Sustainable Prebiotic Dessert with Sericin Produced by Bombyx mori Worms
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thaipitakwong, T.; Numhom, S.; Aramwit, P. Mulberry leaves and their potential effects against cardiometabolic risks: A review of chemical compositions, biological properties and clinical efficacy. Pharm. Biol. 2018, 56, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Kunz, R.I.; Brancalhão, R.M.C.; Ribeiro, L.F.C.; Natali, M.R.M. Silkworm Sericin: Properties and Biomedical Applications. BioMed Res. Int. 2016, 2016, 8175701. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Shin, H.S.; Campos, E.V.R.; Fraceto, L.F.; Rodriguez-Torres, M.D.P.; Mariano, K.C.F.; Fernández-Luqueño, F.; Grillo, R.; Patra, J.K. Sericin based nanoformulations: A comprehensive review on molecular mechanisms of interaction with organisms to biological applications. J. Nanobiotechnol. 2021, 19, 30. [Google Scholar] [CrossRef] [PubMed]
- Song, I.B.; Han, H.J.; Kwon, J. Immune-enhancing effects of gamma-irradiated sericin. Food Sci. Biotechnol. 2020, 29, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Yang, S.; Zhao, X.; Liu, X.; Si, L.; Wei, M.; Liu, L.; Cheng, L.; Qiao, Y.; Chen, Z. Sericin inhibits MDA-MB-468 cell proliferation via the PI3K/Akt pathway in triple-negative breast cancer. Mol. Med. Rep. 2021, 23, 140. [Google Scholar] [CrossRef] [PubMed]
- Kunz, R.I.; Capelassi, A.N.; Alegre-Maller, A.C.P.; Bonfleur, M.L.; Ribeiro, L.F.C.; Costa, R.M.; Natali, M.R.M. Sericin as treatment of obesity: Morphophysiological effects in obese mice fed with high-fat diet. Einstein (Sao Paulo) 2019, 18, 1–9. [Google Scholar] [CrossRef]
- Heng-Da Wang, H.D.; Zhong, Z.H.; Weng, Y.J.; Wei, Z.Z.; Zhang, Y.Q. Degraded Sericin Significantly Regulates Blood Glucose Levels and Improves Impaired Liver Function in T2D Rats by Reducing Oxidative Stress. Biomolecules 2021, 11, 1255. [Google Scholar] [CrossRef]
- Banafshi, O.; Nasseri, S.; Farhadi, L.; Alasvand, M.; Khadem-Erfan, M.B.; Hosseini, J.; Miraki, S.; Fathi, F. The effects of supplemented sericin on in vitro maturation and preimplantation development of mouse embryos: An experimental study. Int. J. Reprod. Biomed. 2021, 19, 921–928. [Google Scholar] [CrossRef]
- Liu, J.; Deng, Y.; Fu, D.; Yuan, Y.; Li, Q.; Shi, L.; Wang, G.; Wang, Z.; Wang, L. Sericin microparticles enveloped with metal-organic networks as a pulmonary targeting delivery system for intra-tracheally treating metastatic lung cancer. Bioact. Mater. 2020, 6, 273–284. [Google Scholar] [CrossRef]
- Aznar-Cervantes, S.D.; Santesteban, B.M.; Cenis, J.L. Products of Sericulture and Their Hypoglycemic Action Evaluated by Using the Silkworm, Bombyx mori (Lepidoptera: Bombycidae), as a Model. Insects 2021, 12, 1059. [Google Scholar] [CrossRef]
- Liu, D.; Chen, C.; Wang, D.; Chen, Z.; Song, C. Effect of sericin on the p38MAPK signaling pathway and NLRP3 inflammasome in the kidney of type 2 diabetic rats. Exp. Ther. Med. 2020, 20, 267. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.H.; Chen, Z.Y.; Chen, H.; Lin, T.; Zhao, M.L.; Liu, H.; Yu, J.; Hu, Y.F.; Li, G.X. Sericin regulates proliferation of human gastric cancer MKN45 cells through autophagic pathway. Nan Fang Yi Ke Da Xue Xue Bao 2018, 38, 148–154. [Google Scholar] [PubMed]
