Supplementation of Manure Compost with Trichoderma asperellum Improves the Nutrient Uptake and Yield of Edible Amaranth under Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manure Compost Production
2.1.1. Preparation of Manure Compost Supplemented with Trichoderma asperellum CHF 78
2.1.2. Real-Time PCR Assay for Quantification of T. asperellum CHF 78
2.2. Field Experiment
2.2.1. Location and Experimental Design
2.2.2. Soil Property Analysis
2.2.3. Plant Nutrient Analysis
2.3. Statistical Analyses
3. Results
3.1. Chemical Properties of Manure Composts
3.2. Quantification of T. asperellum CHF 78 in Compost
3.3. Effects of Compost on Amaranth Production
3.4. Effects of Compost on Soil Properties
3.5. Amaranth Nutrient Uptake
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, J.W.C.; Ma, K.K.; Fang, K.M.; Cheung, C. Utilization of a manure compost for organic farming in Hong Kong. Bioresour. Technol. 1999, 67, 43–46. [Google Scholar] [CrossRef]
- Ogbuewu, I.P.; Odoemenam, V.U.; Omede, A.A.; Durunna, C.S.; Emenalom, O.O.; Uchegbu, M.C.; Okoli, I.C.; Iloeje, M.U. Livestock waste and its impact on the environment. Sci. J. Rev. 2012, 1, 17–32. [Google Scholar]
- Arthur, E.; Cornelis, W.; Razzaghi, F. Compost amendment to sandy soil affects soil properties and greenhouse tomato productivity. Compost. Sci. Util. 2012, 20, 215–221. [Google Scholar] [CrossRef]
- Hernández, T.; Chocano, C.; Moreno, J.L.; García, C. Use of compost as an alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.) crops-Effects on soil and plant. Soil Tillage Res. 2016, 160, 14–22. [Google Scholar] [CrossRef]
- Ling, N.; Xue, C.; Huang, Q.; Yang, X.; Xu, Y.; Shen, Q. Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. BioControl 2010, 55, 673–683. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, J.; Feng, Y.; Yang, X.; Li, X.; Shen, Q. Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer. Biol. Fertil. Soils 2013, 49, 447–464. [Google Scholar] [CrossRef]
- Zhang, F.G.; Zhu, Z.; Yang, X.M.; Ran, W.; Shen, Q.R. Trichoderma harzianum T-E5 significantly affects cucumber root exudates and fungal community in the cucumber rhizosphere. Appl. Soil Ecol. 2013, 72, 41–48. [Google Scholar] [CrossRef]
- Trillas, M.I.; Casanova, E.; Cotxarrera, L.; Ordovás, J.; Borrero, C.; Avilés, M. Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biol. Control 2006, 39, 32–38. [Google Scholar] [CrossRef]
- Blaya, J.; López-Mondéjar, R.; Lloret, E.; Pascual, J.A.; Ros, M. Changes induced by Trichoderma harzianum in suppressive compost controlling Fusarium wilt. Pestic. Biochem. Physiol. 2013, 107, 112–119. [Google Scholar] [CrossRef]
- Yusnawan, E.; Taufiq, A.; Wijanarko, A.; Susilowati, D.N.; Praptana, R.H.; Chandra-Hioe, M.V.; Supriyo, A.; Inayati, A. Changes in volatile organic compounds from salt-tolerant Trichoderma and the biochemical response and growth performance in saline-stressed groundnut. Sustainability 2021, 13, 13226. [Google Scholar] [CrossRef]
- de Santiago, A.; Manuel Quintero, J.; Avilés, M.; Delgado, A. Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil 2011, 342, 97–104. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Hwang, S.-G.; Huang, Y.-M.; Huang, C.-H. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Prot. 2018, 110, 275–282. [Google Scholar] [CrossRef]
- Sultana, M.; Jahiruddin, M.; Islam, M.R.; Rahman, M.M.; Abedin, M.A.; Solaiman, Z.M. Nutrient enriched municipal solid waste compost increases yield, nutrient content and balance in rice. Sustainability 2021, 13, 1047. [Google Scholar] [CrossRef]
- Li, R.-X.; Cai, F.; Pang, G.; Shen, Q.-R.; Li, R.; Chen, W. Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS ONE 2015, 10, e0130081. [Google Scholar] [CrossRef] [Green Version]
