Impacts of Energy Transition on Life Cycle Carbon Emission and Water Consumption in Japan’s Electric Sector
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Description
2.1.1. Input-Output Data
2.1.2. Direct Carbon Emission and Water Consumption Data
2.1.3. Scenario Data
2.2. Hybrid LCA Model
2.3. Kaya Identity
3. Results
3.1. Electricity Generation
3.2. Carbon Emission and Water Consumption
3.3. Kaya Identity Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bulkeley, H.; Betsill, M.M. Cities and Climate Change; Routledge: London, UK, 2013; ISBN 9780203077207. [Google Scholar]
- Nicholls, Z.; Meinshausen, M.; Lewis, J.; Corradi, M.R.; Dorheim, K.; Gasser, T.; Gieseke, R.; Hope, A.P.; Leach, N.J.; McBride, L.A.; et al. Reduced Complexity Model Intercomparison Project Phase 2: Synthesizing Earth System Knowledge for Probabilistic Climate Projections. Earth’s Future 2021, 9, e2020EF001900. [Google Scholar] [CrossRef] [PubMed]
- Caineng, Z.; Dongbo, H.; Chengye, J.; Bo, X.; Qun, Z.; Songqi, P. Connotation and pathway of world energy transition and its significance for carbon neutral. Acta Pet. Sin. 2021, 42, 233. [Google Scholar] [CrossRef]
- Höhne, N.; Gidden, M.J.; den Elzen, M.; Hans, F.; Fyson, C.; Geiges, A.; Jeffery, M.L.; Gonzales-Zuñiga, S.; Mooldijk, S.; Hare, W.; et al. Wave of net zero emission targets opens window to meeting the Paris Agreement. Nat. Clim. Chang. 2021, 11, 820–822. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Sun, M.; Wang, R.; Zheng, P. Exploring the environmental pressures in urban sectors: An energy-water-carbon nexus perspective. Appl. Energy 2018, 228, 2298–2307. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; ISBN 978-92-9169-143-2. [Google Scholar]
- Pašičko, R.; Branković, Č.; Šimić, Z. Assessment of climate change impacts on energy generation from renewable sources in Croatia. Renew. Energy 2012, 46, 224–231. [Google Scholar] [CrossRef]
- Perera, A.; Nik, V.M.; Scartezzini, J.-L. Impacts of extreme climate conditions due to climate change on the energy system design and operation. Energy Procedia 2019, 159, 358–363. [Google Scholar] [CrossRef]
- Schaeffer, R.; Szklo, A.S.; Pereira de Lucena, A.F.; Moreira Cesar Borba, B.S.; Pupo Nogueira, L.P.; Fleming, F.P.; Troccoli, A.; Harrison, M.; Boulahya, M.S. Energy sector vulnerability to climate change: A review. Energy 2012, 38, 1–12. [Google Scholar] [CrossRef]
- Hou, H.; Yin, X.; Chen, Q.; Tong, G.; You, D.; Wang, B.; He, X.; Liu, H. Analysis of Vulnerabilities in China’s Southern Power System Using Data from the 2008 Snow Disaster. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009. [Google Scholar]
- Craig, M.T.; Cohen, S.; Macknick, J.; Draxl, C.; Guerra, O.J.; Sengupta, M.; Haupt, S.E.; Hodge, B.-M.; Brancucci, C. A review of the potential impacts of climate change on bulk power system planning and operations in the United States. Renew. Sustain. Energy Rev. 2018, 98, 255–267. [Google Scholar] [CrossRef]
- Hamiche, A.M.; Stambouli, A.B.; Flazi, S. A review of the water-energy nexus. Renew. Sustain. Energy Rev. 2016, 65, 319–331. [Google Scholar] [CrossRef]
- Rio Carrillo, A.M.; Frei, C. Water: A key resource in energy production. Energy Policy 2009, 37, 4303–4312. [Google Scholar] [CrossRef]
- Biggs, E.M.; Bruce, E.; Boruff, B.; Duncan, J.M.; Horsley, J.; Pauli, N.; McNeill, K.; Neef, A.; van Ogtrop, F.; Curnow, J.; et al. Sustainable development and the water–energy–food nexus: A perspective on livelihoods. Environ. Sci. Policy 2015, 54, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A review of the current state of research on the water, energy, and food nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Kitamori, K.; Manders, T.; Dellink, R.; Tabeau, A.A.; Kitamori, K.; Manders, T.; Dellink, R.; Tabeau, A.A. OECD Environmental Outlook to 2050; OECD No. 9789264122161. 2012. Available online: https://library.wur.nl/webquery/wurpubs/537547 (accessed on 22 January 2022).