- Rujimongkon, K.; Ampawong, S.; Reamtong, O.; Buaban, T.; Aramwit, P. The therapeutic effects of Bombyx mori sericin on rat skin psoriasis through modulated epidermal immunity and attenuated cell proliferation. J. Tradit. Complement. Med. 2021, 11, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Deenonpoe, R.; Prayong, P.; Thippamom, N.; Meephansan, J.; Na-Bangchang, K. Anti-inflammatory effect of naringin and sericin combination on human peripheral blood mononuclear cells (hPBMCs) from patient with psoriasis. BMC Complement. Alte. Med. 2019, 19, 168. [Google Scholar] [CrossRef]
- Qi, C.; Deng, Y.; Xu, L.; Yang, C.; Zhu, Y.; Wang, G.; Wang, Z.; Wang, L. A sericin/graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone. Theranostics 2020, 10, 741–756. [Google Scholar] [CrossRef]
- Noosak, C.; Jantorn, P.; Meesane, J.; Voravuthikunchai, S.; Saeloh, D. Dual-functional bioactive silk sericin for osteoblast responses and osteomyelitis treatment. PLoS ONE 2022, 17, e0264795. [Google Scholar] [CrossRef]
- Sasaki, M.; Yamada, H.; Kato, N. A resistant protein, sericin improves atropine-induced constipation in rats. Food Sci. Technol. Res. 2000, 6, 280–283. [Google Scholar] [CrossRef]
- Matran, I.M.; Boțan, E. Aplicabity of sericulture in the food industry and medicine. Lucrări Științifice. Seria Agronomie 2017, 60, 183–186. [Google Scholar]
- Hideyuki, Y.; Yorikiyo, F.; Masakazu, N. Water for Food and Drink. JP2000184868, 4 July 2000. [Google Scholar]
- Wen, Z. Sericin Health Food. CN107080260, 22 August 2017. [Google Scholar]
- Lichen, W. Preparation Method of Silkworm Sericin Drinks and Application. CN103126028, 5 June 2013. [Google Scholar]
- Takashi, H.; Kenichi, Y.; Shuichi, M.; Kenji, A.; Thomas, H. Bitter and Astringent Taste Inhibitor for Drink or Food. JP2012217442, 12 November 2012. [Google Scholar]
- Shinichi, M.; Yoshihiro, K. Hypotensive Action-Having Composition. JP2004269395, 30 September 2004. [Google Scholar]
- Jung, I.M.; Yeong, J.U.; Gil, L.G.; Lee, Y.U.; Ho, L.S.; Yeo, L.S. Manufacturing Method of Soysauce Using Silk Amino Acid Solution. KR1020010018963, 15 March 2001. [Google Scholar]
- Xu, F.; Xu, W.; Chen, J.; Zhang, J. Rose-Flavored Wine and Preparation Method Thereof. CN105524762, 27 April 2016. [Google Scholar]
- Chen, Z. Low-Sugar Probiotics Dextrose Candy and Preparation Method Thereof. CN103918853, 16 July 2014. [Google Scholar]
- Kim, S.S.; Kwak, E.J.; Lee, H.M.; Lee, J.E.; Lim, S.I. Jelly or Beverage Composition Containing Extracted from Silworm Cocoon as Effective Ingredient. KR1020050015178, 21 February 2005. [Google Scholar]
- Matran, I.M.; Dinu, M.G. Composition and Process for Preparing Flour Assortments from Various Cereals and Functional Products with Sericin Addition as Non-Conventional Ingredient. RO133023, 30 January 2019. [Google Scholar]
- Guvernul României. Ordin nr. 1 din 10 ianuarie 2011 privind modificarea şi completarea Ordinului ministrului agriculturii, pădurilor, apelor şi mediului, al ministrului sănătăţii şi al preşedintelui Autorităţii Naţionale pentru Protecţia Consumatorilor nr. 510/768/319/2003 pentru aprobarea Normelor cu privire la natura, compoziţia, fabricarea şi etichetarea sucurilor din fructe şi ale altor produse similare destinate consumului uman. Monit. Of. 2011, 2011, 53. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/125468 (accessed on 1 September 2022).
