvín, P.; Chordà-Monsonís, J.; Romero, A. On the vertical coupling effect of ballasted tracks in multi–span simply–supported railway bridges under operating conditions. Struct. Infrastruct. Eng. 2022. [Google Scholar] [CrossRef]
- Jarillo, J.M.; Moreno, J.; Alfi, S.; Barcet, S.; Bouvet, P.; Bruni, S.; Cervello, S.; Costa, B.; Licciardello, R. Novel technology concepts and architecture for on-board condition-based monitoring of railway running gear: The RUN2Rail vision. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2021, 235, 616–630. [Google Scholar] [CrossRef]
- Arena, M.; Foiadelli, F.; Acquaro, G.; Gentile, M. Functional safety of railway systems. In Proceedings of the 2015 AEIT International Annual Conference (AEIT), Naples, Italy, 14–16 October 2015. [Google Scholar] [CrossRef]
- Hendrix, B.; Lewis, T.; Emery, M.; Rachele, B. Model Based Functional Safety—How Functional Is It? J. Syst. Saf. 2022, 57, 32–38. [Google Scholar] [CrossRef]
- Liu, J.; Dai, X.; Guo, Z.; Wang, Y. Quantitative safety assessment method based on risk in railway system. China Railw. Sci. 2009, 29, 60–63. [Google Scholar]
- Sasidharan, M.; Torbaghan, M.E. Risk-informed sustainable asset management of railway tracks. Infrastruct. Asset Manag. 2021, 8, 25–35. [Google Scholar] [CrossRef]
- Eidsvig, U.; Santamaría, M.; Galvão, N.; Tanasic, N.; Piciullo, L.; Hajdin, R.; Nadim, F.; Sousa, H.S.; Matos, J. Risk Assessment of Terrestrial Transportation Infrastructures Exposed to Extreme Events. Infrastructures 2021, 6, 163. [Google Scholar] [CrossRef]
- Shtompel, A.M.; Kondratenko, O.P.; Bratchenko, O.V.; Pashchenko, V.V.; Baulin, D.S. Dynamic impact on the construction of the railway track and on the deformability of the basement. IOP Conf. Ser. Mater. Sci. Eng. 2019, 708, 012029. [Google Scholar] [CrossRef]
- Jin, Q.; Thompson, D.J.; Lurcock, D.E.J.; Toward, M.G.R.; Ntotsios, E. A 2.5D finite element and boundary element model for the ground vibration from trains in tunnels and validation using measurement data. J. Sound Vib. 2017, 422, 373–389. [Google Scholar] [CrossRef] [Green Version]
- Litherland, J.; Andrews, J. A reliability study of railway switch and crossing components. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2022, 1–13. [Google Scholar] [CrossRef]
- Bondarenko, I.; Severino, A.; Olayode, I.O.; Campisi, T.; Neduzha, L. Dynamic Sustainable Processes Simulation to Study Transport Object Efficiency. Infrastructures 2022, 7, 124. [Google Scholar] [CrossRef]
- Sasidharan, M.; Burrow, M.P.N.; Ghataora, G.S.; Marathu, R. A risk-informed decision support tool for the strategic asset management of railway track infrastructure. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2021, 236, 183–197. [Google Scholar] [CrossRef]
- Kumar, N.; Kossmann, C.; Scheriau, S.; Six, K. An efficient physical-based method for predicting the long-term evolution of vertical railway track geometries. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2022, 236, 447–465. [Google Scholar] [CrossRef]
- Jang, S.Y. Analysis of Life Cycle Costs of Railway Track: A Case Study for Ballasted and Concrete Track for High-Speed Railway. J. Korea Inst. Struct. Maint. Insp. 2016, 20, 110–121. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, S.; Zhai, W. An advanced train-slab track spatially coupled dynamics model: Theoretical methodologies and numerical applications. J. Sound Vib. 2021, 501, 116059. [Google Scholar] [CrossRef]
- Garmabaki, A.H.S.; Thaduri, A.; Famurewa, S.; Kumar, U. Adapting Railway Maintenance to Climate Change. Sustainability 2021, 13, 13856. [Google Scholar] [CrossRef]