- Cai, F.; Chen, W.; Wei, Z.; Pang, G.; Li, R.; Ran, W.; Shen, Q. Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora. Plant Soil 2015, 388, 337–350. [Google Scholar] [CrossRef]
- Pang, G.; Cai, F.; Li, R.; Zhao, Z.; Li, R.; Gu, X.; Shen, Q.; Chen, W. Trichoderma-enriched organic fertilizer can mitigate microbiome degeneration of monocropped soil to maintain better plant growth. Plant Soil 2017, 416, 181–192. [Google Scholar] [CrossRef]
- Han, S.; Xu, B. Bioactive components of leafy vegetable edible amaranth (Amaranthus mangostanus L.) as affected by home cooking manners. Am. J. Food Sci. Technol. 2014, 2, 122–127. [Google Scholar] [CrossRef] [Green Version]
- Brito, L.M.; Monteiro, J.M.; Mourão, I.; Coutinho, J. Organic lettuce growth and nutrient uptake response to lime, compost, and rock phosphate. J. Plant Nutr. 2014, 37, 1002–1011. [Google Scholar] [CrossRef] [Green Version]
- Zech, W.; Senesi, N.; Guggenberger, G.; Kaiser, K.; Lehmann, J.; Miano, T.M.; Miltner, A.; Schroth, G. Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 1997, 79, 117–161. [Google Scholar] [CrossRef]
- Smith, J.L.; Doran, J.W. Measurement and Use of pH and Electrical Conductivity. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 169–185. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1934, 63, 251–263. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen–total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Chung, Y.R.; Hoitink, H.A.J. Interactions between thermophilic fungi and Trichoderma hamatum in suppression of Rhizoctonia damping-off in a bark compost-amended container medium. Phytopathology 1990, 80, 73–77. [Google Scholar] [CrossRef]
- Bandick, A.K.; Dick, R.P. Field management effects on soil enzyme activities. Soil Biol. Biochem. 1999, 31, 1471–1479. [Google Scholar] [CrossRef]
- Wolf, B. A comprehensive system of leaf analysis and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal. 1982, 13, 1035–1059. [Google Scholar] [CrossRef]
- Pfaffl, M.W. Quantification Strategies in Real-Time PCR. In A-Z of Quantitative PCR; Bustin, S.A., Ed.; International University Line: La Jolla, CA, USA, 2004; pp. 87–120. [Google Scholar]
- Nafez, A.H.; Nikaeen, M.; Kadkhodaie, S.; Hatamzadeh, M.; Moghim, S. Sewage sludge composting: Quality assessment for agricultural application. Environ. Monit. Assess. 2015, 187, 709. [Google Scholar] [CrossRef]
- Agehara, S.; Warncke, D.D. Soil moisture and temperature effects on nitrogen release from organic nitrogen sources. Soil Sci. Soc. Am. J. 2005, 69, 1844–1855. [Google Scholar] [CrossRef] [Green Version]
- Hadas, A.; Portnoy, R. Rates of decomposition in soil and release of available nitrogen from cattle manure and municipal waste composts. Compost. Sci. Util. 1997, 5, 48–54. [Google Scholar] [CrossRef]
- Havlin, J.L.; Beaton, J.D.; Tisdale, S.L.; Nelson, W.L. Soil Fertility and Fertilizers, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Gajda, A.M.; Czyz, E.A.; Dexter, A.R. Effects of long-term use of different farming systems on some physical, chemical and microbiological parameters of soil quality. Int. Agrophys. 2016, 30, 165–172. [Google Scholar] [CrossRef]
- Iovieno, P.; Morra, L.; Leone, A.; Pagano, L.; Alfani, A. Effect of organic and mineral fertilizers on soil respiration and enzyme activities of two Mediterranean horticultural soils. Biol. Fertil. Soils 2009, 45, 555–561. [Google Scholar] [CrossRef]
- Anand, K.G.V.; Kubavat, D.; Trivedi, K.; Agarwal, P.K.; Wheeler, C.; Ghosh, A. Long-term application of Jatropha press cake promotes seed yield by enhanced soil organic carbon accumulation, microbial biomass and enzymatic activities in soils of semi-arid tropical wastelands. Eur. J. Soil Biol. 2015, 69, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.Z.; Chen, J.; Zhang, J.B.; Xin, X.L.; Hao, X.Y. How different long-term fertilization strategies influence crop yield and soil properties in a maize field in the North China Plain. J. Plant Nutr. Soil Sci. 2013, 176, 99–109. [Google Scholar] [CrossRef]
