Bibliometric Analysis of Data Sources and Tools for Shoreline Change Analysis and Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search and Selection Process
2.2. Bibliographic Mapping
3. Results
3.1. Scientific Mapping
3.1.1. Publication Trends in Data Sources (Methods) and Tools for Shoreline Change Analysis and Detection
3.1.2. Most Relevant Sources in Data Sources and Tools for Shoreline Change Analysis and Detection
3.1.3. Most Relevant Authors in Data Sources and Tools for Shoreline Change Analysis and Detection
3.2. Country Analysis
3.2.1. Most Productive Countries
3.2.2. Country Collaborative Analysis
3.3. Keywords Analysis
Keywords Co-Occurrence Analysis
3.4. Data Sources (Methods) and Tools for Shoreline Change Analysis and Detection
3.5. Thematic Progression Analysis
3.6. Direct Citation Analysis
3.7. Viewpoints of Shoreline Change Analysis and Detection through Machine Learning Tools
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Le Cozannet, G.; Bulteau, T.; Castelle, B.; Ranasinghe, R.; Wöppelmann, G.; Rohmer, J.; Bernon, N.; Idier, D.; Louisor, J.; Salas, Y.; et al. Quantifying uncertainties of sandy shoreline change projections as sea level rises. Sci. Rep. 2019, 9, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholls, R.J.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Oppenheimer, M.; Glavovic, B.C.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Portner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; The Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Alvarez-Cuesta, M.; Toimil, A.; Losada, I. Reprint of: Modelling long-term shoreline evolution in highly anthropized coastal areas. Part 2: Assessing the response to climate change. Coast. Eng. 2012, 169, 103985. [Google Scholar] [CrossRef]
- Ware, D.; Buckwell, A.; Tomlinson, R.; Foxwell-Norton, K.; Lazarow, N. Using Historical Responses to Shoreline Change on Australia’s Gold Coast to Estimate Costs of Coastal Adaptation to Sea Level Rise. J. Mar. Sci. Eng. 2020, 8, 380. [Google Scholar] [CrossRef]
- Blackburn, S.; Marques, C.; de Sherbinin, A.; Modesto, F.; Ojima, R.; Oliveau, S.; Bolde, C.C.P. Mega-Urbanisation on the Coast. In Megacities and the Coast: Risk, Resilience, and Transformation; Pelling, M., Blackburn, S., Eds.; Routledge/Taylor & Francis Group: New York, NY, USA; London, UK, 2013; pp. 25–26. [Google Scholar]
- Bamunawala, J.; Ranasinghe, R.; Dastgheib, A.; Nicholls, R.J.; Murray, A.B.; Barnard, P.L.; Sirisena, T.A.J.G.; Duong, T.M.; Hulscher, S.J.M.H.; van der Spek, A. Twenty-first-century projections of shoreline change along inlet-interrupted coastlines. Sci. Rep. 2021, 11, 14038. [Google Scholar] [CrossRef]
- Dolan, R.; Hayden, B.P.; May, P.; May, S.K. The reliability of shoreline change measurements from aerial photographs. Shore Beach 1980, 48, 22–29. [Google Scholar]
- Boak, E.H.; Turner, I. Shoreline Definition and Detection: A Review. J. Coast. Res. 2005, 21, 688–703. [Google Scholar] [CrossRef] [Green Version]
- Burningham, H.; Fernandez-Nunez, M. Shoreline change analysis. In Sandy Beach Morphodynamics; Jackson, D.W.T., Short, A.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 439–460. [Google Scholar] [CrossRef]
- Douglas, B.C.; Crowell, M.; Winter, F. Long-term shoreline position prediction and error propagation. J. Coast. Res. 2000, 16, 145–152. [Google Scholar]
- Baral, R.; Pradhan, S.; Samal, R.N.; Mishra, S.K. Shoreline Change Analysis at Chilika Lagoon Coast, India Using Digital Shoreline Analysis System. J. Indian Soc. Remote Sens. 2018, 46, 1637–1644. [Google Scholar] [CrossRef]