- Nyankovska, O.S.; Nyankovskyy, S.L.; Yatsula, M.S.; Horodylovska, M.I. The importance of prebiotics in the regulation of metabolic syndrome disorders. Ukr. Ther. J. 2021, 1, 64–70. [Google Scholar]
- Turati, F.; Concina, F.; Rossi, M.; Fiori, F.; Parpinel, M.; Taborelli, M.; Giacosa, A.; Crispo, A.; Pagan, E.; Rosato, V.; et al. Association of prebiotic fber intake with colorectal cancer risk: The PrebiotiCa study. Eur. J. Nutr. 2022, 1–10. [Google Scholar] [CrossRef]
- Comisia Europeană. Regulamentul (CE) nr. 1333/2008 al Parlamentului European și al Consiliului privind aditivii alimentari. Off. J. 2008, L354, 1–342. [Google Scholar]
- Comisia Europeană. Decizia de punere în aplicare a Comisiei din 22 noiembrie 2012 de autorizare a introducerii pe piață a lactoferinei bovine ca ingredient alimentar nou în temeiul Regulamentului (CE) nr. 258/97 al Parlamentului European și al Consiliului (Friesland Campina). Off. J. 2012, L327, 52–54. [Google Scholar]
- Hughes, R.L.; Alvarado, D.A.; Swanson, K.S.; Holscher, H.D. The Prebiotic Potential of Inulin-Type Fructans: A Systematic Review. Adv. Nutr. 2022, 13, 492–529. [Google Scholar] [CrossRef] [PubMed]
- Beisner, J.; Rosa, L.F.; Kaden-Volynets, V.; Stolzer, I.; Günther, C.; Bischoff, S.C. Prebiotic Inulin and Sodium Butyrate Attenuate Obesity-Induced Intestinal Barrier Dysfunction by Induction of Antimicrobial Peptides. Front. Immunol. 2021, 12, 1975. [Google Scholar] [CrossRef]
- Hoffman, J.B.; Petriello, M.C.; Morris, A.J.; Mottaleb, M.A.; Sui, Y.; Zhou, C.; Deng, P.; Wang, C.; Hennig, B. Prebiotic inulin consumption reduces dioxin-like PCB 126-mediated hepatotoxicity and gut dysbiosis in hyperlipidemic Ldlr deficient mice. Environ. Pollut. 2020, 261, 114183. [Google Scholar] [CrossRef]
- Mistry, R.H.; Gu, F.G.; Schols, H.A.; Verkade, H.J.; Tietge, U.J.F. Effect of the prebiotic fiber inulin on cholesterol metabolism in wildtype mice. Sci. Rep. 2018, 8, 13238. [Google Scholar] [CrossRef]
- Akram, W.; Garud, N.; Joshi, R. Role of inulin as prebiotics on inflammatory bowel disease. Drug Discov. Ther. 2019, 13, 1–8. [Google Scholar] [CrossRef]
- Birkeland, E.; Gharagozlian, S.; Birkeland, K.I.; Valeur, J.; Måge, I.; Rud, I.; Aas, A.M. Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: A randomised controlled trial. Eur. J. Nutr. 2020, 59, 3325–3338. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, Y.; Huang, J.; Yang, Y.; Yang, Q.; Hu, H. Efficacy of inulin supplementation in improving insulin control, HbA1c and HOMA-IR in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. J. Clin. Biochem. Nutr. 2020, 66, 176–183. [Google Scholar] [CrossRef]
- Peteliuk, V.; Rybchuk, L.; Bayliak, M.; Storey, K.B.; Lushchak, O. Natural sweetener Stevia rebaudiana: Functionalities, health benefits and potential risks. EXCLI J. 2021, 20, 1412–1430. [Google Scholar] [PubMed]
