Groundwater Dynamic Characteristics with the Ecological Threshold in the Northwest China Oasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Measurement of Groundwater Level and Groundwater Buried Depth
2.3.2. Determination of the Lower Limit of the Ecological Groundwater Level
2.3.3. Determination of the Upper Limit of the Ecological Groundwater Level
2.3.4. Estimation of Ecologically Regulated Water Quantity
3. Results and Analysis
3.1. Dynamic Changes of the Groundwater Buried Depth
3.1.1. Spatial Variation Characteristics of the Groundwater Buried Depth
3.1.2. Temporal Variation Characteristics of the Groundwater Buried Depth
3.2. Determination of the Ecological Groundwater Level Threshold
3.2.1. Determination of the Lower Limit of the Ecological Groundwater Level
3.2.2. Determination of the Upper Limit of Ecological Groundwater Level
3.3. Estimation of Ecologically Regulated Water Quantity
4. Discussion
4.1. Differences in Groundwater Dynamic Characteristics
4.2. Groundwater Ecological Threshold Rationality
4.3. Suggestions for the Ecological Regulation of Groundwater
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.L.; He, X.L.; Yang, G.; Zhao, L.; Chen, S.; Wang, C.; Chen, J.C.; Yang, M.J. Study of groundwater using visual MODFLOW in the Manas River Basin, China. Water Policy 2016, 18, 1139–1154. [Google Scholar] [CrossRef]
- Yang, G.; He, X.L.; Li, X.L.; Long, A.H.; Xue, L.Q. Transformation of surface water and groundwater and water balance in the agricultural irrigation area of the Manas River Basin, China. Int. J. Agric. Biol. Eng. 2017, 10, 107–118. [Google Scholar] [CrossRef]
- Li, F.W.; Wang, Y.; Zhao, Y.; Qiao, J.L. Modelling the response of vegetation restoration to changes in groundwater level, based on ecologically suitable groundwater depth. Hydrogeol. J. 2018, 26, 2189–2204. [Google Scholar] [CrossRef]
- Kopec, D.; Michalska-Hejduk, D.; Krogulec, E. The relationship between vegetation and groundwater levels as an indicator of spontaneous wetland restoration. Ecol. Eng. 2013, 57, 242–251. [Google Scholar] [CrossRef]
- Feng, Q.; Peng, J.Z.; Li, J.G.; Xi, H.Y.; Si, J.H. Using the concept of ecological groundwater level to evaluate shallow groundwater resources in hyperarid desert regions. J. Arid Land 2012, 4, 378–389. [Google Scholar] [CrossRef]
- Aldous, A.R.; Bach, L.B. Hydro-ecology of groundwater-dependent ecosystems: Applying basic science to groundwater management. Hydrol. Sci. J. 2014, 59, 530–544. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Xu, Y.X.; Wang, Z.L.; Zhang, Y.B.; Zhu, X.P.; Guo, L.L.; Zheng, Q.; Tang, L. Ecological restoration and protection of Jinci Spring in Shanxi, China. Arab. J. Geosci. 2020, 13, 19. [Google Scholar] [CrossRef]
- Rossatto, D.R.; Silva, L.D.R.; Villalobos-Vega, R.; Sternberg, L.D.L.; Franco, A.C. Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna. Environ. Exp. Bot. 2012, 77, 259–266. [Google Scholar] [CrossRef]
- Fan, Z.L.; Chen, Y.N.; Li, H.P.; Ma, Y.J.; Alishir, K.; Abdimijit, A. Determination of suitable ecological groundwater depth in arid areas in North west part of China. J. Arid Land Resour. Environ. 2008, 22, 1–5. (In Chinese) [Google Scholar]
