Spatiotemporal Changeability of the Load of the Urban Road Transport System under Permanent and Short-Term Legal and Administrative Retail Restrictions
Abstract
:1. Introduction
2. The Impact of Permanent and Short-Term Retail Restrictions on Daily Mobility—A Review of Existing Studies
2.1. Travel Behaviour Analysis
2.2. Trade Activity/Pandemic Conditions and Travel Behaviour Analysis
2.3. Impact of Activity/Travel Policies on Travel Behaviour for Shopping
3. Permanent and Short-Term Legal and Administrative Retail Restrictions in Poland
3.1. Permanent Sunday Retail Restriction
3.2. Short-Term Retail Restrictions Due to the COVID-19 Pandemic
4. Study Area
5. Materials and Methods
5.1. Materials
5.2. Methods
6. Results and Discussion
6.1. Permanent Retail Restrictions
6.2. Short-Term Retail Restrictions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Żochowska, R.; Karoń, G. Przegląd literatury na temat zjawiska kongestii i zakłóceń. Zesz. Nauk. Stowarzyszenia Inżynierów i Tech. Komun. w Krakowie. Ser. Mater. Konf. 2012, 2, 252–276. [Google Scholar]
- Borowska-Stefańska, M.; Kowalski, M.; Wiśniewski, S. Changes in urban transport behaviours and spatial mobility resulting from the introduction of statutory Sunday retail restrictions: A case study of Lodz, Poland. Morav. Geogr. Rep. 2020, 28, 29–47. [Google Scholar] [CrossRef]
- Borowska-Stefańska, M.; Kowalski, M.; Wiśniewski, S.; Szustowski, B.; Maczuga, M. The impact of statutory sunday trading restrictions… on the choices of residents of a large polish city with regard to transport behaviours and mobility. Stud. Reg. i Lokal. 2020, 82, 33–59. [Google Scholar] [CrossRef]
- Macioszek, E.; Kurek, A. Extracting road traffic volume in the city before and during COVID-19 through video remote sensing. Remote Sens. 2021, 13, 2329. [Google Scholar] [CrossRef]
- Budd, L.; Ison, S. Responsible Transport: A post-COVID agenda for transport policy and practice. Transp. Res. Interdiscip. Perspect. 2020, 6, 100151. [Google Scholar] [CrossRef] [PubMed]
- Schönfelder, S.; Axhausen, K.W. Urban Rhythms and Travel Behaviour Spatial and Temporal Phenomena of Daily Travel, 1st ed.; Routledge: London, UK, 2010; ISBN 9781315548715. [Google Scholar]
- Li, M.; Zou, M.; Li, H. Urban Travel Behavior Study Based on Data Fusion Model. In Data-Driven Solutions to Transportation Problems; Elsevier Science: Amsterdam, The Netherlands, 2019; pp. 111–135. [Google Scholar] [CrossRef]
- Wen, C.; Koppelman, F.S. A conceptual and methdological framework for the generation of activity-travel patterns. Transportation 2000, 27, 5–23. [Google Scholar] [CrossRef]
- Torsten, H. What about people in regional science? Reg. Sci. Assoc. 1970, 24, 6–21. [Google Scholar]
- Schönfelder, S.; Axhausen, K.W. Activity spaces: Measures of social exclusion ? Transp. Policy 2003, 10, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Ben-Aakiva, M.; Lerman, S. Discrete Choice Analysis: Theory and Application to Travel Demand; MIT Press: Cambridge, MA, USA, 1985. [Google Scholar]
- McFadden, D. Conditional logit analysis of qualitative choice behavior. In The Econometric Society; Zaremba, P., Ed.; Academic Press: New York, NY, USA, 1974; pp. 105–142. [Google Scholar]
- Rasouli, S.; Timmermans, H. Applications of theories and models of choice and decision-making under conditions of uncertainty in travel behavior research. Travel Behav. Soc. 2014, 1, 79–90. [Google Scholar] [CrossRef]
- Ajzen, I. From intentions to actions: A theory of planned behavior. In Action Control; Kuhl, J., Beckmann, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 11–39. ISBN 9783642697487. [Google Scholar]
- Vafeiadis, E.; Naess, P. An Interdisciplinary Study of Transport Mode Choice. Diploma Thesis, Aalborg University, Aalborg, Denmark, 2012. [Google Scholar]
