Seasonal Variation of Vegetation and Its Spatiotemporal Response to Climatic Factors in the Qilian Mountains, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Methods
2.3.1. Determination of the Growing Season
2.3.2. Mean Value Method
2.3.3. Trend Analysis Method
2.3.4. Stability Analysis
2.3.5. Correlation Analysis Method
3. Results
3.1. Spatial Distribution and Interannual Variation of the NDVI in Different Seasons
3.2. Spatiotemporal Variation of the NDVI in the QM from 2000 to 2020
3.2.1. Spatiotemporal Variation Trend of the GSNDVI and Its Significance
3.2.2. Spatiotemporal Variation Trends of the NDVI in Different Seasons and Their Significance
3.3. Stability of the Vegetation in Different Seasons from 2000 to 2020
3.4. Interannual and Seasonal Responses of NDVI to Climate Change
3.4.1. Interannual and Seasonal Variations in Climatic Factors
3.4.2. Correlation between the GSNDVI and Climatic Factors Interannually and in the Growing Season
3.4.3. Spatial Response of the Seasonal NDVI to Seasonal Climatic Factors
3.4.4. Time Lag Effect of the NDVI Response to Climatic Factors in Different Seasons
4. Discussion
4.1. The Difference in Fluctuation in the Changing Trend of the NDVI
4.2. Differences in the Seasonal Response of the NDVI to Climate Factors
4.3. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, J.M.; Bao, G.; Tong, S.Q.; Huang, X.J.; Wendurina; Meili; Bao, Y.H. Variations in vegetation cover and its relationship with climate change and human activities in Mongolia during the period 1982–2015. Acta Prataculturae Sin. 2021, 30, 1–13. [Google Scholar]
- Zhou, W.; Gang, C.C.; Chen, Y.Z.; Mu, S.J.; Sun, Z.G.; Li, J.L. Grassland coverage inter-annual variation and its coupling relation with hydrothermal factors in China during 1982–2010. J. Geogr. Sci 2014, 24, 593–611. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.J.; Qua, X.Y.; Jing, R.; Xiong, K. Spatio-temporal variation of vegetation coverage and its response to climate change in North China plain in the last 33 years. Int. J. Appl. Earth Obs. 2016, 53, 103–117. [Google Scholar]
- Liu, P.X.; Zhang, K.X. Climate characteristic of seasonal variation and its influence on annual growth period of populus euphratica Oliv in Hexi Corridor in recent 55 years. Acta Ecol. Sin. 2011, 31, 0882–0888. [Google Scholar]
- Zhang, H.; Xue, L.Q.; Wei, G.H.; Dong, Z.C.; Meng, X.Y. Assessing Vegetation Dynamics and Landscape Ecological Risk on the Mainstream of Tarim River, China. Water 2020, 12, 2156. [Google Scholar] [CrossRef]
- Liu, Z.J.; Liu, Y.S.; Li, Y.R. Anthropogenic contributions dominate trends of vegetation cover change over the farming-pastoral ecotone of northern China. Ecol. Indic. 2018, 95, 370–378. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Z.H.; Liu, Y.H.; Wu, J.S.; Han, Y.A. Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst Exponent. Ecol. Indic. 2012, 14, 28–39. [Google Scholar] [CrossRef]
- Zhu, L.J.; Meng, J.J.; Zhu, L.K. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin. Ecol. Indic. 2020, 117, 106545. [Google Scholar] [CrossRef]
- Guan, Q.Y.; Yang, L.Q.; Guan, W.Q.; Wang, F.F.; Liu, Z.Y.; Xu, C.Q. Assessing vegetation response to climatic variations and human activities: Spatiotemporal NDVI variations in the Hexi Corridor and surrounding areas from 2000 to 2010. Appl. Climatol. 2019, 135, 1179–1193. [Google Scholar] [CrossRef]
