Soils of the Ribeira Valley (Brazil) as Environmental Protection Barriers: Characterization and Adsorption of Lead and Cadmium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils
2.2. Characterization Tests
2.3. Adsorption Tests
2.4. Statistical Treatment
3. Results and Discussion
3.1. Soil Characterization
3.2. Pb and Cd Adsorption
3.3. Statistical Treatment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Matschult, J.; Borba, R.; Deschamps, E.; Figueiredo, B.R.; Gabrio, T.; Schwenk, M. Human and Environmental contamination in the Iron Quadrangle, Brazil. Appl. Geochem. 2000, 15, 181–190. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, J.; Wang, H.; Han, X.; Ma, J.; Ma, Y.; Luan, H. Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: A global meta-analysis. Sci. Total Environ. 2020, 713, 135292. [Google Scholar] [CrossRef] [PubMed]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef]
- Kasemodel, M.C. Avaliação Integrada da Contaminação por Metais Potencialmente Tóxicos em Área de Disposição de Resíduo de Mineração de Chumbo—Adrianópolis (PR). Ph.D. Thesis, University of São Paulo, São Paulo, Brazil, 2017. [Google Scholar]
- Campos, B.G.; Cruz, A.C.F.; Buruaem, L.M.; Rodrigues, A.P.C.; Machado, W.T.V.; Abessa, D.M.S. Using a tiered approach based on ecotoxicological techniques to assess the ecological risks of contamination in a subtropical estuarine protected área. Sci. Total Environ. 2016, 544, 564–573. [Google Scholar] [CrossRef] [Green Version]
- Perina, F.C.; Abessa, D.M.S. Contamination and toxicity in a subtropical Estuarine Protected Area influenced by former mining activities. Ocean Coast. Res. 2020, 68, e20313. [Google Scholar] [CrossRef]
- Luo, X.; Wu, C.; Lin, Y.; Li, W.; Deng, M.; Tan, J.; Xue, S. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization. J. Environ. Sci. 2022, 125, 662–677. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnam, M.B.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to imobilize? J. Hazard Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Sposito, G. The Surface Chemistry of Soils, 3rd ed.; University Press: Oxford, UK, 1984. [Google Scholar]
- Yong, R.N.; Mulligan, C.N. Natural and Enhanced Attenuation of Contaminants in Soils, 2nd ed.; Taylor & Francis: Boca Raton, FL, USA, 2019; 325p. [Google Scholar]
- Rowe, R.K.; Quigley, R.M.; Brachman, R.W.I.; Booker, J.R. Clayey Barrier Systems for Waste Disposal Facilities; Taylor & Francis: London, UK, 1995; 405p. [Google Scholar]
- Bonaparte, R.; Daniel, D.E.; Koerner, R.M. Assessment and Recommendations for Improving the Performance of Waste Containment Systems; United States Environmental protection Agency (USEPA): Cincinnati, OH, USA, 2002.