- Cervero, R.; Kockelman, K. Travel Demand and the3D: Density, Design, Diversity. Transp. Res. Part D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the Built Environment: A Synthesis. Transp. Res. Rec. 2001, 1780, 87–114. [Google Scholar] [CrossRef] [Green Version]
- Ewing, R.; Greenwald, M.J.; Zhang, M.; Walters, J.; Feldman, M.; Cervero, R.; Thomas, J. Measuring the Impact of Urban Form and Transit Access on Mixed Use Site Trip Generation Rates—Portland Pilot Study; US Environmental Protection Agency: Washington, DC, USA, 2009. [Google Scholar]
- Ewing, R.; Cervero, R. Travel and the built environment. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Lanzendorf, M. Mobility Styles and Travel Behavior: Application of a Lifestyle Approach to Leisure Travel. Transp. Res. Rec. J. Transp. Res. Board 2002, 1807, 163–173. [Google Scholar] [CrossRef]
- Cao, X.; Mokhtarian, P.L.; Handy, S.L. Examining the Impacts of Residential Self-Selection on Travel Behaviour: A Focus on Empirical Findings; Routledge Taylor and Francis Group: London, UK, 2009; Volume 29, ISBN 0144164080253. [Google Scholar]
- Hiscock, R.; Macintyre, S.; Kearns, A.; Ellaway, A. Means of transport and ontological security: Do cars provide psycho-social benefits to their users? Transp. Res. Part D Transp. Environ. 2002, 7, 119–135. [Google Scholar] [CrossRef]
- Steg, L. Car use: Lust and must. Instrumental, symbolic and affective motives for car use. Transp. Res. Part A Policy Pract. 2005, 39, 147–162. [Google Scholar] [CrossRef]
- Mars, L.; Arroyo, R.; Ruiz, T. Qualitative Research in Travel Behavior Studies. Transp. Res. Procedia 2016, 18, 434–445. [Google Scholar] [CrossRef]
- Bhatia, R. Land use: A key to livable transportation. In Proceedings of the 40th International Making Cities Livable Conference, London, UK, 13–17 June 2004. [Google Scholar]
- Cervero, R.; Duncan, M. Walking, Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area. Am. J. Public Health 2003, 93, 1478–1483. [Google Scholar] [CrossRef]
- Handy, S.; Cao, X.; Mokhtarian, P.L. Self-Selection in the Relationship between the Built Environment and Walking: Empirical Evidence from Northern California. J. Am. Plan. Assoc. 2006, 72, 55–74. [Google Scholar] [CrossRef]
- Targa, F.; Bank, W.; Clifton, K.J. Built environment and trip generation for non-motorized travel. In Proceedings of the National Household Travel Survey Conference: Data for Understanding Our Nation’s Travel, Washington, DC, USA, 1–2 November 2004. [Google Scholar]
- Boarnet, M.G.; Greenwald, M.; McMillan, T.E. Walking, urban design, and health: Toward a cost-benefit analysis framework. J. Plan. Educ. Res. 2008, 27, 341–358. [Google Scholar] [CrossRef]
- Van Acker, V.; Mokhtarian, P.L.; Witlox, F. Car availability explained by the structural relationships between lifestyles, residential location, and underlying residential and travel attitudes. Transp. Policy 2014, 35, 88–99. [Google Scholar] [CrossRef]
- Beirão, G.; Sarsfield Cabral, J.A. Understanding attitudes towards public transport and private car: A qualitative study. Transp. Policy 2007, 14, 478–489. [Google Scholar] [CrossRef]
- Thomas, G.O.; Walker, I.; Musselwhite, C. Grounded Theory analysis of commuters discussing a workplace carbon-reduction target: Autonomy, satisfaction, and willingness to change behaviour in drivers, pedestrians, bicyclists, motorcyclists, and bus users. Transp. Res. Part F Traffic Psychol. Behav. 2014, 26, 72–81. [Google Scholar] [CrossRef]
- Lovejoy, K.; Handy, S. Social networks as a source of private-vehicle transportation: The practice of getting rides and borrowing vehicles among Mexican immigrants in California. Transp. Res. Part A Policy Pract. 2011, 45, 248–257. [Google Scholar] [CrossRef]
- Bartle, C.; Avineri, E.; Chatterjee, K. Online information-sharing: A qualitative analysis of community, trust and social influence amongst commuter cyclists in the UK. Transp. Res. Part F Traffic Psychol. Behav. 2013, 16, 60–72. [Google Scholar] [CrossRef]