- Dereli, M.A.; Tercan, E. Assessment of Shoreline Changes using Historical Satellite Images and Geospatial Analysis along the Lake Salda in Turkey. Earth Sci. Inform. 2020, 13, 709–718. [Google Scholar] [CrossRef]
- Vivek, G.; Goswami, S.; Samal, R.N.; Choudhury, S.B. Monitoring of Chilika lake mouth dynamics and quantifying rate of shoreline change using 30 m multi-temporal Landsat data. Data Brief 2019, 22, 595–600. [Google Scholar] [CrossRef]
- Carr, A.P. Shingle Spit and River Mouth: Short Term Dynamics. Trans. Inst. Br. Geogr. 1965, 36, 117. [Google Scholar] [CrossRef]
- De Boer, G.; Carr, A.P. Early Maps as Historical Evidence for Coastal Change. Geogr. J. 1969, 135, 17–39. [Google Scholar] [CrossRef]
- El-Ashry, M.T.; Wanless, H.R. Photo interpretation of shoreline changes between capes Hatteras and Fear (North Carolina). Mar. Geol. 1968, 6, 347–379. [Google Scholar] [CrossRef]
- Gulliver, P.F. Shoreline topography. Proc. Am. Acad. Arts Sci. 1899, 8, 151–258. [Google Scholar] [CrossRef]
- Tanner, W.F. Standards for Measuring Shoreline Change; Coastal Research: Tallahassee, FL, USA, 1978; p. 85. [Google Scholar]
- Boye, C.B.; Addo, K.A.; Wiafe, G.; Dzigbodi-Adjimah, K. Spatio-temporal analyses of shoreline change in the Western Region of Ghana. J. Coast. Conserv. 2018, 22, 769–776. [Google Scholar] [CrossRef]
- Mahapatra, M.; Ratheesh, R.; Rajawat, A.S. Shoreline Change Analysis along the Coast of South Gujarat, India, Using Digital Shoreline Analysis System. J. Indian Soc. Remote Sens. 2014, 42, 869–876. [Google Scholar] [CrossRef]
- Crapoulet, A.; Héquette, A.; Marin, D.; Levoy, F.; Bretel, P. Variations in the response of the dune coast of northern France to major storms as a function of available beach sediment volume. Earth Surf. Process. Landf. 2017, 42, 1603–1622. [Google Scholar] [CrossRef]
- Moore, L.J.; Ruggiero, P.; List, J.H. Comparing Mean High Water and High Water Line Shorelines: Should Proxy-Datum Offsets be Incorporated into Shoreline Change Analysis? J. Coast. Res. 2006, 22, 894–905. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The state of the world’s beaches. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Vos, K.; Harley, M.D.; Splinter, K.D.; Simmons, J.A.; Turner, I.L. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coast. Eng. 2019, 150, 160–174. [Google Scholar] [CrossRef]
- Pollard, J.A.; Spencer, T.; Brooks, S.M.; Christie, E.K.; Möller, I. Understanding spatio-temporal barrier dynamics through the use of multiple shoreline proxies. Geomorphology 2020, 354, 107058. [Google Scholar] [CrossRef]
- Salmon, C.; Duvat, V.K.E.; Laurent, V. Human- and climate-driven shoreline changes on a remote mountainous tropical Pacific Island: Tubuai, French Polynesia. Anthropocene 2019, 25, 100191. [Google Scholar] [CrossRef]
- Zanutta, A.; Lambertini, A.; Vittuari, L. UAV Photogrammetry and Ground Surveys as a Mapping Tool for Quickly Monitoring Shoreline and Beach Changes. J. Mar. Sci. Eng. 2020, 8, 52. [Google Scholar] [CrossRef] [Green Version]
- Underwood, S.G.; Anders, F.J. Evaluation of the Coastal Features Mapping System for Shoreline Mapping (No. CERC-91-13); Coastal Engineering Research Center: Vicksburg, MS, USA, 1991; p. 49. [Google Scholar]
- Danforth, W.W.; Thieler, E.R. Digital Shoreline Mapping System (DSMS) User’s Guide, Version 1.0; US Geological Survey: Reston, VI, USA, 1992; p. 33.