- Eghball, B.; Ginting, D.; Gilley, J.E. Residual effects of manure and compost applications on corn production and soil properties. Agron. J. 2004, 96, 442–447. [Google Scholar] [CrossRef] [Green Version]
- Motavalli, P.P.; Kelling, K.A.; Converse, J.C. First-year nutrient availability from injected dairy manure. J. Environ. Qual. 1989, 18, 180–185. [Google Scholar] [CrossRef]
- Eghball, B. Soil properties as influenced by phosphorus- and nitrogen-based manure and compost applications. Agron. J. 2002, 94, 128–135. [Google Scholar]
- Harma, G.E.; Obregón, M.A.; Samuels, G.J.; Lorito, M. Changing models for commercialization and implementation of biocontrol in the developing and the developed world. Plant Dis. 2010, 94, 928–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segarra, G.; Casanova, E.; Avilés, M.; Trillas, I. Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microb. Ecol. 2010, 59, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Benítez, T.; Rincón, A.M.; Limón, M.C.; Codón, A.C. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 2004, 7, 249–260. [Google Scholar] [PubMed]
pH a | EC b (dS/m) | OM c | N | P | K | Ca | Mg | Cd | Cr | Cu | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compost | g/kg | mg/kg | ||||||||||||
Manure compost | 7.81 b d | 2.08 a | 817 a | 19.5 a | 9.26 a | 10.7 a | 20.0 a | 4.85 a | 0.86 a | 14.3 a | 64.5 a | 10.9 a | 10.6 a | 281 a |
Manure compost + T. asperellum | 7.97 a | 1.98 b | 837 a | 17.6 b | 8.82 a | 10.5 a | 18.6 a | 4.55 a | 0.75 a | 17.6 a | 64.2 a | 11.0 a | 6.99 a | 249 b |
Soil Texture | pH a | EC b (dS/m) | SOM c (g/kg) | Avail. N (mg/kg) | Bray-P (mg/kg) | Exch. K (mg/kg) | Exch. Ca (mg/kg) | Exch. Mg (mg/kg) |
---|---|---|---|---|---|---|---|---|
Sandy loam | 5.75 ± 0.08 | 0.44 ± 0.03 | 20.4 ± 1.40 | 45.1 ± 0.20 | 96.3 ± 2.39 | 376 ± 6.11 | 1122 ± 15.4 | 185 ± 2.70 |
Treatment | pH a | EC b (dS/m) | SOM c (g/kg) | Avail. N (mg/kg) | Bray-P (mg/kg) | Exch. K (mg/kg) | Microbial Activity d |
---|---|---|---|---|---|---|---|
Control | 5.79 a e | 0.35 b | 18.3 b | 21.8 a | 104 b | 190 b | 42.7 b |
Chemical fertilizers | 5.58 b | 0.45 ab | 16.9 b | 22.3 a | 97.4 b | 194 b | 38.3 b |
Manure compost | 5.78 a | 0.42 ab | 23.0 a | 23.5 a | 134 a | 245 a | 56.5 a |
Manure compost + Trichoderma asperellum | 5.93 a | 0.52 a | 25.1 a | 20.3 a | 154 a | 267 a | 60.8 a |
pH a | EC b (dS/m) | SOM c (%) | Avail. N (mg/kg) | Bray-P (mg/kg) | Exch. K (mg/kg) | Microbial Activity d | |
---|---|---|---|---|---|---|---|
r | 0.75 | −0.14 | 0.59 | −0.38 | 0.27 | 0.60 | 0.55 |
p value | 0.0002 | 0.5556 | 0.021 | 0.1001 | 0.2511 | 0.0052 | 0.0139 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, R.-T.; Huang, C.-H. Supplementation of Manure Compost with Trichoderma asperellum Improves the Nutrient Uptake and Yield of Edible Amaranth under Field Conditions. Sustainability 2022, 14, 5389. https://doi.org/10.3390/su14095389
Lyu R-T, Huang C-H. Supplementation of Manure Compost with Trichoderma asperellum Improves the Nutrient Uptake and Yield of Edible Amaranth under Field Conditions. Sustainability. 2022; 14(9):5389. https://doi.org/10.3390/su14095389
Chicago/Turabian StyleLyu, Ruei-Teng, and Cheng-Hua Huang. 2022. "Supplementation of Manure Compost with Trichoderma asperellum Improves the Nutrient Uptake and Yield of Edible Amaranth under Field Conditions" Sustainability 14, no. 9: 5389. https://doi.org/10.3390/su14095389