- Hannes, E.; Janssens, D.; Wets, G. Does space matter?: Travel mode scripts in daily activity travel. Environ. Behav. 2009, 41, 75–100. [Google Scholar] [CrossRef]
- Aldred, R.; Woodcock, J. Reframing safety: An analysis of perceptions of cycle safety clothing. Transp. Policy 2015, 42, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Baslington, H. School Travel Plans: Overcoming Barriers to Implementation. Transp. Rev. 2008, 28, 239–258. [Google Scholar] [CrossRef]
- Skippon, S.M. How consumer drivers construe vehicle performance: Implications for electric vehicles. Transp. Res. Part F Traffic Psychol. Behav. 2014, 23, 15–31. [Google Scholar] [CrossRef]
- Marra, A.D.; Becker, H.; Axhausen, K.W.; Corman, F. Developing a passive GPS tracking system to study long-term travel behavior. Transp. Res. Part C Emerg. Technol. 2019, 104, 348–368. [Google Scholar] [CrossRef] [Green Version]
- Thakur, A.; Pinjari, A.R.; Zanjani, A.B.; Short, J.; Mysore, V.; Tabatabaee, S.F. Development of algorithms to convert large streams of truck GPS data into truck trips. Transp. Res. Rec. 2015, 2529, 66–73. [Google Scholar] [CrossRef]
- Tawfik, A.M.; Rakha, H.A. Network route-choice evolution in a real-world experiment: Necessary shift from network- to driver-oriented modeling. Transp. Res. Rec. 2012, 2322, 70–81. [Google Scholar] [CrossRef]
- Schönfelder, S.; Samaga, U. Where do you want to go today? More observations on daily mobility. In Proceedings of the STRC 03 Conference Paper Updated Session Mobility, Ascona, Switzerland, 19–21 March 2003. [Google Scholar]
- Zhang, W.; Song, Y.; Qi, Y.; Li, Q.; Shen, M. Traveler Behavior Analysis Based on Car2Go Sharing Operation Data. In Proceedings of the International Conference on Transportation and Development, Pittsburgh, PA, USA, 15–18 July 2018; American Society of Civil Engineers: Reston, VA, USA, 2018; pp. 126–137. [Google Scholar]
- Mauch, M.; Taylor, B.D. Gender, Race, and Travel Behavior: Analysis of Household-Serving Travel and Commuting in San Francisco Bay Area. Transp. Res. Rec. J. Transp. Res. Board 1997, 1607, 147–153. [Google Scholar] [CrossRef]
- Elias, W.; Benjamin, J.; Shiftan, Y. Gender differences in activity and travel behavior in the Arab world. Transp. Policy 2015, 44, 19–27. [Google Scholar] [CrossRef]
- Bardazzi, R.; Pazienza, M.G. Ageing and private transport fuel expenditure: Do generations matter? Energy Policy 2018, 117, 396–405. [Google Scholar] [CrossRef]
- Barnes, R.; Winters, M.; Ste-Marie, N.; McKay, H.; Ashe, M.C. Age and retirement status differences in associations between the built environment and active travel behaviour. J. Transp. Health 2016, 3, 513–522. [Google Scholar] [CrossRef]
- Lizana, M.; Carrasco, J.A.; Tudela, A. Studying the relationship between activity participation, social networks, expenditures and travel behavior on leisure activities. Transportation 2020, 47, 1765–1786. [Google Scholar] [CrossRef]
- Lin, T.; Wang, D.; Zhou, M. Residential relocation and changes in travel behavior: What is the role of social context change? Transp. Res. Part A Policy Pract. 2018, 111, 360–374. [Google Scholar] [CrossRef]
- Srinivasan, S.; Ferreira, J. Travel behavior at the household level: Understanding linkages with residential choice. Transp. Res. Part D Transp. Environ. 2002, 7, 225–242. [Google Scholar] [CrossRef]
- Bajracharya, A.R.; Shrestha, S.; Skotte, H. Linking Travel Behavior and Urban Form with Travel Energy Consumption for Kathmandu Valley, Nepal. J. Urban Plan. Dev. 2020, 146, 05020008. [Google Scholar] [CrossRef]