- Guan, X.Y.; Wang, S.L.; Gao, Z.Y.; Lv, Y.; Fu, X.J. Spatiotemporal variability of soil salinity and its relationship with the depth to groundwater in salinization irrigation district. Acta Ecol. Sin. 2012, 32, 1202–1210. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Ma, R.; Sun, Z.Y.; Ge, M.Y.; Zeng, L.L.; Huang, F.; Bu, J.W.; Wang, Z. Determination of the optimal ecological water conveyance volume for vegetation restoration in an arid inland river basin, northwestern China. Sci. Total Environ. 2021, 788, 10. [Google Scholar] [CrossRef] [PubMed]
- Li, F.W.; Qiao, J.L.; Zhao, Y.; Zhang, W. Risk Assessment of Groundwater and its Application. Part II: Using a Groundwater Risk Maps to Determine Control Levels of the Groundwater. Water Resour. Manag. 2014, 28, 4875–4893. [Google Scholar] [CrossRef]
- Maihemuti, B.; Simayi, Z.; Alifujiang, Y.; Aishan, T.; Abliz, A.; Aierken, G. Development and evaluation of the soil water balance model in an inland arid delta oasis: Implications for sustainable groundwater resource management. Glob. Ecol. Conserv. 2021, 25, 15. [Google Scholar] [CrossRef]
- Ye, Z.X.; Li, W.H.; Qiu, J.J.; Aji, D. Investigation of the safety threshold of eco-environmental water demands for the Bosten Lake wetlands, western China. Quat. Int. 2017, 440, 130–136. [Google Scholar] [CrossRef]
- Kath, J.; Boulton, A.J.; Harrison, E.T.; Dyer, F.J. A conceptual framework for ecological responses to groundwater regime alteration (FERGRA). Ecohydrology 2018, 11, 17. [Google Scholar] [CrossRef]
- Zhai, J.Q.; Dong, Y.Y.; Qi, S.L.; Zhao, Y.; Liu, K.; Zhu, Y.N. Advances in Ecological Groundwater Level Threshold in Arid Oasis Regions. J. China Hydrol. 2021, 41, 7–14. (In Chinese) [Google Scholar]
- Shang, H.M.; Wang, W.K.; Dai, Z.X.; Duan, L.; Zhao, Y.Q.; Zhang, J. An ecology-oriented exploitation mode of groundwater resources in the northern Tianshan Mountains, China. J. Hydrol. 2016, 543, 386–394. [Google Scholar] [CrossRef]
- Zhang, C.C.; Shao, J.L.; Li, C.J.; Cui, Y.L. A study of ecological groundwater table in the North China Plain. J. Jilin Univ. Earth Sci. Ed. 2003, 33, 323–326. (In Chinese) [Google Scholar]
- Chen, M.J.; Zhang, Q.X.; Wang, Y.; Yan, L.; Deng, W. Critical depth of recharge of the vegetation by groundwater in the West Liaohe Plain. Adv. Water Sci. 2019, 30, 24–33. (In Chinese) [Google Scholar]
- Wu, Y.G.; Yang, G.; Tian, L.J.; Gu, X.C.; Li, X.L.; He, X.L.; Xue, L.Q.; Li, P.F.; Xiao, S.Y. Spatiotemporal variation in groundwater level within the Manas River Basin, Northwest China: Relative impacts of natural and human factors. Open Geosci. 2021, 13, 626–638. [Google Scholar] [CrossRef]
- Xing, X.G.; Shi, W.J.; Wang, Q.J. Discussion on E0 value in common groundwater evaporation empirical models. Agric. Res. Arid Areas 2013, 31, 57–60 + 65. (In Chinese) [Google Scholar]
- Wang, Y.; Chen, M.J.; Yan, L.; Zhao, Y.; Deng, W. A new method for quantifying threshold water tables in a phreatic aquifer feeding an irrigation district in northwestern China. Agric. Water Manag. 2021, 244, 7. [Google Scholar] [CrossRef]
- Li, X.W.; Zhou, J.L.; Zhou, N.Q.; Jia, R.L. Effects of high TdS on capillary rise of phreatic water in silty clay soil. J. Arid Land Resour. Environ. 2016, 30, 192–196. (In Chinese) [Google Scholar]
- Qi, Z.W.; Xiao, C.L.; Wang, G.; Liang, X.J. Study on Ecological Threshold of Groundwater in Typical Salinization Area of Qian’an County. Water 2021, 13, 17. [Google Scholar] [CrossRef]
- Sun, C.Z.; Gao, Y.; Zhu, Z.R. Estimation of ecological water demands based on ecological water table limitations in the lower reaches of the Liaohe River Plain, China. Acta Ecol. Sin. 2013, 33, 1513–1523. (In Chinese) [Google Scholar]