- Mekonnen, M.M.; Gerbens-Leenes, P.W.; Hoekstra, A.Y. The consumptive water footprint of electricity and heat: A global assessment. Environ. Sci. Water Res. Technol. 2015, 1, 285–297. [Google Scholar] [CrossRef]
- IEA, International Energy Agency. World Energy Outlook; OECD/IEA: Paris, France, 2021. [Google Scholar]
- Rothausen, S.G.S.A.; Conway, D. Greenhouse-gas emissions from energy use in the water sector. Nat. Clim. Chang. 2011, 1, 210–219. [Google Scholar] [CrossRef]
- Burek, P.; Satoh, Y.; Fischer, G.; Kahil, M.T.; Scherzer, A.; Tramberend, S.; Nava, L.F.; Wada, Y.; Eisner, S.; Flörke, M.; et al. Water Futures and Solution-Fast Track Initiative (Final Report); WP-16-006; IIASA: Laxenburg, Austria, 2016. [Google Scholar]
- Gleick, P.H. Water and Conflict: Fresh Water Resources and International Security. Int. Secur. 1993, 18, 79–112. [Google Scholar] [CrossRef]
- Vallée, D.; Margat, J.; Eliasson, Å.; Hoogeveen, J. Review of World Water Resources by Country; Food and Agriculture Organization: Rome, Italy, 2003. [Google Scholar]
- Gassert, F.; Reig, P.; Luo, T.; Maddocks, A. A Weighted Aggregation of Spatially Distinct Hydrological Indicators; World Resources Institute: Washington, DC, USA, 2013. [Google Scholar]
- Lenzen, M.; Moran, D.; Bhaduri, A.; Kanemoto, K.; Bekchanov, M.; Geschke, A.; Foran, B. International trade of scarce water. Ecol. Econ. 2013, 94, 78–85. [Google Scholar] [CrossRef]
- Chen, Z.-M.; Chen, G.Q. Virtual water accounting for the globalized world economy: National water footprint and international virtual water trade. Ecol. Indic. 2013, 28, 142–149. [Google Scholar] [CrossRef]
- Agency for Natural Resources and Energy. Sixth Strategic Energy Plan. 2021. Available online: https://www.meti.go.jp/english/press/2021/1022_002.html (accessed on 12 February 2022).
- Hienuki, S.; Kudoh, Y.; Hondo, H. Establishing a Framework for Evaluating Environmental and Socio-Economic Impacts by Power Generation Technology Using an Input–output Table—A Case Study of Japanese Future Electricity Grid Mix. Sustainability 2015, 7, 15794–15811. [Google Scholar] [CrossRef] [Green Version]
- Wiedmann, T. Editorial: Carbon footprint and input–output analysis–An introduction. Econ. Syst. Res. 2009, 21, 175–186. [Google Scholar] [CrossRef]
- Majeau-Bettez, G.; Strømman, A.H.; Hertwich, E.G. Evaluation of process- and input-output-based life cycle inventory data with regard to truncation and aggregation issues. Environ. Sci. Technol. 2011, 45, 10170–10177. [Google Scholar] [CrossRef]
- Hendrickson, C.; Horvath, A.; Joshi, S.; Lave, L. Peer Reviewed: Economic Input–Output Models for Environmental Life-Cycle Assessment. Environ. Sci. Technol. 1998, 32, 184A–191A. [Google Scholar] [CrossRef]
- Mitchell, P.; Hyde, R. ‘Bottom-up’ Approach to the Implementation of Environmental Life Cycle Assessment (LCA). In Proceedings of the First International Symposium on Environmentally Conscious Design and Inverse Manufacturing, IEEE, Tokyo, Japan, 1–3 February 1999. [Google Scholar]
- Feng, K.; Chapagain, A.; Suh, S.; Pfister, S.; Hubacek, K. Comparison of bottom-up and top-down approaches to calculating the water footprints of nations. Econ. Syst. Res. 2011, 23, 371–385. [Google Scholar] [CrossRef]
- Lenzen, M. Errors in Conventional and Input-Output—based Life—Cycle Inventories. J. Ind. Ecol. 2000, 4, 127–148. [Google Scholar] [CrossRef]
- Pomponi, F.; Lenzen, M. Hybrid life cycle assessment (LCA) will likely yield more accurate results than process-based LCA. J. Clean. Prod. 2018, 176, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Lindner, S.; Legault, J.; Guan, D. Disaggregating the electricity sector of china’s input–output table for improved environmental life-cycle assessment. Econ. Syst. Res. 2013, 25, 300–320. [Google Scholar] [CrossRef]
- Nansai, K. Embodied Energy and Emission Intensity Data for Japan Using Input–Output Tables (3EID), National Institute for Environmental Studies, Japan. 2019. Available online: http://www.cger.nies.go.jp/publications/report/d031/index.html (accessed on 15 January 2022).