- Wang, X.H.; Piao, S.L.; Ciais, P.; Li, J.S.; Friedlingstein, P.; Koven, C.; Chen, A.P. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc. Natl. Acad. Sci. USA 2011, 108, 1240–1245. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.F.; Wu, S.J.; Chen, J.L.; Lu, M.Q. NDVI indicated long-term interannual changes in vegetation activities and their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China. Sci. Total Environ. 2017, 574, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.T.; Guo, B.; Zhang, R.; Zang, W.Q.; Wei, C.X.; Wu, H.W.; Yang, X.; Zhen, X.Y.; Li, X.; Zhang, D.F.; et al. Quantitatively determine the dominant driving factors of the spatial-temporal changes of vegetation NPP in the Hengduan Mountain area during 2000–2015. J. Mt. Sci. 2021, 18, 427–445. [Google Scholar] [CrossRef]
- Guo, B.; Wei, C.X.; Yu, Y.; Liu, Y.F.; Li, J.L.; Meng, C.; Cai, Y.M. The dominant influencing factors of desertification changes in the source region of Yellow River: Climate change or human activity? Sci. Total Environ. 2022, 813, 152512. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.W.; Guo, B.; Fan, J.F.; Yang, F.; Han, B.M.; Wei, C.X.; Lu, Y.F.; Zang, W.Q.; Zhen, X.Y.; Meng, C. A novel remote sensing ecological vulnerability index on large scale: A case study of the China-Pakistan Economic Corridor region. Ecol. Indic. 2021, 129, 107955. [Google Scholar] [CrossRef]
- Chen, J.H.; Yan, F.; Lu, Q. Spatiotemporal Variation of Vegetation on the Qinghai-Tibet Plateau and the Influence of Climatic Factors and Human Activities on Vegetation Trend (2000–2019). Remote Sens. 2020, 12, 3150. [Google Scholar] [CrossRef]
- Zhou, Y.K.; Fan, J.F.; Wang, X.Y. Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau. PLoS ONE 2020, 15, e0234848. [Google Scholar] [CrossRef]
- Jia, L.; Li, Z.B.; Xu, G.C.; Ren, Z.P.; Li, P.; Cheng, Y.T.; Zhang, Y.X.; Wang, B.; Zhang, J.X.; Yu, S. Dynamic change of vegetation and its response to climate and topographic factors in the Xijiang River basin, China. Environ. Sci. Pollut. Res. 2020, 27, 11637–11648. [Google Scholar] [CrossRef]
- Roerink, G.J.; Menenti, M.; Soepboer, W.; Su, Z. Assessment of climate impact on vegetation dynamics by using remote sensing. Phys. Chem. Earth 2003, 28, 103–109. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Myneni, R.B.; Chapin, F.S.; Callaghan, T.V.; Pinzon, J.E.; Tucker, C.J.; Zhu, Z.; Bi, J.; Ciais, P.; Tommervik, H.; et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Change 2013, 3, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.M.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res.-Atmos 2001, 106, 20069–20083. [Google Scholar] [CrossRef]
- Xu, X.K.; Chen, H.; Levy, J.K. Spatiotemporal vegetation cover variations in the Qinghai-Tibet Plateau under global climate change. Chin. Sci. Bull. 2008, 53, 915–922. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Z.; Dai, J.H.; Ge, Q.S. Variation in vegetation greenness in spring across eastern China during 1982–2006. J. Geogr. Sci. 2013, 23, 45–56. [Google Scholar] [CrossRef]
- Zhao, M.S.; Running, S.W. Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009. Science 2010, 329, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Pan, N.Q.; Feng, X.M.; Fu, B.J.; Wang, S.; Ji, F.; Pan, S.F. Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sens. Environ. 2018, 214, 59–72. [Google Scholar] [CrossRef]