- Voudrias, E.A. The concept of a sorption chemical barrier for improving effectiveness of landfill liners. Waste Manag. Res. 2002, 20, 251–258. [Google Scholar] [CrossRef]
- Kassambara, A. Practical Guide to Principal Component Methods in R—Multivariative Analysis II. PCA, (M)CA, FAMD, MFA, HCPC, Factoextra, 1st ed.; Statistical Tools for High-Throughput Data Analysis (STHDA), 2017; 205p. [Google Scholar]
- Kassambara, A. Practical Guide to Cluster Analysis in R—Multivatiative Analysis, I. Unsupervised Machine Learning, 1st ed.; Statistical Tools for High-Throughput Data Analysis (STHDA), 2017; 187p. [Google Scholar]
- Gomes, J.B.V.; Curi, N.; Motta, P.E.F.; Ker, J.C.; Marques, J.J.G.S.M.; Schulze, D.G. Análise de componentes principais de atributos físicos, químicos e mineralógicos de solos do Bioma Cerrado. Rev. Bras. De Ciência Do Solo 2004, 28, 137–153. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.A.; Lima, J.S.S.; Xavier, A.C.; Teixeira, M.M. Variabilidade espacial de atributos químcios de um latossolo vermelho-amarelo húmiuco cultivado com café. Rev. Bras. De Ciência Do Solo 2010, 34, 15–22. [Google Scholar] [CrossRef]
- Santi, A.L.; Amado, T.J.C.; Cherubin, M.R.; Martin, T.N.; Pires, J.L.; Flora, L.P.D.; Basso, C.J. Análise de componentes principais de atributos químicos e físicos do solo limitantes à produtividade de grãos. Pesqui. Agropecuária Bras. 2012, 47, 1346–1357. [Google Scholar] [CrossRef] [Green Version]
- Freitas, L.; Casagrande, J.C.; Oliveira, I.A.; Souza Junior, P.R.; Campos, M.C.C. Multivariative analyzes of soil chemical atributes for characterization of environments. Agro@mbiente On-Line 2014, 8, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, I.A.; Campos, M.C.C.; Freitas, L.; Soares, M.D.R. Caracterização de solos sob diferentes usos na região sul do Amazonas. Acta Amaz. 2015, 45, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kummer, L.; Melo, V.F.; Barros, Y.J.; Azevedo, J.C.R. Use of Principal Component Analysis for grouping soil samples based on particle size and chemical and mineralogical characteristics. Sci. Agrar. 2010, 11, 469–480. [Google Scholar]
- Kasapoe, R.W.; Amuah, E.E.Y.; Dankwa, P.; Ibrahim, K.; Mville, B.N.; Abubakari, S.; Bawa, N. Compositional and source patterns of potentially toxic elements (PTEs) in soils in southwestern Ghana using robust compositional contamination index (RCCI) and k-means cluster analysis. Environ. Chall. 2021, 5, 100248. [Google Scholar] [CrossRef]
- Xu, H.; Croot, P.; Zhang, C. Discovering hidden spatial patterns and their associations with controlling factors for pottentially toxic elements in topsoil using hot spot analysis and K-means clustering analysis. Environ. Int. 2021, 151, 106456. [Google Scholar] [CrossRef]
- Bosso, S.T.; Enzweiller, J. Evaluation of heavy metal removal from aqueous solution onto scolecite. Water Res. 2002, 36, 4795–4800. [Google Scholar] [CrossRef]
- Guimarães, V. Resíduos de Mineração e Metalurgia: Efeitos Poluidores em Sedimentos e Em Espécie Biomonitora Rio Ribeira de Iguap—SP. Ph.D. Thesis, University of São Paulo, São Paulo, Brazil, 2007. [Google Scholar]
- Kummer, L.; Melo, V.F.; Barros, Y.J.; Azevedo, J.C. Sequential extraction of lead and zinc from soils of heavy metal mining and processing area. Braz. J. Soils Sci. 2011, 35, 2005–2018. [Google Scholar]