- Girod, B.; van Vuuren, D.P.; de Vries, B. Influence of travel behavior on global CO2 emissions. Transp. Res. Part A Policy Pract. 2013, 50, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Kamruzzaman, M.; De Vos, J.; Currie, G.; Giles-Corti, B.; Turrell, G. Spatial biases in residential mobility: Implications for travel behaviour research. Travel Behav. Soc. 2020, 18, 15–28. [Google Scholar] [CrossRef]
- Stelina, J. Legal restrictions on work on Sundays and festive days in Poland. Istor. Cult. Cetatenie Un. Eur. 2018, 11, 105–114. [Google Scholar]
- Cheng, X.; Huang, K.; Qu, L.; Zhang, T.; Li, L. Effects of Vehicle Restriction Policies on Urban Travel Demand Change from a Built Environment Perspective. J. Adv. Transp. 2020, 2020, 9848095. [Google Scholar] [CrossRef]
- Gu, Y.; Deakin, E.; Long, Y. The effects of driving restrictions on travel behavior evidence from Beijing. J. Urban Econ. 2017, 102, 106–122. [Google Scholar] [CrossRef]
- Yang, J.; Liu, A.A.; Qin, P.; Linn, J. The effect of vehicle ownership restrictions on travel behavior: Evidence from the Beijing license plate lottery. J. Environ. Econ. Manag. 2020, 99, 102269. [Google Scholar] [CrossRef]
- Arroyo, R.; Ruiz, T.; Casquero, D.; Mars, L. Trip Characteristics Analysis of the Effects of a Travel Behavior Change Program. Transp. Res. Rec. 2018, 2672, 146–158. [Google Scholar] [CrossRef]
- García-Garcés, P.; Ruiz, T.; Habib, K.M.N. Effect of travel behaviour change programmes on time allocated to driving. Transp. A Transp. Sci. 2016, 12, 1–19. [Google Scholar] [CrossRef]
- Shires, J.; Marsden, G.; Docherty, I.; Anable, J. Forth Road Bridge Closure Survey: Analysis of Commuter Behaviour. Transp. A Transp. Sci. 2016, 12, 1–19. [Google Scholar]
- Walsh, C.L.; Glendinning, S.; Castán-Broto, V.; Dewberry, E.; Powell, M. Are wildcard events on infrastructure systems opportunities for transformational change? Futures 2015, 67, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Parkes, S.D.; Jopson, A.; Marsden, G. Understanding travel behaviour change during mega-events: Lessons from the London 2012 Games. Transp. Res. Part A Policy Pract. 2016, 92, 104–119. [Google Scholar] [CrossRef]
- Li, R.; Guo, M. Effects of odd—Even traffic restriction on travel speed and traffic volume: Evidence from Beijing Olympic Games. J. Traffic Transp. Eng. 2016, 3, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Zhang, T.; Wang, M. Holiday travel behavior analysis and empirical study with Integrated Travel Reservation Information usage. Transp. Res. Part A Policy Pract. 2020, 134, 130–151. [Google Scholar] [CrossRef]
- Wang, B.; Shao, C.; Li, J.; Weng, J.; Ji, X. Holiday travel behavior analysis and empirical study under integrated multimodal travel information service. Transp. Policy 2015, 39, 21–36. [Google Scholar] [CrossRef]
- Ren, X.; Chen, Z.; Wang, F.; Wang, J.; Wang, C.; Dan, T.; Du, Z. Impact of high-speed rail on intercity travel behavior change: The evidence from the Chengdu-Chongqing Passenger Dedicated Line. J. Transp. Land Use 2019, 12, 265–285. [Google Scholar] [CrossRef] [Green Version]
- Nouvellet, P.; Bhatia, S.; Cori, A.; Ainslie, K.E.C.; Baguelin, M.; Bhatt, S.; Boonyasiri, A.; Brazeau, N.F.; Cattarino, L.; Cooper, L.V.; et al. Reduction in mobility and COVID-19 transmission. Nat. Commun. 2021, 12, 1090. [Google Scholar] [CrossRef]
- Baig, A.M.; Khaleeq, A.; Ali, U.; Syeda, H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem. Neurosci. 2020, 11, 995–998. [Google Scholar] [CrossRef] [Green Version]
- Przybylowski, A.; Stelmak, S.; Suchanek, M. Mobility behaviour in view of the impact of the COVID-19 pandemic-public transport users in gdansk case study. Sustainability 2021, 13, 364. [Google Scholar] [CrossRef]
- Smolarski, M. Restrictions on regional passenger transport during epidemiological threat (COVID-19)—An example of the Lower Silesian Voivodship in Poland. Pr. Kom. Geogr. Komun. PTG 2020, 23, 56–61. [Google Scholar] [CrossRef]