- Djebou, D.C.S.; Singh, V.P.; Frauenfeld, O.W. Vegetation response to precipitation across the aridity gradient of the southwestern United states. J. Arid Environ. 2015, 115, 35–43. [Google Scholar] [CrossRef]
- Li, L.H.; Zhang, Y.L.; Wu, J.S.; Li, S.C.; Zhang, B.H.; Zu, J.X.; Zhang, H.M.; Ding, M.J.; Paudel, B. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau. Sci. Total Environ. 2019, 678, 21–29. [Google Scholar] [CrossRef]
- Piao, S.L.; Mohammat, A.; Fang, J.Y.; Cai, Q.; Feng, J.M. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Change 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Du, J.Q.; Quan, Z.J.; Fang, S.F.; Liu, C.C.; Wu, J.H.; Fu, Q. Spatiotemporal changes in vegetation coverage and its causes in China since the Chinese economic reform. Environ. Sci. Pollut. Res. 2020, 27, 1144–1159. [Google Scholar] [CrossRef]
- Sun, Y.L.; Yang, Y.L.; Zhang, L.; Wang, Z.L. The relative roles of climate variations and human activities invegetation change in North China. Phys. Chem. Earth 2015, 87–88, 67–78. [Google Scholar] [CrossRef]
- Ghebrezgabher, M.G.; Yang, T.B.; Yang, X.M.; Sereke, T.E. Assessment of NDVI variations in responses to climate change in the Horn of Africa. Egypt. J. Remote Sens. Space Sci. 2020, 23, 249–261. [Google Scholar] [CrossRef]
- Kalisa, W.; Igbawua, T.; Henchiri, M.; Ali, S.; Zhang, S.; Bai, Y.; Zhang, J.H. Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Sci. Rep. 2019, 9, 16865. [Google Scholar] [CrossRef] [Green Version]
- Fensholt, R.; Proud, S.R. Evaluation of Earth Observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [Google Scholar] [CrossRef]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ. 2006, 105, 142–154. [Google Scholar] [CrossRef]
- Geng, L.Y.; Che, T.; Wang, X.F.; Wang, H.B. Detecting Spatiotemporal Changes in Vegetation with the BFAST Model in the Qilian Mountain Region during 2000–2017. Remote Sens. 2019, 11, 103. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.Y.; Du, W.T.; Huang, J.; Zhao, H.Z.; Wang, C.F. Analysis of vegetation changes in the Qilian Mountains during 2000–2015. J. Glaciol. Geocryol. 2017, 39, 1130. [Google Scholar]
- Zhou, J.J.; Xue, D.X.; Lei, L.; Wang, L.Y.; Zhong, G.S.; Liu, C.F.; Xiang, J.; Huang, M.H.; Feng, W.; Li, Q.Q.; et al. Impacts of Climate and Land Cover on Soil Organic Carbon in the Eastern Qilian Mountains, China. Sustainability 2019, 11, 5790. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.H.; Jia, W.X.; Zhao, Z.J.; Zhang, Y.S.; Liu, Y.R. Research on temporal and spatial variation characteristics of vegetation cover of Qilian Mountains from 1982 to 2006. Adv. Earth Sci. 2015, 30, 834–845. [Google Scholar]
- Liu, Y.; Jia, W.; Huang, M.; Li, Y.; Wu, Z.; Zhang, Y.; Li, Y. Response of Vegetation Net Primary Productivity to Climate Change in the Qilian Mountains since Recent 51 Years. Acta Bot. Boreali-Occident. Sin. 2015, 35, 601–607. [Google Scholar]
- Sun, L.; Zhang, B.; Hou, C.; Chi, X.; He, H. The Spatial Variation of Vegetation Net Primary Productivity in Qilian Mountains. Remote Sens. Technol. Appl. 2015, 30, 592–598. [Google Scholar]