- Kasemodel, M.C.; Lima, J.Z.; Sakamoto, I.K.; Varesche, M.B.A.; Rodrigues, V.G.S. Soil contaminantion assessment for Pb, Zn and Cd in a slag disposal área using the integration of geochemical and microbiological data. Environ. Monit. Assess. 2016, 188, 124. [Google Scholar] [CrossRef]
- Kasemodel, M.C.; Papa, T.B.R.; Sígolo, J.B.; Rodrigues, V.G.S. Assessment of the mobility, bioaccessibility, and ecological risk of Pb and Zn on a dirt road located in a former mining área—Ribeira Valley—Brazil. Environ. Monit. Assess. 2019, 191, 15. [Google Scholar] [CrossRef]
- Cruz, A.C.F.; Gusso-Choueri, P.; Araujo, G.S.; Campos, B.G.; Abessa, D.M. Levels of metals and toxicity in sediments from a Ramsar site influenced by former mining activities. Ecotoxicol. Environ. Saf. 2019, 171, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Vedolin, M.C.; Trevizani, T.H.; Angeli, J.L.F.; Petti, M.A.V.; Figueira, R.C.L. Assessment of metal concentration in Goniopsis cruentata (Latreille, 1803) (Decapoda, Grapsidae) from two Brazilian mangroves under different anthropogenic influences. Reg. Stud. Mar. Sci. 2020, 36, 101305. [Google Scholar] [CrossRef]
- Araujo, G.S.; Cruz, A.C.F.; Gusso-Choueri, P.K.; Saint’pierre, T.D.; Hauser-Davis, R.A.; Martins, C.C.; Abessa, D.M.S. Sediment quality of a Ramsar site assessed by chemical and ecotoxicological approaches. Reg. Stud. Mar. Sci. 2020, 35, 101145. [Google Scholar] [CrossRef]
- Salgado, L.D.; Marques, A.E.M.L.; Kramer, R.D.; Oliveira, F.G.; Moretto, S.L.; Lima, B.A.; Prodocimo, M.M.; Cestari, M.M.; Azevedo, J.C.R.; Assis, H.C.S. Sediment contamination and toxic effects on Violet Goby fish (Gobioides broussonnetii—Gobiidae) from a marine protected área in South Atlantic. Environ. Res. 2021, 195, 110308. [Google Scholar] [CrossRef]
- Gutierrez, M.; Mickus, K.; Camacho, L.M. Abandoned Pb-Zn mining wastes and their mobility as proxy to toxicity: A review. Sci. Total Environ. 2016, 5656, 392–400. [Google Scholar] [CrossRef]
- Cornelissen, H.; Watson, I.; Adam, E.; Malefetse, T. Challenges and strategies of abandoned mine rehabilitation in South Africa: The case of asbestos mine rehabilitation. J. Geochem. Explor. 2019, 205, 106354. [Google Scholar] [CrossRef]
- Reyes, A.; Cuevas, J.; Fuentes, B.; Fernandez, E.; Arce, W.; Guerrero, M.; Leteller, M.V. Distribution of toxic elements in soils surrounding abandoned mining waste located in Taltal, Northern Chile. J. Geochem. Explor. 2021, 220, 106653. [Google Scholar] [CrossRef]
- Langmuir, D. Aqueous Environmental Geochemistry; Prentice Hall: Hoboken, NJ, USA, 2018. [Google Scholar]
- Mohamed, A.-M.O.; Paleologos, E.K.; Rodrigues, V.G.S.; Singh, D.N. Fundamentals of Geoenvironmental Engineering: Understanding Soil, Water, and Pollutant Interaction and Transport; Butterworth-Heineman: Oxford, UK, 2018. [Google Scholar]
- Vettorazi, C.A.; Angulo Filho, R. Caracterização de Solos do Vale do Ribeira de Iguape no Estado de São Paulo através de Índices de relevo. ESA Luiz Queiroz 1986, 43, 517–536. [Google Scholar] [CrossRef] [Green Version]
- Instituto Brasileiro de Geologia e Estatística (IBGE). Mapa Pedológico 1:250000. Folha Curitiba SG.22 e Folha Iguape SG.23. Available online: https://dados.gov.br/dataset/cren_pedologiasg23 (accessed on 3 September 2021).