- Thieler, E.R.; Martin, D.; Ergul, A. Digital Shoreline Analysis System (DSAS) Version 2.0: An ArcView Extension for Calculating Shoreline Change (No. 2003-76); US Geological Survey: Reston, VI, USA, 2003.
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Miller, T.L. Digital Shoreline Analysis System (DSAS) Version 3.0: An ArcGIS Extension for Calculating Shoreline Change; Open-File Report 2005–1304; US Geological Survey: Reston, VI, USA, 2005.
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergun, A. Digital Shoreline Analysis System (DSAS) Version 4.0: An ArcGIS Extension for Calculating Shoreline Change; Open File Report 2008–1278, USA; US Geological Survey: Reston, VI, USA, 2009.
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.1 User Guide; U.S. Geological Survey Open: Reston, VI, USA, 2021; p. 104. [CrossRef]
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide; Open-File Report 2018–1179; Geological Survey Open: Reston, VI, USA, 2018; p. 126.
- Mishra, M.; Sudarsan, D.; Kar, D.; Naik, A.K.; DAS, P.P.; Santos, C.A.; da Silva, R.M. The development and Research trend of using dsas tool for shoreline change analysis: A scientometric analysis. J. Urban Environ. Eng. 2020, 14, 69–77. [Google Scholar] [CrossRef]
- Santos, C.A.G.; Nascimento, T.V.M.D.; Mishra, M.; da Silva, R.M. Analysis of long- and short-term shoreline change dynamics: A study case of João Pessoa city in Brazil. Sci. Total Environ. 2021, 769, 144889. [Google Scholar] [CrossRef]
- De Lima, L.T.; Fernández-Fernández, S.; Espinoza, J.M.D.A.; Albuquerque, M.D.G.; Bernardes, C. End Point Rate Tool for QGIS (EPR4Q): Validation Using DSAS and AMBUR. ISPRS Int. J. Geo-Inf. 2021, 10, 162. [Google Scholar] [CrossRef]
- Griffiths, D.; House, C.; Rangel-Buitrago, N.; Thomas, T. An assessment of areal and transect-based historic shoreline changes in the context of coastal planning. J. Coast. Conserv. 2019, 23, 315–330. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C.W., Jr.; Alexander, C.R.; Bush, D.M. Application of the AMBUR R package for spatio-temporal analysis of shoreline change: Jekyll Island, Georgia, USA. Comput. Geosci. 2012, 41, 199–207. [Google Scholar] [CrossRef]
- Hoeke, R.K.; Zarillo, G.A.; Synder, M. A GIS-Based Tool for Extracting Shoreline Positions from Aerial Imagery (BeachTools); US Army Corps of Engineer Research and Development Center, Coastal and Hydraulics Lab: Vicksburg, MS, USA, 2001.
- Gómez-Pazo, A.; Payo, A.; Paz-Delgado, M.V.; Delgadillo-Calzadilla, M.A. Open Digital Shoreline Analysis System: ODSAS v1.0. J. Mar. Sci. Eng. 2022, 10, 26. [Google Scholar] [CrossRef]
- Dominici, D.; Zollini, S.; Alicandro, M.; Della Torre, F.; Buscema, P.M.; Baiocchi, V. High Resolution Satellite Images for Instantaneous Shoreline Extraction Using New Enhancement Algorithms. Geosciences 2019, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Heo, J.; Kim, J.H.; Kim, J.W. A new methodology for measuring coastline recession using buffering and non-linear least squares estimation. Int. J. Geogr. Inf. Sci. 2009, 23, 1165–1177. [Google Scholar] [CrossRef]
- Hisabayashi, M.; Rogan, J.; Elmes, A. Quantifying shoreline change in Funafuti Atoll, Tuvalu using a time series of Quickbird, Worldview and Landsat data. GIScience Remote Sens. 2018, 55, 307–330. [Google Scholar] [CrossRef]