- Blackwood, L.; Renaud, F.G.; Gillespie, S. Nature-based solutions as climate change adaptation measures for rail infrastructure. Nat.-Based Solut. 2022, 2, 100013. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Z.; Yang, C.; Zhang, W.; Liu, X. Reduced-order modeling of train-curved-slab-track dynamics with the effects of fastening failures. Acta Mech. Sin. 2022, 38, 522039. [Google Scholar] [CrossRef]
- Erhova, N.; Bondarenko, I.; Shibko, O.; Velmagina, N. Development of the procedure for verifying the feasibility of designing an active suspension system for transport carriages. East.-Eur. J. Enterp. Technol. 2018, 3, 53–63. [Google Scholar] [CrossRef]
- Bondarenko, I.; Keršys, R.; Neduzha, L. Analysis of problem related to experimental data processing in the study of the crew’s influence on the track. In Proceedings of the 26th International Conference Transport Means, Kaunas, Lithuania, 5–7 October 2022; pp. 663–668. [Google Scholar]
- El-sayed, H.M.; Fayed, M.N.; Riad, H.S.; Zohny, H.N. A review of the structural performance of prestressed monoblock concrete sleepers in ballasted railway tracks. Eng. Fail. Anal. 2022, 140, 106522. [Google Scholar] [CrossRef]
- Izvolt, L.; Kardos, J. Influence of Parameters of Railway Track Construction on Vertical Dynamic Interaction Vehicle/Track. Komunikacie 2011, 13, 63–70. [Google Scholar] [CrossRef]
- Zeng, Z.; Hu, J.; Guo, W.; Huang, X.; Li, P.; Wang, W.; Tian, C.; Shuaibu, A. Indoor simulation test research on cumulative longitudinal displacement of rail based on force and displacement sensors data collection. Sci. Prog. 2021, 104, 368504211023287. [Google Scholar] [CrossRef]
- Blanco, B.; Alonso, A.; Kari, L.; Gil-Negrete, N.; Giménez, J.G. Distributed support modelling for vertical track dynamic analysis. Veh. Syst. Dyn. 2018, 56, 529–552. [Google Scholar] [CrossRef]
- Han, S.H.; Hwang, S.H.; Kim, H.J.; Cho, S.J.; Lim, N.H. Numerical study on the characteristics of temperature distribution in continuous welded rail by solar radiation and rail orientation. J. Mater. Sci. Technol. 2020, 34, 4819–4829. [Google Scholar] [CrossRef]
- Sanchis, I.V.; Franco, R.I.; Zuriaga, P.S.; Fernández, P.M. Risk of increasing temperature due to climate change on high-speed rail network in Spain. Transp. Res. Procedia 2020, 45, 5–12. [Google Scholar] [CrossRef]
- Hong, S.U.; Kim, H.U.; Lim, N.H.; Kim, K.H.; Kim, H.; Cho, S.J. A Rail-Temperature-Prediction Model Considering Meteorological Conditions and the Position of the Sun. Int. J. Precis. Eng. Manuf. 2019, 20, 337–346. [Google Scholar] [CrossRef]
- Mulholland, E.; Feyen, L. Increased risk of extreme heat to European roads and railways with global warming. Clim. Risk Manag. 2021, 34, 100365. [Google Scholar] [CrossRef]
- Aggestam, E.; Nielsen, J.C.O.; Bolmsvik, R. Simulation of vertical dynamic vehicle–track interaction using a two-dimensional slab track model. Veh. Syst. Dyn. 2018, 56, 1633–1657. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Deng, X.; Wei, Z.; Dollevoet, R.; Li, Z. Comparisons between beam and continuum models for modelling wheel-rail impact at a singular rail surface defect. Int. J. Mech. Sci. 2021, 198, 106400. [Google Scholar] [CrossRef]
- Kalivoda, J.; Neduzha, L. Running Dynamics of Rail Vehicles. Energies 2022, 15, 5843. [Google Scholar] [CrossRef]
- Rabbi, M.F.; Bruzek, R.; Sussmann, T.R.; Thompson, H.B.; Mishra, D. A study of vertical tie reaction forces in ballasted railroad tracks through field instrumentation and numerical modeling. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2022. [Google Scholar] [CrossRef]