- Fu, Q.P.; Zhang, J.H.; Wang, Q.J. Adaptability study on empirical formulae of frequent phreatic evaporation in Xinjiang. Agric. Res. Arid Areas 2008, 26, 182–188. (In Chinese) [Google Scholar]
- Yang, G. Water Cycle Process Simulation under the Condition of Water Saving Irrigation in Manas River Basin. Ph.D. Thesis, Shihezi University, Shihezi, China, 2017. [Google Scholar]
- Yang, F.; Zhang, G.X.; Yin, X.R.; Liu, Z.J.; Huang, Z.G. Study on capillary rise from shallow groundwater and critical water table depth of a saline-sodic soil in western Songnen plain of China. Environ. Earth Sci. 2011, 64, 2119–2126. [Google Scholar] [CrossRef]
- Seo, D.; Son, Y.; Bong, T. Model of resalinization by capillary rise in reclaimed land. Paddy Water Environ. 2018, 16, 71–79. [Google Scholar] [CrossRef]
- Chen, L.; Wang, W.K.; Zhang, Z.Y.; Wang, Z.F.; Wang, Q.M.; Zhao, M.; Gong, C.C. Estimation of bare soil evaporation for different depths of water table in the wind-blown sand area of the Ordos Basin, China. Hydrogeol. J. 2018, 26, 1693–1704. [Google Scholar] [CrossRef]
- Chen, S.H. Root System of Grassland Plants in Northern China; Jilin University Press: Changchun, China, 2001. [Google Scholar]
- Yu, Z.W. Monographs on Crop Cultivation; China Agriculture Press: Beijing, China, 2013. [Google Scholar]
- Wang, J.J.; Liang, X.; Ma, B.; Liu, Y.F.; Jin, M.G.; Knappett, P.S.K.; Liu, Y.L. Using isotopes and hydrogeochemistry to characterize groundwater flow systems within intensively pumped aquifers in an arid inland basin, Northwest China. J. Hydrol. 2021, 595, 14. [Google Scholar] [CrossRef]
- Xue, L.Q.; Zhu, B.L.; Wu, Y.P.; Wei, G.H.; Liao, S.M.; Yang, C.B.; Wang, J.; Zhang, H.; Ren, L.; Han, Q. Dynamic projection of ecological risk in the Manas River basin based on terrain gradients. Sci. Total Environ. 2019, 653, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, M.J.; Yan, L.; Yang, G.Y.; Ma, J.; Deng, W. Quantifying Threshold Water Tables for Ecological Restoration in Arid Northwestern China. Groundwater 2020, 58, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Jin, M.G.; Wang, J.J. Insights into groundwater salinization from hydrogeochemical and isotopic evidence in an arid inland basin. Hydrol. Process. 2018, 32, 3108–3127. [Google Scholar] [CrossRef]
- Dang, X.Y.; Lu, N.; Gu, X.F.; Jin, X.M. Groundwater threshold of ecological vegetation in Qaidam Basin. Hydrogeol. Eng. Geol. 2019, 46, 1–8. (In Chinese) [Google Scholar]
- Cheng, Y.; Chen, L.; Yin, J.Q.; Bai, Z.L.; Zhao, W.Y. Depth interval study of vegetation ecological groundwater in the water source area at Manaz River valley. Environ. Sci. Technol. 2018, 41, 26–33. (In Chinese) [Google Scholar]
- Huang, F.; Ochoa, C.G.; Chen, X. Assessing environmental water requirement for groundwater-dependent vegetation in arid inland basins by combining the copula joint distribution function and the dual objective optimization: An application to the Turpan Basin, China. Sci. Total Environ. 2021, 799, 9. [Google Scholar] [CrossRef]
Time | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 |
---|---|---|---|---|---|---|
Agriculture water | 96.53 | 96.04 | 95.65 | 94.57 | 94.27 | 94.03 |
Industrial water | 1.53 | 1.83 | 2.28 | 3.24 | 3.20 | 3.53 |
Domestic water | 1.10 | 1.11 | 0.82 | 1.18 | 1.36 | 1.42 |