- Wang, X.M.; He, B.B.; Xing, M.F.; Liu, X.Z.; Gao, S.X. Spatiotemporal Pattern Simulation of Fractional Vegetation Coverage in the South Qilian Mountains Based on Bp Neural Network. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 6475–6478. [Google Scholar] [CrossRef]
- Zeng, P.; Zhang, F.; Feng, Q.; Wei, Y.; Huang, L.; Li, L. Estimation of the carbon sequestration value and spatial and temporal evolution of different vegetation ecosystems in Qilian Mountains. J. Glaciol. Geocryol. 2019, 41, 1348–1358. [Google Scholar]
- Cheng, Y.H.; Xu, D.X.; Guo, X.L. Analysis on the Vegetation Change in the Qilian Mountains since Recent 22 Years. Arid Zone Res. 2008, 25, 772–777. [Google Scholar]
- Dai, S.; Zhang, B.; Wang, H.; Wang, Y.; Li, D.; Wang, X. Analysis on the Spatio-temporal Variation of Grassland Cover Using SPOT NDVI in Qilian Mountains. Prog. Geogr. 2010, 29, 1075–1080. [Google Scholar]
- Yang, L.S.; Feng, Q.; Adamowski, J.F.; Alizadeh, M.R.; Yin, Z.L.; Wen, X.H.; Zhu, M. The role of climate change and vegetation greening on the variation of terrestrial evapotranspiration in northwest China’s Qilian Mountains. Sci. Total Environ. 2021, 759, 143532. [Google Scholar] [CrossRef]
- Chen, Z.R.; Cao, G.C.; Chen, K.L.; Cao, S.K.; Cui, H.; Jiang, G.; Chen, Z. Temporal and Spatial Dynamics of Normalized Difference Vegetation Index on the Southern Slope of Qilian Mountains from 2000 to 2015. IOP Conf. Ser. Earth Environ. Sci. 2019, 237, 032051. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, B.; Wang, H.; Wang, Y.; Li, D.; Wang, X. Spatiotemporal Variation of Vegetation NDVI in the Qilian Mountains during the Period from 1999 to 2007. Arid Zone Res. 2010, 27, 585–591. [Google Scholar]
- Wu, Z.; Jia, W.; Liu, Y.; Zhang, Y. Change of Vegetation Coverage in the Qilian Mountains in Recent 10 Years. Arid Zone Res. 2014, 31, 80–87. [Google Scholar]
- Zhang, Y.; Jia, W.; Zhao, Y.; Liu, Y.; Zhao, Z.; Chen, J. Spatial-temporal Variations of Net Primary Productivity of Qilian Mountains Vegetation Based on CASA Model. Acta Bot. Boreali-Occident. Sin. 2014, 34, 2085–2091. [Google Scholar]
- Wang, J.; Meng, J.J.; Cai, Y.L. Assessing vegetation dynamics impacted by climate change in the southwestern karst region of China with AVHRR NDVI and AVHRR NPP time-series. Environ. Geol. 2008, 6, 1185–1195. [Google Scholar] [CrossRef]
- Yu, W.T.; Li, J.; Liu, Q.H.; Zhao, J.; Dong, Y.D.; Zhu, X.R.; Lin, S.R.; Zhang, H.; Zhang, Z.X. Gap Filling for Historical Landsat NDVI Time Series by Integrating Climate Data. Remote Sens. 2021, 13, 484. [Google Scholar] [CrossRef]
- Zhu, L.; Xie, S.; Yang, H.; Ma, M. Seasonal variation of vegetation coverage based on modis-evi data in chongqing during 2000–2015. Resour. Environ. Yangtze Basin 2017, 26, 2146–2155. [Google Scholar]
- Wang, L.L.; Liu, P.X.; Wang, Y. Spatial and temporal variations of NDVI and its influencing factors in Qaidam Basin in the last 14 years. Chin. J. Ecol. 2015, 34, 1713–1722. [Google Scholar]
- Jia, W.; Chen, J. Variations of NDVI and Its Response to Climate Change in the Growing Season of Vegetation in Qilianshan Mountains from 1982 to 2014. Res. Soil Water Conserv. 2018, 25, 264–268. [Google Scholar]
- Wang, L.; Song, W.; Zhang, J.; Ma, X.; Zhao, H.; Huang, X. Spatio-temporal evolution of vegetation net primary productivity in Qilian Mountain National Park and its driving factors. Pratacultural. Sci. 2020, 37, 1458–1474. [Google Scholar]