- Marques, J.P. Caracterização Geológica-Geotécnica de Solo Residual de Eldorado Paulista (SP) Para uso Como Barreira Selante. Undergraduate Thesis, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil, 2014. [Google Scholar]
- Vaz, C.M.P.; Oliveira, J.C.M.; Reichardt, K.; Crestana, S.; Cruvinel, P.E.; Bacchi, O.O.S. Soil mechanical analysis through gamma ray attenuation. Soil Technol. 1992, 5, 319–325. [Google Scholar]
- Naime, J.M.; Vaz, C.M.P.; Macedo, A. Automated soil particle size analyzer based on gamma-ray attenuation. Comput. Eletron. Agric. 2001, 31, 295–304. [Google Scholar] [CrossRef]
- Empresa Brasileira De Pesquisa Agropecuári—EMBRAPA. Manual de Métodos de Análise de Solo; EMBRAPA: Rio de Janeiro, Brazil, 2011. [Google Scholar]
- Camargo, O.A.; Moniz, A.C.; Jorge, J.A.; Valadares, J.M.A.S. Métodos de Análise Química, Mineralógica e Física de Solos do Instituto Agronômico de Campinas; Instituto Agronômico: Campinas, Brazil, 2009. [Google Scholar]
- Raij, B.V.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química Para Avaliação da Fertilidade de Solos Tropicais; Instituto Agronômico: Campinas, Brazil, 2001. [Google Scholar]
- Greg, S.J.; Sing, K.S.W. Adsorption, Surface Area and Porosity; Academic Press: London, UK, 1982; 313p. [Google Scholar]
- Poppe, L.J.; Paskevich, V.P.; Hathaway, J.C.; Blackwood, D.S. A Laboratory Manual for X-ray Powder Diffraction; United States Geological Survey (USGS) Report 01–041; United States Geological Survey (USGS): Woods Hole, MA, USA, 2002.
- Roy, W.R.; Krapac, I.G.; Chou, S.F.J.; Griffin, R.A. Batch Type Procedures for Estimating Soil Adsorption of Chemicals; United States Environmental Protection Agency (USEPA): Cincinnati, OH, USA, 1992.
- Benson, C.H.; Zhai, H.; Wang, X. Estimating Hydraulic Conductivity of Compacted Clay Liners. J Geotech. Eng. 1994, 120, 366–387. [Google Scholar] [CrossRef]
- Fageria, N.K.; Stone, L.F. Manejo da Acidez dos Solos de Cerrado e de Várzea do Brasil; Embrapa Arroz e Feijão: Santo Antônio de Goiás, Brazil, 1999. [Google Scholar]
- Silva, M.L.N.; Curi, N.; Marques, J.J.G.S.M.; Guilherme, L.R.G.; Lima, M.N. Ponto de efeito salino nulo e suas relações com propriedades mineralógicas e químicas de latossolos brasileiros. Pesqui. Agropecuária Bras. 1996, 31, 663–671. [Google Scholar]
- Braz, A.M.; Fernandes, A.R.; Ferreira, J.R.; Alleoni, L.R.F. Prediction of the distribution coefficients of metals in Amazonian soils. Ecotoxicol. Environ. Saf. 2013, 94, 212–220. [Google Scholar] [CrossRef]
- Soares, M.R.; Sarkis, J.E.S.; Alleoni, L.R.F. Proposal of new distribution coefficients (Kd) of potentially toxic elements in soils for improving environmental assessment in the State of São Paulo, southeastern Brazil. J. Environ. Manag. 2021, 285, 112044. [Google Scholar] [CrossRef] [PubMed]