- Nansai, K.; Fry, J.; Malik, A.; Takayanagi, W.; Kondo, N. Carbon footprint of Japanese health care services from 2011 to 2015. Resour. Conserv. Recycl. 2020, 152, 104525. [Google Scholar] [CrossRef]
- Ichisugi, Y.; Masui, T.; Karkour, S.; Itsubo, N. Projection of National Carbon Footprint in Japan with Integration of LCA and IAMs. Sustainability 2019, 11, 6875. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Long, Y.; Liu, Q.; Dowaki, K.; Ihara, T. Carbon emission quantification and decarbonization policy exploration for the household sector-Evidence from 51 Japanese cities. Energy Policy 2020, 140, 111438. [Google Scholar] [CrossRef]
- Ohno, H.; Shigetomi, Y.; Chapman, A.; Fukushima, Y. Detailing the economy-wide carbon emission reduction potential of post-consumer recycling. Resour. Conserv. Recycl. 2021, 166, 105263. [Google Scholar] [CrossRef]
- Hata, S.; Nansai, K.; Wakiyama, T.; Kagawa, S.; Tohno, S. Embedding a low-carbon interregional supply chain into a recovery plan for future natural disasters. J. Clean. Prod. 2021, 315, 128160. [Google Scholar] [CrossRef]
- Ono, Y.; Motoshita, M.; Itsubo, N. Development of water footprint inventory database on Japanese goods and services distinguishing the types of water resources and the forms of water uses based on input-output analysis. Int. J. Life Cycle Assess 2015, 20, 1456–1467. [Google Scholar] [CrossRef]
- Imamura, E. Comprehensive Assessment of Life Cycle CO2 Emissions from Power Generation Technologies in Japan. 2016. Available online: https://criepi.denken.or.jp/hokokusho/pb/reportDetail?reportNoUkCode=Y06 (accessed on 12 February 2022).
- Gao, J.; Zhao, P.; Zhang, H.; Mao, G.; Wang, Y. Operational Water Withdrawal and Consumption Factors for Electricity Generation Technology in China—A Literature Review. Sustainability 2018, 10, 1181. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Behrens, P.; Tukker, A.; Scherer, L. Water use of electricity technologies: A global meta-analysis. Renew. Sustain. Energy Rev. 2019, 115, 109391. [Google Scholar] [CrossRef]
- Wan, L.; Wang, C.; Cai, W. Impacts on water consumption of power sector in major emitting economies under INDC and longer term mitigation scenarios: An input-output based hybrid approach. Appl. Energy 2016, 184, 26–39. [Google Scholar] [CrossRef]
- Hienuki, S.; Kudoh, Y.; Hondo, H. Life cycle employment effect of geothermal power generation using an extended input–output model: The case of Japan. J. Clean. Prod. 2015, 93, 203–212. [Google Scholar] [CrossRef]
- Kaya, Y. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios. In Intergovernmental Panel on Climate Change/Response Strategies Working Group; World Meteorological Organization: Geneva, Switzerland; United Nations Environment Program: Nairobi, Kenya, 1989. [Google Scholar]
- Tavakoli, A. A journey among top ten emitter country, decomposition of “Kaya Identity”. Sustain. Cities Soc. 2018, 38, 254–264. [Google Scholar] [CrossRef]
- Zhang, M.; Mu, H.; Ning, Y.; Song, Y. Decomposition of energy-related CO2 emission over 1991–2006 in China. Ecol. Econ. 2009, 68, 2122–2128. [Google Scholar] [CrossRef]
- Kawase, R.; Matsuoka, Y.; Fujino, J. Decomposition analysis of CO2 emission in long-term climate stabilization scenarios. Energy Policy 2006, 34, 2113–2122. [Google Scholar] [CrossRef]
- Xiao, Q.; Xiao, Y.; Luo, Y.; Song, C.; Bi, J. Effects of afforestation on water resource variations in the Inner Mongolian Plateau. PeerJ 2019, 7, e7525. [Google Scholar] [CrossRef] [Green Version]
- Schwärzel, K.; Zhang, L.; Montanarella, L.; Wang, Y.; Sun, G. How afforestation affects the water cycle in drylands: A process-based comparative analysis. Glob. Chang. Biol. 2020, 26, 944–959. [Google Scholar] [CrossRef] [Green Version]
- Asuka, J. Japanese Green New Deal to Bring Happiness and Prosperity. In Energy Transition and Energy Democracy in East Asia; Springer: Singapore, 2022; pp. 81–97. [Google Scholar]