- Van Paassen, J.; Vos, J.S.; Hoekstra, E.M.; Neumann, K.M.I.; Boot, P.C.; Arbous, S.M. Corticosteroid use in COVID-19 patients: A systematic review and meta-analysis on clinical outcomes. Crit. Care 2020, 24, 696. [Google Scholar] [CrossRef]
- Goniewicz, K.; Khorram-Manesh, A.; Hertelendy, A.J.; Goniewicz, M.; Naylor, K.; Burkle, F.M. Current response and management decisions of the European Union to the COVID-19 outbreak: A review. Sustainability 2020, 12, 3838. [Google Scholar] [CrossRef]
- Basu, R.; Ferreira, J. Sustainable mobility in auto-dominated Metro Boston: Challenges and opportunities post-COVID-19. Transp. Policy 2021, 103, 197–210. [Google Scholar] [CrossRef]
- Sarkady, D.; Neuburger, L.; Egger, R. Virtual Reality as a Travel Substitution Tool during COVID-19. In Information and Communication Technologies in Tourism 2021; Wörndl, W., Koo, C., Stienmetz, J.L., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 452–463. [Google Scholar] [CrossRef]
- Combs, T.S.; Pardo, C.F. Shifting streets COVID-19 mobility data: Findings from a global dataset and a research agenda for transport planning and policy. Transp. Res. Interdiscip. Perspect. 2021, 9, 100322. [Google Scholar] [CrossRef]
- Gössling, S.; Scott, D.; Hall, C.M. Pandemics, tourism and global change: A rapid assessment of COVID-19. J. Sustain. Tour. 2020, 29, 1–20. [Google Scholar] [CrossRef]
- Shamshiripour, A.; Rahimi, E.; Shabanpour, R.; Mohammadian, A. (Kouros) How is COVID-19 reshaping activity-travel behavior? Evidence from a comprehensive survey in Chicago. Transp. Res. Interdiscip. Perspect. 2020, 7, 100216. [Google Scholar] [CrossRef]
- Browne, H.P.; Forster, S.C.; Anonye, B.O.; Kumar, N.; Neville, B.A.; Stares, M.D.; Goulding, D.; Lawley, T.D. Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation. Nature 2016, 533, 543–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goscé, L.; Johansson, A. Analysing the link between public transport use and airborne transmission: Mobility and contagion in the London underground. Environ. Health 2018, 17, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morawska, L.; Tang, J.W.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; et al. How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 2020, 142, 105832. [Google Scholar] [CrossRef] [PubMed]
- Marston, H.R.; Musselwhite, C.; Hadley, R. COVID-19 vs Social Isolation: The Impact Technology can have on Communities, Social Connections and Citizens. Ageing Issues 2020, 1–6. Available online: https://ageingissues.wordpress.com/2020/03/18/COVID-19-vs-socialisolation-the-impact-technology-can-have-on-communities-social-connections-and-citizens/?fbclid=IwAR1sUsffKNd_G5u6d_oc0Z56u4Es7HyoCJYKr0qSnqFxX68pD3PY5JaSl7g (accessed on 4 March 2022).
- Troko, J.; Myles, P.; Gibson, J.; Hashim, A.; Enstone, J.; Kingdon, S.; Packham, C.; Amin, S.; Hayward, A.; Van-Tam, J.N. Is public transport a risk factor for acute respiratory infection? BMC Infect. Dis. 2011, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Pastore y Piontti, A.; Mu, K.; Rossi, L.; Sun, K.; et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 2020, 368, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Irawan, M.Z.; Belgiawan, P.F.; Joewono, T.B.; Bastarianto, F.F.; Rizki, M.; Ilahi, A. Exploring activity-travel behavior changes during the beginning of COVID-19 pandemic in Indonesia. Transportation 2021, 49, 529–553. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.; Ali, N.; Hussain, S.A.; Aslam, A.B.; Javid, M.A. Measuring changes in travel behavior pattern due to COVID-19 in a developing country: A case study of Pakistan. Transp. Policy 2021, 108, 21–33. [Google Scholar] [CrossRef]