- Fu, J.X.; Cao, G.C.; Guo, W.J. Changes of growing season NDVI at different elevations, slopes, slope aspects and its relationship with meteorological factors in the southern slope of the Qilian Mountains, China from 1998 to 2017. J. Appl. Ecol. 2020, 31, 1203–1212. [Google Scholar]
- Tong, S.; Cao, G.; Cao, S. Study on the Relationship Between Vegetation Cover Change and Meteorological Factors in the Southern slope of Qilian Mountains in the Past 34 years. Resour. Environ. Yangtze Basin 2020, 29, 2655–2664. [Google Scholar]
- Xu, H.; Yang, T.; Zeng, B. Spatial—temporal changes of vegetation in Qilian Mountains from 2000 to 2010 based on MODIS NDVI data and its affecting factors. J. Arid. Land Resour. Environ. 2012, 26, 87–91. [Google Scholar]
- Qiu, L.S.; Zhang, L.F.; He, Y.; Diao, Z.Y.; Chen, Y.D. Remote Sensing Monitoring on Vegetation Dynamic Change in Qilian Mountain from 2000 to 2017. Remote Sens. 2019, 34, 97–107. [Google Scholar]
- Qiao, C.C.; Shen, S.; Cheng, C.X.; Wu, J.X.; Jia, D.; Song, C.Q. Vegetation Phenology in the Qilian Mountains and Its Response to Temperature from 1982 to 2014. Remote Sens. 2021, 13, 286. [Google Scholar] [CrossRef]
- Wan, Q.Z.; Zhu, G.F.; Guo, H.W.; Zhang, Y.; Pan, H.X.; Yong, L.L.; Ma, H.Y. Influence of Vegetation Coverage and Climate Environment on Soil Organic Carbon in the Qilian Mountains. Sci. Rep. 2019, 9, 1762. [Google Scholar] [CrossRef]
- Li, L.H.; Zhang, Y.L.; Liu, L.S.; Wu, J.S.; Wang, Z.F.; Li, S.C.; Zhang, H.M.; Zu, J.X.; Ding, M.J.; Paudel, B. Spatiotemporal Patterns of Vegetation Greenness Change and Associated Climatic and Anthropogenic Drivers on the Tibetan Plateau during 2000-2015. Remote Sens. 2018, 10, 1525. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.L.; Wang, X.H.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Change Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Peng, S.Z.; Ding, Y.X.; Liu, W.Z.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.H.; Bai, H.Y.; Ma, X.P.; Huang, X.Y.; Zhao, T. Variation characteristics and its north-south differences of the vegetation phenology by remote sensing monitoring in the Qinling Mountains during 2000-2017. Acta Ecol. Sin. 2021, 41, 1068–1080. [Google Scholar]
- Piao, S.L.; Fang, J.Y.; He, J.S. Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Clim. Change 2006, 74, 253–267. [Google Scholar] [CrossRef]
- Stow, D.; Daeschner, S.; Hope, A.; Douglas, D.; Petersen, A.; Myneni, R.; Zhou, L.; Oechel, W. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. Int. J. Remote Sens. 2003, 24, 1111–1117. [Google Scholar] [CrossRef]
- Hou, X.H.; Ying, L.L.; Gao, M.; Bi, X.L.; Lu, X.; Zhu, M.M. Character of Vegetation Cover Change in China’s Eastern Coastal Areas 1998–2008. Sci. Geogr. Sin. 2010, 30, 735–741. [Google Scholar]
- Wang, J.B.; Zhao, J.; Li, C.H.; Zhu, Y.; Kang, C.Y.; Gao, C. The spatial-temporal patterns of the impact of human activities on vegetation coverage in China from 2001 to 2015. Acta Geogr. Sin. 2019, 74, 504–519. [Google Scholar]
- Sun, R.; Chen, S.H.; Su, H.B. Climate Dynamics of the Spatiotemporal Changes of Vegetation NDVI in Northern China from 1982 to 2015. Remote Sens. 2021, 13, 187. [Google Scholar] [CrossRef]