- Chen, M.; Sun, Y.; Zhu, S. Dynamic performance comparison of different types of ballastless tracks using vehicle-track-subgrade coupled dynamics model. Eng. Struct. 2021, 249, 113390. [Google Scholar] [CrossRef]
- Bragança, C.; Neto, J.; Pinto, N.; Montenegro, P.A.; Ribeiro, D.; Carvalho, H.; Calçada, R. Calibration and validation of a freight wagon dynamic model in operating conditions based on limited experimental data. Veh. Syst. Dyn. 2022, 60, 3024–3050. [Google Scholar] [CrossRef]
- Matsumoto, A.; Sato, Y.; Ohno, H.; Shimizu, M.; Kurihara, J.; Tomeoka, M.; Saitou, T.; Michitsuji, Y.; Tanimoto, M.; Sato, Y.; et al. Continuous observation of wheel/rail contact forces in curved track and theoretical considerations. Veh. Syst. Dyn. 2012, 50 (Suppl. 1), 349–364. [Google Scholar] [CrossRef]
- Piloto, P.A.; Frigeri, A.V.; Minhoto, M.; Silva, D.A. Validation of a rail temperature model with experimental measurements. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2022, 236, 1104–1113. [Google Scholar] [CrossRef]
- Hong, S.; Park, C.; Cho, S. A Rail-Temperature-Prediction Model Based on Machine Learning: Warning of Train-Speed Restrictions Using Weather Forecasting. Sensors 2021, 21, 4606. [Google Scholar] [CrossRef]
- Magalhães, K.M.M.; Brasil, R.M.L.R.F.; Wahrhaftig, A.M.; Siqueira, G.H.; Bondarenko, I.; Neduzha, L. Influence of Atmospheric Humidity on the Critical Buckling Load of Reinforced Concrete Columns. Int. J. Struct. Stab. Dyn. 2022, 22, 2250011. [Google Scholar] [CrossRef]
- Hall, L. Simulations and analyses of train-induced ground vibrations in finite element models. Soil Dyn. Earthq. Eng. 2003, 23, 403–413. [Google Scholar] [CrossRef]
- Connolly, D.; Giannopoulos, A.; Forde, M.C. Numerical modelling of ground borne vibrations from high speed rail lines on embankments. Soil Dyn. Earthq. Eng. 2013, 46, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Bondarenko, I. Development of algorithm for calculating dynamic processes of railroad track deformability work. East.-Eur. J. Enterp. Technol. 2016, 6–7, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Bondarenko, I.; Lunys, O.; Neduzha, L.; Keršys, R. Dynamic Track Irregularities Modeling when Studying Rolling Stock Dynamics. In Proceedings of the 23rd International Conference Transport Means, Palanga, Lithuania, 2–4 October 2019; pp. 1014–1019. [Google Scholar]
- Celiński, I.; Burdzik, R.; Młyńczak, J.; Kłaczyński, M. Research on the Applicability of Vibration Signals for Real-Time Train and Track Condition Monitoring. Sensors 2022, 22, 2368. [Google Scholar] [CrossRef]
- Ulianov, C.; Hyde, P.; Shaltout, R. Railway Applications for Monitoring and Tracking Systems. In Sustainable Rail Transport. Lecture Notes in Mobility; Marinov, M., Ed.; Springer: Cham, Switzerland, 2018; pp. 77–91. [Google Scholar] [CrossRef]
- Bondarenko, I.; Keršys, R.; Neduzha, L. Studying of Dynamic Parameters Impulse Impact of the Vehicle Taking into Account the Track Stiffness Variations. In Proceedings of the 25th International Conference Transport Means, Kaunas, Lithuania, 6–8 October 2021; pp. 684–689. [Google Scholar]
- Bondarenko, I.; Keršys, A.; Neduzha, L. Assessment of the Railway Track Deformability Behaviour as the Parameter of Operational Availability Function. In Proceedings of the 25th International Conference Transport Means, Kaunas, Lithuania, 6–8 October 2021; pp. 644–648. [Google Scholar]
- Rules for Calculating the Railway Track for Strength and Stability; No. 960-Ц3; Ukrainian Railways: Kyiv, Ukraine, 2004; 170p.