- Grenfell, B.; Dye, C.; Wang, Q.; Pybus, O.; Bjornstad, O.N.; Cui, Y.; Yang, R.; Song, Y.; Zheng, P.; Tian, H.; et al. Early evaluation of transmission control measures in response to the 2019 novel coronavirus outbreak in China. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Linka, K.; Peirlinck, M.; Sahli Costabal, F.; Kuhl, E. Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions. Comput. Methods Biomech. Biomed. Engin. 2020, 23, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.A.; Balmer, M.; Neumann, A.; Nagel, K. Mobility traces and spreading of COVID-19. medRxiv 2020, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Vannoni, M.; McKee, M.; Semenza, J.C.; Bonell, C.; Stuckler, D. Using volunteered geographic information to assess mobility in the early phases of the COVID-19 pandemic: A cross-city time series analysis of 41 cities in 22 countries from March 2nd to 26th 2020. Glob. Health 2020, 16, 85. [Google Scholar] [CrossRef]
- Borkowski, P.; Jażdżewska-Gutta, M.; Szmelter-Jarosz, A. Lockdowned: Everyday mobility changes in response to COVID-19. J. Transp. Geogr. 2021, 90, 102906. [Google Scholar] [CrossRef]
- Pawar, D.S.; Yadav, A.K.; Akolekar, N.; Velaga, N.R. Impact of physical distancing due to novel coronavirus (SARS-CoV-2) on daily travel for work during transition to lockdown. Transp. Res. Interdiscip. Perspect. 2020, 7, 100203. [Google Scholar] [CrossRef]
- Tardivo, A.; Sánchez Martín, C.; Carrillo Zanuy, A. COVID-19 impact in Transport, an essay from the Railways’ system research perspective. Transp. Res. Rec. J. Transp. Res. Board. 2020, 2675, 367–378. [Google Scholar] [CrossRef]
- Wiese, A.; Zielke, S.; Toporowski, W. Shopping travel behaviour: Influencing factors, shopper types and environmental consequences. Int. J. Retail Distrib. Manag. 2015, 43, 469–484. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, P.; Lin, J.-J. Exploring shopping travel behavior of millennials in Beijing: Impacts of built environment, life stages, and subjective preferences. Transp. Res. Part A Policy Pract. 2021, 147, 49–60. [Google Scholar] [CrossRef]
- Farag, S.; Dijst, M.; Lanzendorf, M. Exploring the Use of E-Shopping and Its Impact on Personal Travel Behavior in the Netherlands. Transp. Res. Rec. 2003, 3058, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wang, X. (Cara) Explore the relationship between online shopping and shopping trips: An analysis with the 2009 NHTS data. Transp. Res. Part A Policy Pract. 2014, 70, 1–9. [Google Scholar] [CrossRef]
- Chmielewski, J. Impact of Sunday Trade Ban on Traffic Volumes. In Scientific and Technical Conference Transport Systems Theory and Practice; Springer: Cham, Switzerland, 2019; pp. 231–241. [Google Scholar]
- Macioszek, E.; Lach, D. Analysis of the Results of General Traffic Measurements in the West Pomeranian Voivodeship from 2005 to 2015. Sci. J. Silesian Univ. Technol. Ser. Transp. 2017, 97, 93–104. [Google Scholar] [CrossRef]
- Macioszek, E.; Lach, D. Comparative analysis of the results of general traffic measurements for the Silesian Voivodeship and Poland. Sci. J. Silesian Univ. Technol. Ser. Transp. 2018, 100, 105–113. [Google Scholar] [CrossRef]
- Macioszek, E.; Lach, D. Analysis of Traffic Conditions at the Brzezinska and Nowochrzanowska Intersection in Myslowice (Silesian Province, Poland). Sci. J. Silesian Univ. Technol. Ser. Transp. 2018, 98, 81–88. [Google Scholar] [CrossRef]
- Parady, G.; Taniguchi, A.; Takami, K. Travel behavior changes during the COVID-19 pandemic in Japan: Analyzing the effects of risk perception and social influence on going-out self-restriction. Transp. Res. Interdiscip. Perspect. 2020, 7, 100181. [Google Scholar] [CrossRef]
- Beck, M.J.; Hensher, D.A. Insights into the impact of COVID-19 on household travel and activities in Australia—The early days under restrictions. Transp. Policy 2020, 96, 76–93. [Google Scholar] [CrossRef]
- Hannam, K.; Sheller, M.; Urry, J. Editorial: Mobilities, Immobilities and Moorings. Mobilities 2006, 1, 1–22. [Google Scholar] [CrossRef]