- Li, F.; Xu, W.X. Spatial and Temporal Variation of NDVI in Different Functional Areas of Qinghai from 2000 to 2015. Acta Agrestia Sin. 2017, 25, 701–710. [Google Scholar]
- Qin, G.X.; Lu, Q.; Meng, Z.Y.; Li, Z.; Chen, H.Y.; Kong, J.; Ji, Z.X.; Qin, A.N. Spatial-temporal Dynamics of Grassland NDVI and Its Response to Climate Change in Northern China from 1982 to 2015. Res. Soil Water Conserv. 2021, 28, 101–117. [Google Scholar]
- Guo, W.; Ni, X.N.; Jing, D.Y.; Li, S.H. Spatial-temporal patterns of vegetation dynamics and their relationships to climate variations in Qinghai Lake Basin using MODIS time-series data. J. Geogr. Sci. 2014, 24, 1009–1021. [Google Scholar] [CrossRef]
- Nzabarinda, V.; Bao, A.M.; Xu, W.Q.; Uwamahoro, S.; Jiang, L.L.; Duan, Y.C.; Nahayo, L.; Yu, T.; Wang, T.; Long, G. Assessment and Evaluation of the Response of Vegetation Dynamics to Climate Variability in Africa. Sustainability 2021, 13, 1234. [Google Scholar] [CrossRef]
- Guo, B.; Zang, W.Q.; Yang, F.; Han, B.M.; Chen, S.T.; Liu, Y.; Yang, X.; He, T.L.; Chen, X.; Liu, C.T.; et al. Spatial and temporal change patterns of net primary productivity and its response to climate change in the Qinghai-Tibet Plateau of China from 2000 to 2015. J. Arid Land 2020, 12, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Huang, X.X.; Lo, K.; Dang, Q.W.; Wen, R.Y. Vegetation responses to climate change in the Qilian Mountain Nature Reserve, Northwest China. Glob. Ecol. Conserv. 2021, 28, e01698. [Google Scholar] [CrossRef]
- Liu, J.R.; Zhao, J.; Wang, J.B. Response of vegetation cover to drought in the Qilian Mountains Region from 2001 to 2016. Pratacultural. Sci. 2021, 38, 419–431. [Google Scholar]
- Qin, X.; Liu, W.B.; Mao, R.C.; Song, J.X.; Chen, Y.N.; Ma, C.; Li, M.Y. Quantitative assessment of driving factors affecting human appropriation of net primary production (HANPP) in the Qilian Mountains, China. Ecol. Indic. 2021, 121, 106997. [Google Scholar] [CrossRef]
- Li, Y.; Tang, L. Correlation between Precipitation and NDVI in Vegetation Growing Season in a Typical Desert in North China. Arid. Zone Res. 2019, 36, 1229–1237. [Google Scholar]
- Xu, J.; Fang, S.; Zhang, T.; Zhu, Y.; Wu, D.; Yi, G. NDVI changes and its correlation with climate factors of the Three River-Headwater region in growing seasons during 2000–2016. Remote Sens. Land Resour. 2020, 32, 237–246. [Google Scholar]
- Dai, S.W.; Shulski, M.D.; Hubbard, K.G.; Takle, E.S. A spatiotemporal analysis of Midwest US temperature and precipitation trends during the growing season from 1980 to 2013. Int. J. Clim. 2016, 36, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Cao, G.C.; Yang, X.D.; Cao, S.K.; Diao, E.L.; Zhao, M.L. Temporal and spatial variation characteristics and influencing factors of vegetation NDVI in Heihe source region of Qilian Mountains. Ecol. Sci. 2021, 40, 172–182. [Google Scholar]
- Li, G.; Li, X.; Zhao, G.; Zhang, Z.; Li, Y. Characteristics of spatial and temporal phenology under the dynamic variation of grassland in the Qinghai Lake watershed. Acta Ecol. Sin. 2014, 34, 3038–3047. [Google Scholar]
- Panidi, E.; Rykin, I.; Tsepelev, V. Satellite-based estimation of growing season framing dates, weather instability aspect. Arab. J. Geosci. 2020, 13. [Google Scholar] [CrossRef]
- Wu, B.; Jiang, D.; Wang, X. Changes in the Growing Season Across China during 1961–2018. Chin. J. Atmos. Sci. 2021, 45, 424–434. [Google Scholar]
