Population Prediction of Chinese Prefecture-Level Cities Based on Multiple Models
Abstract
:1. Introduction
2. Methodology
2.1. Malthusian Model
2.2. Unary Linear Regression Model
2.3. Logistic Model
2.4. Gray Prediction Model
- Set the original sequence and conduct accumulative generation on to obtain the new sequence and the mean-value sequence :
- Establish a first-order differential equation:
- Conduct parameter estimation using OLS:
- Obtain the time function:
- Test the fitting effect using the after-test rule.
3. Results
3.1. Population Prediction Results
3.1.1. Malthusian Model
3.1.2. Unary Linear Regression Model
3.1.3. Logistic Model
3.1.4. Gray Prediction Model
3.2. Error Tests and Analysis
3.2.1. Malthusian Model
3.2.2. Unary Linear Regression Model
3.2.3. Logistic Model
3.2.4. Gray Prediction Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W. China’s aging population from the international perspective. J. Peking Univ. 2016, 53, 82–92. (In Chinese) [Google Scholar]
- Chen, Q.; Dietzenbacher, E.; Los, B. The effects of ageing and urbanisation on China’s future rural and urban populations. Asian Popul. Stud. 2017, 13, 172–197. [Google Scholar] [CrossRef]
- Murphy, M. Use of Counterfactual Population Projections for Assessing the Demographic Determinants of Population Ageing. Eur. J. Popul. 2021, 37, 211–242. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhong, F. Changes and prediction of birth level in China since 1990. Popul. Econ. 2017, 1, 1–12. (In Chinese) [Google Scholar]
- Zhang, H.; Yang, P.; Li, C.; Zhou, Q.; Gao, L.; Chen, Q. Prediction of population size in Xining city based on multiple models. J. Arid. Areas Geogr. 2013, 36, 955–962. (In Chinese) [Google Scholar]
- Li, J.; Liu, R. The analysis of the differences of provincial population shrinks. J. Popul. 2020, 42, 35–48. (In Chinese) [Google Scholar]
- He, C.; Mao, X. Population dynamics and regional development in China. Camb. J. Reg. Econ. Soc. 2016, 3, 3. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, G. Internal Migration in China: Changes and Trends. In Contemporary Demographic Transformations in China, India and Indonesia; Springer International Publishing: Cham, Switzerland, 2016; pp. 223–237. [Google Scholar] [CrossRef]
- Zeng, Y. The past, present and future of demography. Popul. Res. 2009, 33, 8–22. (In Chinese) [Google Scholar]
- Guo, F. Comparison between ancient Chinese population thought and Western population theory in history. Heilongjiang Hist. Rec. 2020, 11, 37–40. (In Chinese) [Google Scholar]
- Hauer, M.E. Population projections for U.S. counties by age, sex, and race controlled to shared socioeconomic pathway. Sci. Data 2019, 6, 190005. [Google Scholar] [CrossRef] [Green Version]
- Huang, M. Ordinary Differential Equation Model and its Application in the Prediction Control of Population. Appl. Mech. Mater. 2014, 631–632, 714–717. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, G. Research on the age structure of Ethnic Minority population in China: Based on stable Population Theory. China Popul. Sci. 2019, 1, 88–100, 128. (In Chinese) [Google Scholar]
- Song, J. Inheritance and evolution of demography method -- on the development of demography discipline in China. Popul. Econ. 2020, 4, 1–14. (In Chinese) [Google Scholar]
- Miranda, L.; Limab, C. On the logistic modeling and forecasting of evolutionary processes: Application to human population dynamics. Technol. Forecast. Soc. Chang. 2010, 77, 699–711. [Google Scholar] [CrossRef]
- Xuan, H.; Zhang, A.; Yang, N. A Model in Chinese Population Growth Prediction. Appl. Mech. Mater. 2014, 556–562, 6811–6814. [Google Scholar] [CrossRef]
- Zili, A.; Mardiyati, S.; Lestari, D. Forecasting Indonesian mortality rates using the Lee-Carter model and ARIMA method. In Proceedings of the 3rd International Symposium on Current Progress in Mathematics and Sciences (ISCPMS2017), Bali, Indonesia, 26–27 July 2017. [Google Scholar] [CrossRef]
- Chen, M.; Lu, C.; Hao, Y.; Wang, X. China’s population projections based on gm(1,1) metabolic model. Kybernetes 2019, 38, 417–425. [Google Scholar] [CrossRef]
- Xie, N.; Wang, R.; Chen, N. Measurement of shock effect following change of one-child policy based on grey forecasting approach. Kybernetes 2018, 47, 559–586. [Google Scholar] [CrossRef]
- Ding, C.; Shi, X.; Niu, Y.; Cui, C. Prediction and its significance in urban planning, urban population in Beijing, for example. J. Urban Plan. 2018, 9, 21–27. (In Chinese) [Google Scholar]
- Frederick, A.; David, Y.; Pappoe, A. A systems dynamics approach to explore traffic congestion and air pollution link in the city of Accra, Ghana. Sustainability 2010, 2, 252–265. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Shi, X.; Shi, C. A system dynamics model for simulating the logistics demand dynamics of metropolitans: A case study of Beijing, China. J. Ind. Eng. Manag. 2015, 8, 783–803. [Google Scholar] [CrossRef] [Green Version]
- Folorunso, O.; Akinwale, A.; Asiribo, O.; Adeyemo, T. Population prediction using artificial neural network. Acad. J. 2010, 3, 155–162. [Google Scholar] [CrossRef]
- Liu, E.; Yan, X. New parameter-free mobility model: Opportunity priority selection model. Phys. A Stat. Mech. Its Appl. 2019, 526, 121023. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Wang, W.; Gao, Z.; Lai, Y. Universal model of individual and population mobility on diverse spatial scales. Nat. Commun. 2017, 8, 1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, A.; Ding, X.; Zhong, F.; Cheng, Q.; Huang, C. Predicting the future Chinese population using shared socioeconomic pathways, the sixth national population census, and a pde model. Sustainability 2019, 11, 3686. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Wang, Z.; Wang, H.; Li, Y.; Jiang, Z. Predicting population age structures of China, India, and Vietnam by 2030 based on compositional data. PLoS ONE 2019, 14, e0212772. [Google Scholar] [CrossRef] [PubMed]
- Central People’s Government of the People’s Republic of China. Territory of the People’s Republic of China. Available online: http://www.gov.cn/test/2005-06/15/content_18252.htm (accessed on 15 June 2005).