- Praticò, F.; Giunta, M. Proposal of a Key Performance Indicator for Railway Track Based on LCC and RAMS Analyses. J. Constr. Eng. Manag. 2018, 144. [Google Scholar] [CrossRef]
- Djordjević, B.; Mane, A.S.; Krmac, E. Analysis of dependency and importance of key indicators for railway sustainability monitoring: A new integrated approach with DEA and Pearson correlation. Res. Transp. Bus. Manag. 2021, 41, 100650. [Google Scholar] [CrossRef]
- Xin, X.; Ren, Z. The Effect of Interface Damage between Slab and Mortar Layer on the Dynamic Performances of Vehicle and Track Systems under the High Frequency Train Loads. Appl. Sci. 2022, 12, 4555. [Google Scholar] [CrossRef]
- El Moueddeb, M.; Louf, F.; Boucard, P.-A.; Dadié, F.; Saussine, G.; Sorrentino, D. An Efficient Numerical Model to Predict the Mechanical Response of a Railway Track in the Low-Frequency Range. Vibration 2022, 5, 19. [Google Scholar] [CrossRef]
- Punetha, P.; Nimbalkar, S.; Khabbaz, H. Simplified geotechnical rheological model for simulating viscoelasto-plastic response of ballasted railway substructure. Int. J. Numer. Anal. Methods Geomech. 2021, 45, 2019–2047. [Google Scholar] [CrossRef]
- Zhang, Q.; Leng, W.; Dong, J.; Xu, F. Dynamic Response Characteristics of Railway Subgrade Using a Newly-Developed Prestressed Reinforcement Structure: Case Study of a Model Test. Materials 2022, 15, 6651. [Google Scholar] [CrossRef]
- Hurtado-Hurtado, G.; Morales-Velazquez, L.; Valtierra-Rodríguez, M.; Otremba, F.; Jáuregui-Correa, J.C. Frequency Analysis of the Railway Track under Loads Caused by the Hunting Phenomenon. Mathematics 2022, 10, 2286. [Google Scholar] [CrossRef]
- Liu, J.; Liu, G.; Gao, T.; Wang, P.; Xiao, J.; Hu, C. Settlement and Stress Distribution Characteristics of a Railway Ballast Layer under a Dynamic Load. In Proceedings of the Transportation Research Board 100th Annual Meeting 2021, Washington, DC, USA, 5–9 January 2021; Available online: http://worldcat.org/issn/03611981 (accessed on 7 November 2022).
- Germonpré, M.; Degrande, G.; Lombaert, G. Periodic track model for the prediction of railway induced vibration due to parametric excitation. Transp. Geotech. 2018, 17, 98–108. [Google Scholar] [CrossRef]
- Wang, H.; Markine, V.; Liu, X. Experimental analysis of railway track settlement in transition zones. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2018, 232, 1774–1789. [Google Scholar] [CrossRef] [PubMed]
- Trinh, H.; Haas, N.; Li, Y.; Otto, C.; Pankanti, S. Enhanced rail component detection and consolidation for rail track inspection. In Proceedings of the 2012 IEEE Workshop on the Applications of Computer Vision (WACV), Breckenridge, CO, USA, 9–11 January 2012; pp. 289–295. [Google Scholar] [CrossRef] [Green Version]
- Kouroussis, G.; Verlinden, O.; Conti, C. Free field vibrations caused by high-speed lines: Measurement and time domain simulation. Soil Dyn. Earthq. Eng. 2011, 31, 692–707. [Google Scholar] [CrossRef]