- Kovács, A.; Sikos, T.T. The Impact of Sunday Closure on Consumer Behavior. Rom. Rev. Reg. Stud. J. Cent. Reg. Geogr. 2016, 12, 39–50. [Google Scholar]
- Freathy, P.; Sparks, L. Sunday working in the retail trade. Int. J. Retail Distrib. Manag. 1993, 21, 3. [Google Scholar] [CrossRef]
- Skuterud, M. The impact of Sunday shopping on employment and hours of work in the retail industry: Evidence from Canada. Eur. Econ. Rev. 2005, 49, 1953–1978. [Google Scholar] [CrossRef]
- Genakos, C.; Danchev, S. Evaluating the Impact of Sunday Trading Deregulation; Centre for Economic Performance (CEP): London, UK, 2015. [Google Scholar]
- Khan, H. Sunday is the new Saturday: Sunday trading reforms and its effects on family-run SMEs, employees and consumers. J. Small Bus. Enterp. Dev. 2018, 25, 960–984. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Lee, H. The Effects of Trading-Hour Regulations on Large Stores in Korea. J. Distrib. Sci. 2017, 15, 5–14. [Google Scholar]
- Atserias, A.; Ochremiak, J. Definable ellipsoid method, sums-of-squares proofs, and the isomorphism problem. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, Oxford, UK, 9–12 July 2018; pp. 66–75. [Google Scholar] [CrossRef] [Green Version]
- Gurazda, P. Ograniczenie handlu a konstytucyjne prawa i wolności przedsiębiorców. Zesz. Stud. Kół Nauk. Wydz. Prawa i Adm. UAM 2020, 10, 67–81. [Google Scholar]
- Končar, J.; Marić, R.; Vukmirović, G.; Vučenović, S. Sustainability of food placement in retailing during the COVID-19 pandemic. Sustainability 2021, 13, 5956. [Google Scholar] [CrossRef]
- Wójcik, M. Rozwój osadnictwa wiejskiego w województwie łódzkim. Acta Univ. Lodz. Folia Geogr. Socio-Oeconomica 2008, 9, 115–122. [Google Scholar]
- Liszewski, S. Zarys Monografii Województwa Łódzkiego; Funkcja Regionalna Łodzi i Jej Rola w Kształtowaniu Województwa; Łódzkie Towarzystwo Naukowe: Łódź, Poland, 2001; p. 456. ISBN 8387749478. [Google Scholar]
- Kowalski, M.; Wiśniewski, S. Centrum handlowe jako czynnik ruchotwórczy w transporcie samochodowym—Przykład Portu Łódź. Prz. Geogr. 2017, 89, 617–639. [Google Scholar] [CrossRef] [Green Version]
- GUS Badanie pilotażowe zachowań komunikacyjnych ludności w Polsce; Jachranka. 2015. Available online: https://stat.gov.pl/files/gfx/portalinformacyjny/pl/defaultaktualnosci/6334/14/1/1/badanie_pilotazowe_zachowan_komunikacyjnych_ludnosci_w_polsce.pdf (accessed on 4 March 2022).
- Ioannidis, J.P.A. A fiasco in the making? As the coronavirus pandemic takes hold, we are making decisions without reliable data. Stat 2020, 17, 1–6. [Google Scholar]
- Kowalski, M.; Wiśniewski, S. Natężenie ruchu a zagospodarowanie Łodzi—Zarys problematyki w świetle danych z Obszarowego Systemu Sterowania Ruchem. Pr. Kom. Geogr. Komun. PTG 2017, 20, 20–36. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Dragicevic, S.; Castro, F.A.; Sester, M.; Winter, S.; Coltekin, A.; Pettit, C.; Jiang, B.; Haworth, J.; Stein, A.; et al. Geospatial big data handling theory and methods: A review and research challenges. ISPRS J. Photogramm. Remote Sens. 2016, 115, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Po, L.; Rollo, F.; Bachechi, C.; Corni, A. From sensors data to urban traffic flow analysis. In Proceedings of the 5th IEEE International Smart Cities Conference ISC2, Casablanca, Morocco, 14–17 October 2019; pp. 478–485. [Google Scholar] [CrossRef] [Green Version]
- Twardzik, M. Typologia i znaczenie centrów handlowych dla miast województwa śląskiego. Stud. Miej. 2014, 16, 129–145. [Google Scholar] [CrossRef]
- Tarkowski, M.; Puzdrakiewicz, K.; Jaczewska, J.; Połom, M. COVID-19 lockdown in Poland—Changes in regional and local mobility patterns based on Google Maps data. Pr. Kom. Geogr. Komun. PTG 2020, 23, 46–55. [Google Scholar] [CrossRef]
- GUS Główny Urząd Statystyczny w Polsce. Available online: https://stat.gov.pl/ (accessed on 10 March 2021).