- Castelle, B.; Masselink, G.; Scott, T.; Stokes, C.; Konstantinou, A.; Marieu, V.; Bujan, S. Satellite-derived shoreline detection at a high-energy meso-macrotidal beach. Geomorphology 2021, 383, 107707. [Google Scholar] [CrossRef]
- Yadav, A.; Dodamani, B.M.; Dwarakish, G.S. Shoreline analysis using Landsat-8 satellite image. ISH J. Hydraul. Eng. 2021, 27, 347–355. [Google Scholar] [CrossRef]
- Apostolopoulos, D.; Nikolakopoulos, K. A review and meta-analysis of remote sensing data, GIS methods, materials and indices used for monitoring the coastline evolution over the last twenty years. Eur. J. Remote Sens. 2021, 54, 240–265. [Google Scholar] [CrossRef]
- Parthasarathy, K.; Deka, P.C. Remote sensing and GIS application in assessment of coastal vulnerability and shoreline changes: A review. ISH J. Hydraul. Eng. 2021, 27, 588–600. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Aria, M.; Misuraca, M.; Spano, M. Mapping the Evolution of Social Research and Data Science on 30 Years of Social Indicators Research. Soc. Indic. Res. 2020, 149, 803–831. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2009, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.-M.; Huang, Z.-L.; Guo, J.; Li, H.; Guo, X.-R.; Nkeli, M.J. Bibliometric Analysis on Smart Cities Research. Sustainability 2019, 11, 3606. [Google Scholar] [CrossRef] [Green Version]
- Baiyegunhi, T.L.; Baiyegunhi, C.; Pharoe, B.K. Global Research Trends on Shale Gas from 2010–2020 Using a Bibliometric Approach. Sustainability 2022, 14, 3461. [Google Scholar] [CrossRef]
- Wang, M.; Li, L.; Hou, C.; Guo, X.; Fu, H. Building and Health: Mapping the Knowledge Development of Sick Building Syndrome. Buildings 2022, 12, 287. [Google Scholar] [CrossRef]
- Zhang, J.; Xiong, K.; Liu, Z.; He, L. Research progress and knowledge system of world heritage tourism: A bibliometric analysis. Herit. Sci. 2022, 10, 42. [Google Scholar] [CrossRef]
- Enríquez, A.R.; Marcos, M.; Álvarez-Ellacuría, A.; Orfila, A.; Gomis, D. Changes in beach shoreline due to sea level rise and waves under climate change scenarios: Application to the Balearic Islands (western Mediterranean). Nat. Hazards Earth Syst. Sci. 2017, 17, 1075–1089. [Google Scholar] [CrossRef] [Green Version]
- IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Portner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Wang, X.; Fang, Z.; Sun, X. Usage patterns of scholarly articles on Web of Science: A study on Web of Science usage count. Scientometrics 2016, 109, 917–926. [Google Scholar] [CrossRef]
- Lima, C.O.; Bonetti, J. Bibliometric analysis of the scientific production on coastal communities’ social vulnerability to climate change and to the impact of extreme events. Nat. Hazards 2020, 102, 1589–1610. [Google Scholar] [CrossRef]
- Pathmanandakumar, V.; Chenoli, S.N.; Goh, H.C. Linkages between Climate Change and Coastal Tourism: A Bibliometric Analysis. Sustainability 2021, 13, 10830. [Google Scholar] [CrossRef]
- Ellegaard, O. The application of bibliometric analysis: Disciplinary and user aspects. Scientometrics 2018, 116, 181–202. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Manual for VOSviewer Version 1.6.17. 2021. Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.17.pdf (accessed on 18 December 2021).