- Jahangiri, M.; Shamsabadi, A.A.; Riahi, R.; Raeiszadeh, F.; Dehkordi, P.F. Levelized Cost of Electricity for Wind-Solar Power Systems in Japan, a Review. J. Power Technol. 2020, 100, 188–210. [Google Scholar]
- Sakaguchi, T.; Tabata, T. 100% electric power potential of PV, wind power, and biomass energy in Awaji island Japan. Renew. Sustain. Energy Rev. 2015, 51, 1156–1165. [Google Scholar] [CrossRef]
- Schmidt, O.; Melchior, S.; Hawkes, A.; Staffell, I. Projecting the Future Levelized Cost of Electricity Storage Technologies. Joule 2019, 3, 81–100. [Google Scholar] [CrossRef] [Green Version]
- Ralon, P.; Taylor, M.; Ilas, A.; Diaz-Bone, H.; Kairies, K. Electricity Storage and Renewables: Costs and Markets to 2030; International Renewable Energy Agency: Abu Dhabi, UAE, 2017. [Google Scholar]
- Li, J.; Yi, C.; Gao, S. Prospect of new pumped-storage power station. Glob. Energy Interconnect. 2019, 2, 235–243. [Google Scholar] [CrossRef]
- Kong, Y.; Kong, Z.; Liu, Z.; Wei, C.; Zhang, J.; An, G. Pumped storage power stations in China: The past, the present, and the future. Renew. Sustain. Energy Rev. 2017, 71, 720–731. [Google Scholar] [CrossRef]
- Chatterjee, S.; Parsapur, R.K.; Huang, K.-W. Limitations of Ammonia as a Hydrogen Energy Carrier for the Transportation Sector. ACS Energy Lett. 2021, 6, 4390–4394. [Google Scholar] [CrossRef]
- Salmon, N.; Bañares-Alcántara, R.; Nayak-Luke, R. Optimization of green ammonia distribution systems for intercontinental energy transport. iScience 2021, 24, 102903. [Google Scholar] [CrossRef]
- Kojima, Y. Hydrogen Storage and Transportation Using Ammonia. Surf. Sci. Soc. Jpn. 2015, 36, 583–588. [Google Scholar] [CrossRef] [Green Version]
- Schleussner, C.-F.; Rogelj, J.; Schaeffer, M.; Lissner, T.; Licker, R.; Fischer, E.M.; Knutti, R.; Levermann, A.; Frieler, K.; Hare, W. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Chang. 2016, 6, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [Green Version]
Original Sector | First Disaggregation | Final Disaggregation |
---|---|---|
Electricity, gas, and heat supply | Electricity | Coal |
Oil | ||
Gas | ||
Bio | ||
Nuclear | ||
Hydro | ||
Geo | ||
Solar | ||
Wind | ||
Gas and heat supply | Gas and heat supply |
Coal | Oil | Gas | Bio | Nuclear | Hydro | Geo | Solar | Wind |
---|---|---|---|---|---|---|---|---|
99.3% | 99.7% | 97.5% | 67.2% | 100% | 0% | 0% | 63.3% | 81.1% |
Intermediate Demand | Final Demand | Total Output | |||
---|---|---|---|---|---|
Domestic Final Demand | Export | Import | |||
Intermediate Input | T | Y | EX | −IM | X |
Value Added | V | ||||
Total Input | X | ||||
CO2 Emission | C | ||||
Water Consumption | W |
Unit: Mt | ||
---|---|---|
Effects | Carbon Emission | Water Consumption |
Population Effect | −20.996 | −270.517 |
Economy Effect | 201.562 | 2596.984 |
Electricity Intensity Effect | −251.947 | −3246.155 |
Electricity Mix Effect | −240.408 | 2603.824 |
Total Change | −311.789 | 1684.135 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, L.; Asuka, J. Impacts of Energy Transition on Life Cycle Carbon Emission and Water Consumption in Japan’s Electric Sector. Sustainability 2022, 14, 5413. https://doi.org/10.3390/su14095413
Meng L, Asuka J. Impacts of Energy Transition on Life Cycle Carbon Emission and Water Consumption in Japan’s Electric Sector. Sustainability. 2022; 14(9):5413. https://doi.org/10.3390/su14095413
Chicago/Turabian StyleMeng, Linghao, and Jusen Asuka. 2022. "Impacts of Energy Transition on Life Cycle Carbon Emission and Water Consumption in Japan’s Electric Sector" Sustainability 14, no. 9: 5413. https://doi.org/10.3390/su14095413
APA StyleMeng, L., & Asuka, J. (2022). Impacts of Energy Transition on Life Cycle Carbon Emission and Water Consumption in Japan’s Electric Sector. Sustainability, 14(9), 5413. https://doi.org/10.3390/su14095413