- Śliż, P. Remote work during the COVID-19 epidemic in Poland—Results of an empirical study. E-Mentor 2020, 85, 50–85. [Google Scholar] [CrossRef]
- Abdullah, M.; Dias, C.; Muley, D.; Shahin, M. Exploring the impacts of COVID-19 on travel behavior and mode preferences. Transp. Res. Interdiscip. Perspect. 2020, 8, 100255. [Google Scholar] [CrossRef] [PubMed]
- Aloi, A.; Alonso, B.; Benavente, J.; Cordera, R.; Echániz, E.; González, F.; Ladisa, C.; Lezama-Romanelli, R.; López-Parra, Á.; Mazzei, V.; et al. Effects of the COVID-19 lockdown on urban mobility: Empirical evidence from the city of Santander (Spain). Sustainability 2020, 12, 3870. [Google Scholar] [CrossRef]
- Tirachini, A.; Cats, O. COVID-19 and public transportation: Current assessment, prospects, and research needs. J. Public Transp. 2020, 22. [Google Scholar] [CrossRef]
Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday | ||
---|---|---|---|---|---|---|---|---|
2016 | 14.9% | 15.3% | 15.6% | 15.8% | 15.8% | 12.4% | 10.2% | |
2017 | 15.3% | 15.6% | 16.1% | 13.0% | 11.2% | 14.5% | 14.3% | |
2018 | week with trading Sunday | 15.1% | 15.4% | 15.5% | 15.5% | 15.9% | 12.4% | 10.1% |
week with non-trading Sunday | 15.7% | 15.8% | 16.1% | 16.2% | 16.1% | 11.6% | 8.5% | |
2019 | week with trading Sunday | 14.9% | 15.3% | 15.1% | 15.2% | 16.1% | 12.8% | 10.7% |
week with non-trading Sunday | 15.4% | 15.8% | 15.8% | 15.6% | 15.9% | 12.5% | 9.1% | |
2020 | week with trading Sunday | 15.2% | 15.7% | 15.5% | 15.7% | 16.2% | 12.0% | 9.8% |
week with non-trading Sunday | 16.5% | 17.0% | 17.0% | 16.4% | 13.5% | 11.0% | 8.6% | |
2021 | week with trading Sunday | 15.6% | 15.9% | 15.8% | 15.7% | 16.3% | 11.5% | 9.2% |
week with non-trading Sunday | 15.5% | 15.7% | 15.9% | 16.0% | 16.6% | 12.5% | 7.9% |
Periods | Food, Beverages and Tobacco Products | Textiles, Clothing, Footwear | Furniture, Radio, TV and Household Appliances |
---|---|---|---|
Corresponding period of previous year = 100 | |||
2020 III | 109.9 | 49.5 | 83.5 |
2020 IV | 90.9 | 35.4 | 83.4 |
2020 V | 97.7 | 88.3 | 114.6 |
2020 VI | 100.2 | 93.5 | 116.8 |
2020 VII | 103.0 | 103.4 | 116.8 |
2020 VIII | 99.9 | 99.5 | 110.9 |
2020 IX | 104.8 | 96.5 | 109.7 |
2020 X | 100.9 | 88.3 | 113.0 |
2020 XI | 99.4 | 75.6 | 100.7 |
2020 XII | 102.3 | 85.7 | 105.1 |
2021 I | 100.5 | 57.2 | 108.8 |
2021 II | 95.6 | 109.9 | 111.1 |
2021 III | 103.7 | 190.7 | 141.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowska-Stefańska, M.; Kowalski, M.; Kurzyk, P.; Sahebgharani, A.; Wiśniewski, S. Spatiotemporal Changeability of the Load of the Urban Road Transport System under Permanent and Short-Term Legal and Administrative Retail Restrictions. Sustainability 2022, 14, 5137. https://doi.org/10.3390/su14095137
Borowska-Stefańska M, Kowalski M, Kurzyk P, Sahebgharani A, Wiśniewski S. Spatiotemporal Changeability of the Load of the Urban Road Transport System under Permanent and Short-Term Legal and Administrative Retail Restrictions. Sustainability. 2022; 14(9):5137. https://doi.org/10.3390/su14095137
Chicago/Turabian StyleBorowska-Stefańska, Marta, Michał Kowalski, Paulina Kurzyk, Alireza Sahebgharani, and Szymon Wiśniewski. 2022. "Spatiotemporal Changeability of the Load of the Urban Road Transport System under Permanent and Short-Term Legal and Administrative Retail Restrictions" Sustainability 14, no. 9: 5137. https://doi.org/10.3390/su14095137