- Becker, S.L.; Chiang, E.; Plantinga, A.; Carey, H.V.; Suen, G.; Swoap, S.J. Effect of stevia on the gut microbiota and glucose tolerance in a murine model of diet-induced obesity. FEMS Microbiol. Ecol. 2020, 96, fiaa079. [Google Scholar] [CrossRef] [PubMed]
- Farhat, G.; Berset, V.; Moore, L. Effects of Stevia Extract on Postprandial Glucose Response, Satiety and Energy Intake: A Three-Arm Crossover Trial. Nutrients 2019, 11, 3036. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.; Cutone, A.; Lepanto, M.S.; Paesano, R.; Valenti, P. Lactoferrin: A Natural Glycoprotein Involved in Iron and Inflammatory Homeostasis. Int. J. Mol. Sci. 2017, 18, 1985. [Google Scholar] [CrossRef] [PubMed]
- Presti, S.; Manti, S.; Parisi, G.F.; Maria Papale, M.; Barbagallo, I.A.; Volti, G.L.; Leonardi, S. Lactoferrin: Cytokine Modulation and Application in Clinical Practice. J. Clin. Med. 2021, 10, 5482. [Google Scholar] [CrossRef] [PubMed]
- Artym, J.; Zimecki, M. Antimicrobial and Prebiotic Activity of Lactoferrin in the Female Reproductive Tract: A Comprehensive Review. Biomedicines 2021, 9, 1940. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, W.W.; Sun, J.H.; Yang, H.X.; Xu, G.R.; Zhang, Y.; Song, Q.H.; Zhang, C.; Liu, W.Z.; Liu, X.C.; et al. Modified citrus pectin prevents isoproterenol-induced cardiac hypertrophy associated with p38 signalling and TLR4/JAK/STAT3 pathway. Biomed. Pharmacother. 2021, 143, 112178. [Google Scholar] [CrossRef]
- Sun, Y.; Guan, Y.; Khoo, H.E.; Li, X. In vitro Assessment of Chemical and Pre-biotic Properties of Carboxymethylated Polysaccharides From Passiflora edulis Peel, Xylan, and Citrus Pectin. Front. Nutr. 2021, 8, 778563. [Google Scholar] [CrossRef]
- Lau, E.S.; Liu, E.; Paniagua, S.M.; Sarma, A.A.; Zampierollo, G.; López, B.; Díez, J.; J Wang, T.J.; Ho, J.E. Galectin-3 Inhibition With Modified Citrus Pectin in Hypertension. JACC Basic Transl. Sci. 2021, 6, 12–21. [Google Scholar] [CrossRef]
- Ghosh, S.; Rao, R.S.; Nambiar, S.K.; Haragannavar, V.C.; Augustine, D.; Sowmya, S.V. Sericin, a dietary additive: Mini review. J. Med. Radiol. Pathol. Surg. 2019, 6, 4–8. [Google Scholar] [CrossRef]
The Raw Material | Identification Data | How to Get It |
---|---|---|
Sericin | Batch: S1911251 | From the supplier 1 |
Bovine lactoferrin | Batch: 107CLXP | From the supplier 2 |
Chicory inulin 3 | Batch: RHBGD1BGD1 | Purchased from local trade 4 |
Citrus pectin | Batch: 5999884818779 | Purchased from local trade 4 |
Stevia | Batch: 8 | Purchased from local trade 5 |
Apple juice (depectinized) | Batch: Bm 095-22 | Purchased from local trade 6 |
Agar—agar | Batch: 210040401 | Purchased from local trade 7 |
Lemon | - | Purchased from local trade |
The Raw Material | Sensory Analyses | Physico–Chemical Analyses |
---|---|---|