- Marques, J.P.; Silva, E.A.F.; Patinha, C.; Kasemodel, M.C.; Rodrigues, V.G.S. Adsorption of lead (Pb) in weathered tropical soil (Ribeira Valley region—Brazil). Earth Sci. Res. J. 2019, 23, 385–395. [Google Scholar]
- Marques, J.P.; Rodrigues, V.G.S.; Raimondi, I.M.; Lima, J.Z.L. Increase in Pb and Cd Adsorption by the Application of Peat in a Tropical Soil. Water Air Soil Pollut. 2020, 231, 136. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Sparks, D.L. Environmental Soil Chemistry; Academic Press: London, UK, 1995. [Google Scholar]
- Dick, D.P.; Novotny, E.H.; Dieckow., J.; Bayer, C. Química da matéria orgânica do solo. In Química e Mineralogia do Solo Parte II—Aplicações; Melo, V.F., Alleoni, L.R.F., Eds.; Sociedade Brasileira de Ciência do Solo (SBCS): Viçosa, Brazil, 2016. [Google Scholar]
- Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.H.; Pernicone, N.; Ramsay, J.D.F.; Sing, K.S.; Unger, K.K. Recommendations for the characterization of Porous Solids. Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Mackenzie, R.C. The Differential Thermal Investigation of Clays; Mineralogical Society: London, UK, 1957. [Google Scholar]
- Grim, R.E. Clay Mineralogy; McGraw-Hil: New York, NY, USA, 1953. [Google Scholar]
- Schulze, D.G. An introduction to soil mineralogy. In Minerals in Soil Environments, 2nd ed.; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1989; pp. 11–34. [Google Scholar]
- Ronquim, C.C. Conceitos de Fertilidade do Solo e Manejo Adequado Para as Regiões Tropicais; Empresa Brasileira de Pesquisa Agropecuária: Campinas, Brazil, 2010. [Google Scholar]
- Fontes, M.P.F.; Gomes, P.C. Simultaneous competitive adsorption of heavy metals by the mineral matrix of tropical soils. J. Appl. Geochem. 2003, 18, 795–804. [Google Scholar] [CrossRef]
- Pierangeli, M.A.P.; Guilherme, L.R.G.; Curi, N.; Silva, M.L.N.; Oliveira, L.R.; Lima, J.M. Efeito do pH na adsorção-dessorção de chumbo em latossolos brasileiros. Rev. Bras. De Ciência Do Solo 2001, 25, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Araújo, H.A.S. Estudo da Adsorção de Pb, Zn e Cd por Material Inconsolidado Transportado da Região do Vale do Ribeira (SP). Undergraduate Thesis, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil, 2015. [Google Scholar]
- Moreira, C. Adsorção Competitiva de Cádmio, Cobre, Níquel e Zinco em Solos. Master’s Thesis, Univeristy of São Paulo, Piracicaba, Brazil, 2004. [Google Scholar]
- Khodaverdillo, H.; Samadi, A. Batch equilibrium study on sorption, desorption, and immobilisation of cádmium in some semi-arid zone soils as affected by soil properties. Soil Res. 2011, 49, 444–454. [Google Scholar] [CrossRef]
- Nascimento, C.W.A.; Fontes, R.L.F. Correlação entre Características de Latossolos e Parâmetros de equações de Adsorção de Cobre e Zinco. Rev. Bras. De Ciência Do Solo 2004, 28, 965–971. [Google Scholar] [CrossRef] [Green Version]
Soil | pHH2O | pHKCl | ΔpH | Eh (mV) | EC (µS cm−1) | C (%) |
---|---|---|---|---|---|---|