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Borgman, C.L.; Furner, J. Scholarly communication and bibliometrics. Annu. Rev. Inf. Sci. Technol. 2002, 36, 2–72. [Google Scholar] [CrossRef] [Green Version]
- Jantunen, H.; Raitala, J. Locating shoreline changes in the Porttipahta (Finland) water reservoir by using multitemporal Landsat data. Photogrammetria 1984, 39, 1–12. [Google Scholar] [CrossRef]
- Eliot, I.; Clarke, D. Temporal and spatial bias in the estimation of shoreline rate-of-change statistics from beach survey information. Coast. Manag. 1989, 17, 129–156. [Google Scholar] [CrossRef]
- Chen, L.C. Detection of shoreline changes for tideland areas using multi-temporal satellite images. Int. J. Remote Sens. 1998, 19, 3383–3397. [Google Scholar] [CrossRef]
- Da Silva, A.G.A.; Stattegger, K.; Schwarzer, K.; Vital, H.; Heise, B.; Silva, D. The Influence of Climatic Variations on River Delta Hydrodynamics and Morphodynamics in the Parnaíba Delta, Brazil. J. Coast. Res. 2015, 31, 930–940. [Google Scholar] [CrossRef]
- Duarte, C.R.; De Miranda, F.P.; Landau, L.; Souto, M.V.S.; Sabadia, J.A.B.; Neto, C.D.S.; Rodrigues, L.I.D.C.; Damasceno, A.M. Short-time analysis of shoreline based on RapidEye satellite images in the terminal area of Pecém Port, Ceará, Brazil. Int. J. Remote Sens. 2018, 39, 4376–4389. [Google Scholar] [CrossRef]
- Kelly, J.T.; McSweeney, S.; Shulmeister, J.; Gontz, A.M. Bimodal climate control of shoreline change influenced by Interdecadal Pacific Oscillation variability along the Cooloola Sand Mass, Queensland, Australia. Mar. Geol. 2019, 415, 105971. [Google Scholar] [CrossRef]
- Frihy, O.E.; Nasr, S.M.; El Hattab, M.M.; El Raey, M. Remote sensing of beach erosion along the Rosetta promontary, northwestern Nile delta, Egypt. Int. J. Remote Sens. 1994, 15, 1649–1660. [Google Scholar] [CrossRef]
- Solomon, S.M. Spatial and temporal variability of shoreline change in the Beaufort-Mackenzie region, northwest territories, Canada. Geo-Mar. Lett. 2004, 25, 127–137. [Google Scholar] [CrossRef]
- Jones, B.M.; Hinkel, K.M.; Arp, C.; Eisner, W.R. Modern Erosion Rates and Loss of Coastal Features and Sites, Beaufort Sea Coastline, Alaska. ARCTIC 2008, 61, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Ojeda, E.; Guillén, J. Shoreline dynamics and beach rotation of artificial embayed beaches. Mar. Geol. 2008, 253, 51–62. [Google Scholar] [CrossRef]
- Chaaban, F.; Darwishe, H.; Battiau-Queney, Y.; Louche, B.; Masson, E.; El Khattabi, J.; Carlier, E. Using ArcGIS® Modelbuilder and Aerial Photographs to Measure Coastline Retreat and Advance: North of France. J. Coast. Res. 2012, 285, 1567–1579. [Google Scholar] [CrossRef]
- Crapoulet, A.; Héquette, A.; Levoy, F.; Bretel, P. Assessment of shoreline change and coastal sediment budget in the Bay of Wissant (northern France) using airborne LiDAR. Géomorphol. Relief Processus Environ. 2015, 21, 313–330. [Google Scholar] [CrossRef] [Green Version]
- Ruz, M.-H.; Héquette, A.; Marin, D.; Sipka, V.; Crapoulet, A.; Cartier, A. Development of an incipient foredune field along a prograding macrotidal shoreline, northern France. Géomorphol. Relief Processus Environ. 2017, 23, 37–50. [Google Scholar] [CrossRef]
- Hou, X.; Wu, T.; Hou, W.; Chen, Q.; Wang, Y.; Yu, L. Characteristics of coastline changes in mainland China since the early 1940s. Sci. China Earth Sci. 2016, 59, 1791–1802. [Google Scholar] [CrossRef]
- Templin, T.; Popielarczyk, D.; Kosecki, R. Application of Low-Cost Fixed-Wing UAV for Inland Lakes Shoreline Investigation. Pure Appl. Geophys. 2018, 175, 3263–3283. [Google Scholar] [CrossRef] [Green Version]
- Herbich, J.B.; Hales, Z.L. Remote Sensing Techniques used in Determining Changes. In Proceedings of the Coastlines, Offshore Technology Conference, Houston, TX, USA, 18 April 1971. [Google Scholar] [CrossRef]
- Thieler, E.R.; Danforth, W.W. Historical shoreline mapping (II) application of the Digital Shoreline Mapping and Analysis Systems (DSMS/DSAS) to shoreline change mapping in Puerto Rico. J. Coast. Res. 1994, 10, 600–620. [Google Scholar]
- Cetin, H.; Bal, Y.; Demirkol, C. Engineering and Environmental Effects of Coastline Changes in Turkey, Northeastern Mediterranean. Environ. Eng. Geosci. 1999, 3, 315–330. [Google Scholar] [CrossRef]
- Williams, H.F.L. Sand-spit erosion following interruption of longshore sediment transport: Shamrock Island, Texas. Environ. Earth Sci. 1999, 37, 153–161. [Google Scholar] [CrossRef]
- Moore, L.J. Shoreline mapping techniques. J. Coast. Res. 2000, 16, 111–124. Available online: http://www.jstor.org/stable/4300016 (accessed on 18 December 2021).