- Li, T.; Su, Q.; Kaewunruen, S. Influences of piles on the ground vibration considering the train-track-soil dynamic interactions. Comput. Geotech. 2020, 120, 103455. [Google Scholar] [CrossRef]
- Wang, L.; Wang, P.; Wei, K.; Dollevoet, R.; Li, Z. Ground vibration induced by high speed trains on an embankment with pile-board foundation: Modelling and validation with in situ tests. Transp. Geotech. 2022, 34, 100734. [Google Scholar] [CrossRef]
Element | Density, kg/m3 | Poisson’s Coefficient | Young’s Module E, MPa | Cl, m/s 1 | Ct, m/s 2 |
---|---|---|---|---|---|
Rail | 7830 | 0.24 | 2.1 × 105 | 5622 | 3288 |
Pad | 918 | 0.3 | 100 | 382 | 204 |
Sleeper | 2200 | 0.1 | 36,000 | 4090 | 2727 |
Ballast | 1900 | 0.2 | 100 | 241 | 148 |
Ground base | 170 | 0.3 | 30 | 487 | 260 |
Force Ratios at Different Speeds Fi/F = 225 kN and V = 80 km/h | |||||||||
F = 225 kN | F = 294 kN | F = 450 kN | |||||||
V = 50 km/h | V = 80 km/h | V = 110 km/h | V = 50 km/h | V = 80 km/h | V = 110 km/h | V = 50 km/h | V = 80 km/h | V = 110 km/h | |
0.896 | 1.000 | 1.110 | 1.205 | 1.341 | 1.491 | 1.838 | 2.054 | 2.279 | |
Deformability work Ai/A = 225 kN and V = 80 km/h | |||||||||
Object | F = 225 kN | F = 294 kN | F = 450 kN | ||||||
V = 50 km/h | V = 80 km/h | V = 110 km/h | V = 50 km/h | V = 80 km/h | V = 110 km/h | V = 50 km/h | V = 80 km/h | V = 110 km/h | |
Track structure | 1.212 | 1.000 | 0.770 | 2.855 | 2.371 | 2.021 | 9.401 | 7.522 | 7.081 |
Pad | 0.873 | 1.000 | 1.205 | 1.791 | 2.024 | 2.422 | 5.048 | 5.692 | 6.597 |
Sleeper | 1.244 | 1.000 | 0.907 | 2.760 | 2.188 | 2.018 | 8.539 | 6.799 | 6.306 |
Ballast | 1.199 | 1.000 | 0.706 | 2.874 | 2.513 | 2.014 | 9.776 | 8.249 | 7.641 |
Ground base | 1.246 | 1.000 | 0.932 | 2.933 | 2.200 | 2.038 | 9.041 | 6.847 | 6.364 |
Intensity of use Ii/I = 225 kN and V = 80 km/h | |||||||||
Object | F = 225 kN | F = 294 kN | F = 450 kN | ||||||
V = 50 km/h | V = 80 km/h | V = 110 km/h | V = 50 km/h | V = 80 km/h | V = 110 km/h | V = 50 km/h | V = 80 km/h | V = 110 km/h | |
Track structure | 0.786 | 1.000 | 1.022 | 1.677 | 2.150 | 2.432 | 4.796 | 5.918 | 7.394 |
Pad | 0.566 | 1.000 | 1.601 | 1.052 | 1.836 | 2.915 | 2.575 | 4.478 | 6.889 |
Sleeper | 0.807 | 1.000 | 1.205 | 1.621 | 1.984 | 2.429 | 4.356 | 5.349 | 6.585 |
Ballast | 0.777 | 1.000 | 0.938 | 1.688 | 2.279 | 2.424 | 4.988 | 6.490 | 7.979 |
Ground base | 0.808 | 1.000 | 1.238 | 1.723 | 1.995 | 2.453 | 4.613 | 5.387 | 6.646 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bondarenko, I.; Campisi, T.; Tesoriere, G.; Neduzha, L. Using Detailing Concept to Assess Railway Functional Safety. Sustainability 2023, 15, 18. https://doi.org/10.3390/su15010018
Bondarenko I, Campisi T, Tesoriere G, Neduzha L. Using Detailing Concept to Assess Railway Functional Safety. Sustainability. 2023; 15(1):18. https://doi.org/10.3390/su15010018
Chicago/Turabian StyleBondarenko, Iryna, Tiziana Campisi, Giovanni Tesoriere, and Larysa Neduzha. 2023. "Using Detailing Concept to Assess Railway Functional Safety" Sustainability 15, no. 1: 18. https://doi.org/10.3390/su15010018