1 | 4.4 ± 0.3 | 3.9 ± 0.0 | −0.4 ± 0.3 | +370.2 ± 30.2 | 107.8 ± 15.3 | 0.35 ± 0.03 |
2 | 5.0 ± 0.1 | 3.9 ± 0.0 | −1.0 ± 0.0 | +324.0 ± 5.4 | 86.2 ± 4.1 | 0.38 ± 0.01 |
3 | 4.7 ± 0.0 | 3.8 ± 0.0 | −0.9 ± 0.0 | +321.4 ± 5.4 | 98.3 ± 14.2 | 0.34 ± 0.01 |
4 | 4.7 ± 0.1 | 3.7 ± 0.0 | −0.9 ± 0.1 | +368.9 ± 10.7 | 62.5 ± 8.5 | <DL |
5 | 4.6 ± 0.0 | 3.8 ± 0.0 | −0.7 ± 0.0 | +376.1 ± 7.3 | 67.1 ± 5.7 | <DL |
6 | 4.3 ± 0.1 | 3.8 ± 0.0 | −0.5 ± 0.0 | +390.0 ± 1.2 | 143.5 ± 1.6 | 0.31 |
7 | 4.6 ± 0.0 | 3.8 ± 0.0 | −0.8 ± 0.0 | +376.6 ± 9.9 | 76.0 ± 4.0 | <DL |
8 | 4.5 ± 0.1 | 3.9 ± 0.0 | −0.6 ± 0.0 | +349.7 ± 3.5 | 94.6 ± 6.0 | <DL |
9 | 4.6 ± 0.1 | 3.7 ± 0.0 | −0.9 ± 0.2 | +371.2 ± 6.2 | 65.1 ± 2.1 | 0.58 ± 0.03 |
10 | 4.5 ± 0.0 | 3.9 ± 0.0 | −0.7 ± 0.0 | +360.1 ± 7.6 | 51.3 ± 5.2 | <DL |
11 | 4.2 ± 0.0 | 3.8 ± 0.0 | −0.5 ± 0.0 | +353.2 ± 3.7 | 113.2 ± 6.9 | <DL |
12 | 4.2 ± 0.0 | 3.7 ± 0.0 | −0.5 ± 0.0 | +357.4 ± 6.2 | 101.9 ± 1.8 | 0.39 ± 0.03 |
13 | 4.6 ± 0.0 | 3.7 ± 0.0 | −1.0 ± 0.0 | +333.3 ± 3.0 | 61.1 ± 4.3 | 0.42 ± 0.03 |
Soil | H + Al (mmolc dm−3) | SB (mmolc dm−3) | CEC (mmolc dm−3) | SSA (m2 g−1) | Vpores (cm3 g−1) | Dpores (A) |
---|---|---|---|---|---|---|
1 | 50.3 ± 2.9 | 2.4 ± 0.1 | 52.7 ± 3.0 | 13.23 | 0.022 | 315.6 |
2 | 58.0 ± 0.0 | 3.2 ± 1.0 | 61.2 ± 1.0 | 15.89 | 0.093 | 433.6 |
3 | 56.0 ± 3.5 | 1.7 ± 0.0 | 57.7 ± 3.5 | 9.22 | 0.037 | 178.4 |
4 | 125.7 ± 8.1 | 1.7 ± 0.0 | 127.4 ± 8.1 | 11.81 | 0.026 | 163.8 |
5 | 45.3 ± 2.9 | 2.0 ± 0.6 | 47.3 ± 2.6 | 11.01 | 0.024 | 150.6 |
6 | 28.0 ± 3.0 | 1.5 ± 0.6 | 29.5 ± 3.5 | 6.59 | 0.030 | 279.3 |
7 | 38.0 ± 0.0 | 2.0 ± 0.5 | 40.7 ± 0.5 | 8.38 | 0.024 | 218.2 |
8 | 54.0 ± 3.5 | 1.6 ± 1.0 | 55.6 ± 3.6 | 9.34 | 0.022 | 213.8 |
9 | 178.7 ± 11.0 | 0.6 ± 0.6 | 179.3 ± 10.4 | 21.57 | 0.072 | 161.1 |
10 | 30.0 ± 1.7 | 0.3 ± 0.1 | 30.3 ± 1.8 | 5.68 | 0.015 | 100.2 |
11 | 50.3 ± 2.9 | 0.2 ± 0.0 | 50.5 ± 2.9 | 11.94 | 0.031 | 156.7 |
12 | 199.3 ± 24.8 | 0.4 ± 0.1 | 199.8 ± 24.8 | 24.85 | 0.066 | 148.8 |
13 | 172.3 ± 11.0 | 1.3 ± 0.0 | 173.6 ± 11.0 | 30.05 | 0.117 | 193.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, J.P.; Vaz, C.M.P.; Sígolo, J.B.; Rodrigues, V.G.S. Soils of the Ribeira Valley (Brazil) as Environmental Protection Barriers: Characterization and Adsorption of Lead and Cadmium. Sustainability 2022, 14, 5135. https://doi.org/10.3390/su14095135
Marques JP, Vaz CMP, Sígolo JB, Rodrigues VGS. Soils of the Ribeira Valley (Brazil) as Environmental Protection Barriers: Characterization and Adsorption of Lead and Cadmium. Sustainability. 2022; 14(9):5135. https://doi.org/10.3390/su14095135
Chicago/Turabian StyleMarques, Jéssica Pelinsom, Carlos Manoel Pedro Vaz, Joel Barbujiani Sígolo, and Valéria Guimarães Silvestre Rodrigues. 2022. "Soils of the Ribeira Valley (Brazil) as Environmental Protection Barriers: Characterization and Adsorption of Lead and Cadmium" Sustainability 14, no. 9: 5135. https://doi.org/10.3390/su14095135