- Ubczonek, J.; Łącka, M.; Zaniewicz, G. Analysis of the accuracy of shoreline mapping in inland navigational charts (Inland ENC) using photogrammetric and sonar images. Sci. J. Marit. Univ. Szczec. 2019, 58, 45–54. [Google Scholar] [CrossRef]
- Medvedev, A.; Telnova, N.; Alekseenko, N.; Koshkarev, A.; Kuznetchenko, P.; Asmaryan, S.; Narykov, A. UAV-Derived Data Application for Environmental Monitoring of the Coastal Area of Lake Sevan, Armenia with a Changing Water Level. Remote Sens. 2020, 12, 3821. [Google Scholar] [CrossRef]
- Liverpool, L. Researchers from Global South Under-Represented in Development Research. Nature 2021. Available online: https://www.nature.com/articles/d41586-021-02549-9 (accessed on 2 February 2022).
- Dong, F.; Pan, Y.; Li, Y.; Zhang, S. How public and government matter in industrial pollution mitigation performance: Evidence from China. J. Clean. Prod. 2021, 306, 127099. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.R.; Codignotto, J.O.; Hay, J.E.; McLean, R.F.; Ragoonaden, S.; Woodroffe, C.D. Coastal Systems and Low-Lying Areas. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 315–356. [Google Scholar]
- Marghany, M.; Hashim, M. Velocity bunching and Canny algorithms for modelling shoreline change rate from synthetic ap-erture radar (SAR). Int. J. Phys. Sci. 2010, 5, 1908–1914. [Google Scholar]
- Escudero, M.; Reguero, B.G.; Mendoza, E.; Secaira, F.; Silva, R. Coral Reef Geometry and Hydrodynamics in Beach Erosion Control in North Quintana Roo, Mexico. Front. Mar. Sci. 2021, 8, 684732. [Google Scholar] [CrossRef]
- Holman, R.A.; Sallenger, A.H., Jr.; Lippmann, T.C.; Haines, J.W. The application of video image processing to the study of nearshore processes. Oceanography 1993, 6, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Plant, N.G.; Holman, R.A. Intertidal beach profile estimation using video images. Mar. Geol. 1997, 140, 1–24. [Google Scholar] [CrossRef]
- Lippmann, T.C.; Holman, R.A. Quantification of sand bar morphology: A video technique based on wave dissipation. J. Geophys. Res. Ocean. 1989, 94, 995–1011. [Google Scholar] [CrossRef]
Scopus |
TITLE-ABS-KEY((“Shoreline change” OR “shoreline mapping” OR “shoreline analysis” OR “shoreline position” OR “shoreline detection” OR “coastline change” OR “coastal erosion” OR “coastal accretion”) AND (“GIS” OR “Geographic Information System” OR “QGIS” OR “remote sensing” OR “Landsat” OR “aerial photography” OR “beach survey” OR “Global Position System” OR “GPS” OR “satellite imagery” OR “multispectral imagery” OR “hyperspectral imagery” OR “ Airborne Light Detection and Ranging technology” OR “LiDAR” OR “microwave sensors” OR “video imaging” OR “Unmanned Aerial Vehicle” OR “UAV”)) |
WoS |