- Wu, Z.; Jia, W.; Zhao, Z.; Zhang, Y.; Liu, Y.; Chen, J. Spatial-temporal variations of vegetation and its correlation with climatic factors in Qilian Mountains from 2000 to 2012. Arid. Land Geogr. 2015, 38, 1241–1252. [Google Scholar]
- Song, W.; Wang, L.; Zhang, J. Temporal and spatial changes in response to climate in grasslands of the Qilian Mountain National Nature Reserve. Pratacultural. Sci. 2019, 36, 2233–2249. [Google Scholar]
CV | Stability Grades | Growing Season (%) | Spring (%) | Summer (%) | Autumn (%) |
---|---|---|---|---|---|
0–0.05 | Highly stable | 16.87 | 0.68 | 17.00 | 0.46 |
0.05–0.10 | Moderately stable | 25.50 | 28.15 | 25.11 | 19.73 |
0.10–0.15 | Low stable | 33.90 | 31.93 | 26.57 | 26.18 |
0.15–0.20 | Low unstable | 17.27 | 15.76 | 21.27 | 17.84 |
0.20–0.25 | Moderately unstable | 4.20 | 7.47 | 7.02 | 12.70 |
>0.25 | Highly unstable | 2.27 | 16.02 | 3.04 | 23.10 |
Variation Trends | Significance Grades | Area (km2) | Area Percentage (%) |
---|---|---|---|
Increasing (GSNDVI_slope > 0) | Significant increase (p < 0.05) | 108,673 | 75.06 |
Nonsignificant increase (p > 0.05) | 26,372 | 18.21 | |
Decreasing (GSNDVI_slope < 0) | Nonsignificant decrease (p > 0.05) | 8720 | 6.02 |
Significant decrease (p < 0.05) | 1017 | 0.70 |
Variation Grades | Spring | Summer | Autumn | |||
---|---|---|---|---|---|---|
Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | |
Significant increase (NDVI_slope > 0, p < 0.05) | 91,138 | 62.95 | 105,314 | 72.74 | 63,955 | 44.17 |
Nonsignificant increase (NDVI_slope > 0, p > 0.05) | 32,816 | 22.67 | 29,142 | 20.13 | 60,847 | 42.03 |
Nonsignificant decrease (NDVI_slope < 0, p > 0.05) | 18,555 | 12.82 | 9295 | 6.42 | 19,096 | 13.19 |
Significant decrease (NDVI_slope < 0, p < 0.05) | 2272 | 1.57 | 1030 | 0.72 | 880 | 0.61 |
NDVI in Different Seasons | Precipitation | Temperature | ||||
---|---|---|---|---|---|---|
Spring | Summer | Autumn | Spring | Summer | Autumn | |
GSNDVI | 0.440 | 0.662 ** | −0.145 | 0.411 | 0.064 | 0.018 |
NDVI_spring | 0.043 | — | — | 0.704 ** | — | — |
NDVI_summer | 0.491 * | 0.658 ** | — | 0.366 | 0.023 | — |
NDVI_autumn | 0.298 | 0.408 | −0.195 | 0.106 | 0.386 | 0.145 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, H.; Qi, Y.; Kang, W.; Zhang, J.; Wang, H.; Jiang, X. Seasonal Variation of Vegetation and Its Spatiotemporal Response to Climatic Factors in the Qilian Mountains, China. Sustainability 2022, 14, 4926. https://doi.org/10.3390/su14094926
Duan H, Qi Y, Kang W, Zhang J, Wang H, Jiang X. Seasonal Variation of Vegetation and Its Spatiotemporal Response to Climatic Factors in the Qilian Mountains, China. Sustainability. 2022; 14(9):4926. https://doi.org/10.3390/su14094926
Chicago/Turabian StyleDuan, Hanchen, Yuan Qi, Wenping Kang, Jinlong Zhang, Hongwei Wang, and Xiaofang Jiang. 2022. "Seasonal Variation of Vegetation and Its Spatiotemporal Response to Climatic Factors in the Qilian Mountains, China" Sustainability 14, no. 9: 4926. https://doi.org/10.3390/su14094926
APA StyleDuan, H., Qi, Y., Kang, W., Zhang, J., Wang, H., & Jiang, X. (2022). Seasonal Variation of Vegetation and Its Spatiotemporal Response to Climatic Factors in the Qilian Mountains, China. Sustainability, 14(9), 4926. https://doi.org/10.3390/su14094926