Sericin (10% 1 solution, 20 °C) | Appearance: Fine powder 2 Color: Light yellow Smell/Taste: Pleasant, specific | Brix: 11.7 pH: 4.45 |
Sericin (2% 3 solution, 20 °C) | Idem | Brix: 2.43 pH: 5.83 |
Lactoferrin (2% solution, 20 °C) | Appearance: Fine powder Color: Light pink; Smell/Taste: Pleasant, specific | Brix: 2.43 pH: 6.23 |
Chicory inulin (5% solution, 20 °C) | Appearance: Fine powder White color Smell/Taste: Pleasant, specific | Brix: 4.73 pH: 6.61 |
Pectin (2% solution, 20 °C) | Appearance: Fine powder Color: Yellow-white Smell/Taste: Pleasant, specific | Brix: 1.9 pH: 4.49 |
Agar—agar (1.5% solution, 20 °C) | Appearance: Fine powder Color: Yellow-white Smell/Taste: Pleasant, specific | Brix: 0.0 pH: 6.46 |
Stevia (1% solution, 20 °C) | Appearance: Crystals Color: Colorless Smell/Taste: Pleasant, specific | Brix: 0.9 pH: 6.48 |
Depectinized apple juice (100% juice, 20 °C) | Appearance: Homogeneous liquid Color: Brown Smell/Taste: Pleasant, specific | Brix: 14.26 pH: 3.68 |
Recipe 11 | Recipe 2 1 | Recipe 3 |
---|---|---|
Pectin 5 g Bovine lactoferrin 4 2 g | Agar—agar 2 1.75 g Bovine lactoferrin 1 g | Pectin 5 g Bovine lactoferrin 2 g |
Sericin 1 g Stevia 1 g Inulin 15 g | Sericin 1 g Stevia 1 g Inulin 15 g | Sericin 1 g Stevia 1 g Inulin 15 g |
Total weight: 24 g | Total weight: 19.75 | Calcium lactate 3 2 g Total weight: 26 g |
Recipe 4 | Recipe 5 | Recipe 6 |
Pectin 5 g Bovine lactoferrin 5 3 g | - | - |
Sericin 1 g Stevia 1 g Inulin 15 g | - | - |
Total weight: 24 g | - | - |
Recipe 1 | Recipe 4 |
---|---|
Brix: 25.8 | Brix: 26.2 |
pH:5.55 | pH:5.68 |
Recipe 1 1 | Recipe 4 2 |
---|---|
Energy value: 615 KJ/147 Kcal | Energy value: 757 KJ/181 Kcal |
Fats: 0.39 | Fats: 0.82 |
of which saturated fatty acids: 0.39 | of which saturated fatty acids: 0.82 |
Carbohydrates: 33.28 | Carbohydrates: 40.28 |
of which sugars: 24.32 | of which sugars: 29.32 |
Polyol: 0.98 | Polyol: 0.98 |
Proteins: 1 | Proteins: 1.15 |
Fiber: 14.5 | Fiber: 14.75 |
Salt: 0.375 | Salt: 0.375 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matran, I.M.; Matran, C.; Tarcea, M. Sustainable Prebiotic Dessert with Sericin Produced by Bombyx mori Worms. Sustainability 2023, 15, 110. https://doi.org/10.3390/su15010110
Matran IM, Matran C, Tarcea M. Sustainable Prebiotic Dessert with Sericin Produced by Bombyx mori Worms. Sustainability. 2023; 15(1):110. https://doi.org/10.3390/su15010110
Chicago/Turabian StyleMatran, Irina Mihaela, Cristian Matran, and Monica Tarcea. 2023. "Sustainable Prebiotic Dessert with Sericin Produced by Bombyx mori Worms" Sustainability 15, no. 1: 110. https://doi.org/10.3390/su15010110
APA StyleMatran, I. M., Matran, C., & Tarcea, M. (2023). Sustainable Prebiotic Dessert with Sericin Produced by Bombyx mori Worms. Sustainability, 15(1), 110. https://doi.org/10.3390/su15010110