TS = ((“Shoreline change” OR “shoreline mapping” OR “shoreline analysis” OR “shoreline position” OR “shoreline detection” OR “coastline change” OR “coastal erosion” OR “coastal accretion”) AND (“GIS” OR “Geographic Information System” OR “QGIS” OR “remote sensing” OR “Landsat” OR “aerial photography” OR “beach survey” OR “Global Position System” OR “GPS” OR “satellite imagery” OR “multispectral imagery” OR “hyperspectral imagery” OR “ Airborne Light Detection and Ranging technology” OR “LIDAR” OR “microwave sensors” OR “video imaging” OR “Unmanned Aerial Vehicle” OR “UAV”)) |
Document Type | Number |
---|---|
Abstract report/meeting | 2 |
Article | 1148 |
Data paper | 2 |
Proceedings paper | 22 |
Book chapter | 32 |
Conference paper | 338 |
Correction | 3 |
Note | 1 |
Review | 30 |
Total | 1578 |
S/N | Journals | Number of Documents |
---|---|---|
1 | Journal of Coastal Research | 192 |
2 | Remote Sensing | 46 |
3 | Geomorphology | 45 |
4 | IOP Conferences Series: Earth and Environmental Science | 38 |
5 | Journal of Coastal Conservation | 37 |
6 | International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences- ISPRS Archives | 29 |
7 | Marine Geology | 29 |
8 | International Journal of Remote Sensing | 27 |
9 | International Geoscience and Remote Sensing Symposium (IGARSS) | 24 |
10 | Proceedings of SPIE- The International Society for Optical Engineering | 24 |
11 | Environmental Earth Sciences | 23 |
12 | Ocean and Coastal Management | 23 |
13 | Journal of the Indian Society of Remote Sensing | 20 |
14 | Environmental Monitoring and Assessment | 19 |
15 | Arabian Journal of Geosciences | 17 |
16 | Journal of Marine Science and Engineering | 17 |
17 | Natural Hazards | 17 |
18 | ISPRS International Journal of Geo-Information | 16 |
19 | Regional Studies in Marine Science | 16 |
20 | Marine Geodesy | 15 |
S/N | Authors | Articles | Articles Fractionalized |
---|---|---|---|
1 | Zhang Y | 17 | 6.53 |
2 | Liu Y | 14 | 3.04 |
3 | Li X | 13 | 4.33 |
4 | Turner I | 12 | 2.96 |
5 | Bayram B | 11 | 2.37 |
6 | Wang Y | 11 | 3.39 |
7 | Del R L | 10 | 2.75 |
8 | Li J | 10 | 2.47 |
9 | Pardo-Pascual J | 10 | 2.12 |
10 | Anthony E | 9 | 1.71 |
11 | Goncalves R | 9 | 2.22 |
12 | Hou X | 9 | 2.65 |
13 | Jones B | 9 | 1.80 |
14 | Kankara R | 9 | 2.73 |
15 | Li R | 9 | 2.46 |
16 | Mishra M | 9 | 2.08 |
17 | Wang C | 9 | 2.21 |
18 | Awange J | 8 | 2.22 |
19 | Islam M | 8 | 1.47 |
20 | Masria A | 8 | 1.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ankrah, J.; Monteiro, A.; Madureira, H. Bibliometric Analysis of Data Sources and Tools for Shoreline Change Analysis and Detection. Sustainability 2022, 14, 4895. https://doi.org/10.3390/su14094895
Ankrah J, Monteiro A, Madureira H. Bibliometric Analysis of Data Sources and Tools for Shoreline Change Analysis and Detection. Sustainability. 2022; 14(9):4895. https://doi.org/10.3390/su14094895
Chicago/Turabian StyleAnkrah, Johnson, Ana Monteiro, and Helena Madureira. 2022. "Bibliometric Analysis of Data Sources and Tools for Shoreline Change Analysis and Detection" Sustainability 14, no. 9: 4895. https://doi.org/10.3390/su14094895