Ecological water | 0.84 | 1.01 | 1.25 | 1.01 | 1.18 | 1.02 |
Number | Time | |||||||
---|---|---|---|---|---|---|---|---|
1 | 5.13–5.17 | 4.86 | 4.81 | 0.05 | 5.2 | 26.0 | 4.84 | 1.92 |
5.26–5.30 | 4.84 | 4.79 | 0.05 | 5.2 | 26.0 | 4.82 | 1.92 | |
9.01–9.05 | 4.97 | 4.95 | 0.02 | 4.0 | 20.0 | 4.96 | 1.00 | |
9.10–9.14 | 5.02 | 5.01 | 0.01 | 4.0 | 20.0 | 5.02 | 0.50 | |
11 | 4.03–4.07 | 4.14 | 4.09 | 0.05 | 3.5 | 17.5 | 4.12 | 2.86 |
4.22–4.26 | 4.23 | 4.19 | 0.04 | 3.5 | 17.5 | 4.21 | 2.29 | |
9.03–9.07 | 4.47 | 4.44 | 0.03 | 4.0 | 20.0 | 4.46 | 1.50 | |
9.18–9.22 | 4.60 | 4.58 | 0.02 | 4.0 | 20.0 | 4.59 | 1.00 | |
19 | 4.22–4.26 | 6.89 | 6.81 | 0.08 | 3.5 | 17.5 | 6.85 | 4.57 |
5.12–5.16 | 7.38 | 7.32 | 0.06 | 5.2 | 26.0 | 7.35 | 2.31 | |
9.01–9.05 | 8.13 | 8.11 | 0.02 | 4.0 | 20.0 | 8.12 | 1.00 | |
9.14–9.18 | 8.25 | 8.24 | 0.01 | 4.0 | 20.0 | 8.24 | 0.50 | |
75 | 4.28–4.30 | 2.16 | 2.06 | 0.10 | 3.5 | 10.5 | 2.10 | 9.52 |
5.09–5.11 | 2.52 | 2.39 | 0.13 | 5.2 | 15.6 | 2.44 | 8.33 | |
9.03–9.05 | 2.99 | 2.93 | 0.06 | 4.0 | 12.0 | 2.97 | 5.00 | |
9.27–9.29 | 3.31 | 3.27 | 0.04 | 4.0 | 12.0 | 3.29 | 3.33 |
Soil Texture | Land Use Types | Capillary Rise Height/m | Plant Root Thickness/m | Ecological Threshold of Groundwater/m |
---|---|---|---|---|
Silty clay | Cultivated land | 1.1 | 0.6 | 1.7 |
Grassland | 0.35 | 1.45 | ||
Forest | 2 | 3.1 | ||
Clay loam | Cultivated land | 1.71 | 0.6 | 2.31 |
Grassland | 0.35 | 2.06 | ||
Forest | 2 | 3.71 | ||
Loamy clay | Cultivated land | 1.67 | 0.6 | 2.27 |
Grassland | 0.35 | 2.02 | ||
Forest | 2 | 3.67 | ||
Loam | Cultivated land | 2.05 | 0.6 | 2.65 |
Grassland | 0.35 | 2.4 | ||
Forest | 2 | 4.05 | ||
Sandy loam | Cultivated land | 1.46 | 0.6 | 2.06 |
Grassland | 0.35 | 1.81 | ||
Forest | 2 | 3.46 | ||
Sandy clay loam | Cultivated land | 1.48 | 0.6 | 2.08 |
Grassland | 0.35 | 1.83 | ||
Forest | 2 | 3.48 | ||
Sandy soil and loamy sand | Cultivated land | 0.47 | 0.6 | 1.07 |
Grassland | 0.35 | 0.82 | ||
Forest | 2 | 2.47 |
Administrative Area | Area | Volume | Specific Yield | Deficit (108 m3) | Excess (108 m3) | |||
---|---|---|---|---|---|---|---|---|
Deficit Area (km2) | Excess Area (km2) | Suitable Area (km2) | Deficit Area (108 m3) | Excess Area (108 m3) | ||||
Shehezi | 235.57 | 4.02 | 101.86 | 49.28 | 0.027 | 0.15 | 7.392 | 0.004 |
Manasi | 3076.47 | 0 | 4.88 | 501.92 | 0 | 0.05 | 25.096 | 0 |
Shawan | 4019.61 | 20.37 | 634.12 | 488.07 | 0.181 | 0.09 | 43.926 | 0.016 |
Kelamayi | 2022.00 | 0 | 0 | 240.08 | 0 | 0.1 | 24.008 | 0 |
Kuitun | 401.70 | 0 | 0 | 53.19 | 0 | 0.1 | 5.319 | 0 |
Total | 9755.36 | 24.39 | 740.86 | 1332.54 | 0.208 | 105.741 | 0.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Li, X.; He, X.; Yang, G.; Du, Y.; Li, X. Groundwater Dynamic Characteristics with the Ecological Threshold in the Northwest China Oasis. Sustainability 2022, 14, 5390. https://doi.org/10.3390/su14095390
Li D, Li X, He X, Yang G, Du Y, Li X. Groundwater Dynamic Characteristics with the Ecological Threshold in the Northwest China Oasis. Sustainability. 2022; 14(9):5390. https://doi.org/10.3390/su14095390
Chicago/Turabian StyleLi, Dongbo, Xiaolong Li, Xinlin He, Guang Yang, Yongjun Du, and Xiaoqian Li. 2022. "Groundwater Dynamic Characteristics with the Ecological Threshold in the Northwest China Oasis" Sustainability 14, no. 9: 5390. https://doi.org/10.3390/su14095390