- National Bureau of Statistics of China. China City Statistical Yearbook-2018; China Statistics Press: Beijing, China, 2018. [Google Scholar]
- National Bureau of Statistics of China. Bulletin of the Seventh National Census (No. 1). Available online: http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/qgrkpcgb/202106/t20210628_1818820.html (accessed on 11 May 2021).
- Guo, T.; Shen, P.; Wang, W.; Shi, L.; Yang, Y.; Zhang, L.; Chen, Y.; Hu, Y.; Luo, F. Lightning occurrence recognition method based on atmospheric electric field value. J. Comput. Appl. Softw. 2018, 35, 86–90. (In Chinese) [Google Scholar]
- Wu, J. Study on the influencing factors of Guangxi’s low-carbon economic development. Acad. Forum 2013, 36, 105–109. (In Chinese) [Google Scholar]
- Wang, Y. A Forecasting Research on Population Size of Jilin Province Based on Grey GM (1,1) Model. Appl. Mech. Mater. 2014, 667, 273–276. [Google Scholar] [CrossRef]
- Camelia, D. Grey systems theory in economics—Bibliometric analysis and applications’ overview. Grey Syst. Theory Appl. 2015, 5, 244–262. [Google Scholar] [CrossRef]
- Camelia, D. Grey systems theory in economics—A historical applications review. Grey Syst. Theory Appl. 2015, 5, 263–276. [Google Scholar] [CrossRef]
- Gao, H.; Yao, T.; Kang, X. Population forecast of Anhui province based on the gm(1,1) model. Grey Syst. Theory Appl. 2017, 7, 19–30. [Google Scholar] [CrossRef]
- Jia, H.; Xie, Z.; Gao, Y. Population prediction and development trend analysis of Gansu province. J. Northwest Popul. 2018, 39, 118–126. (In Chinese) [Google Scholar]
- Langford, E. Quartiles in Elementary Statistics. J. Stat. Educ. 2006, 14, 1–20. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Thisse, J. Human capital and agglomeration economies in urban development. Dev. Econ. 2018, 56, 117–139. [Google Scholar] [CrossRef]
- Brinton, M.C.; Oh, E. Babies, Work, or Both? Highly Educated Women’s Employment and Fertility in East Asia. Am. J. Sociol. 2019, 125, 105–140. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Sun, Z. Too educated to be married? An investigation into the relationship between education and marriage in China. J. Fam. Stud. 2021, 1, 1–19. [Google Scholar] [CrossRef]
Method | Core Content | Hypothesis | Pros | Cons |
---|---|---|---|---|
Historical trend method | Historical growth trends, demographic characteristics, inertial measurement of population, Malthus model | Future population would show the same pattern as population in the past | The method is classical and widely used | Long-term prediction accuracy will decline |
Classical population analysis | Life table technology, hypothetical cohort analysis, population prediction technology and total fertility rate | Accounting for birth and death of people, the measure of population is not the only factor | High prediction accuracy | The demand for data is high and requires long-term accumulation |
Regression model | Logistic model, ARIMA model, Leslie matrix, unitary and multiple linear regression model | Sociology investors believe that population growth may have linear or quasi-linear relationship on certain factors | Less data is required and the method is simple | Long-term prediction error fluctuation is relatively large |
Gray system prediction model | GM (1, 1) model | The trend of population is a fuzzy system, which means the status in the past cannot be used to predict the accurate population growth, only the probability of the status in the future | Less required data, high accuracy of prediction | Only for short- and medium-term forecasts |
Population prediction model | Gravity model, radiation model, Song Jian population equation model, population flow model, etc. | Spatial interaction among cities reflects the growth pattern of population | The model form is more intuitive and explicable | The data requirements are strict and the model is complex |
BP neural network, artificial intelligence | Nonlinear dynamics systems, mathematical equations, etc. | High-order statistical rule reflections from big data might be suitable for population prediction, which cannot be calculated by small amounts of data | Strong ability of nonlinear mapping and generalization | The convergence rate of the algorithm is slow, the interpretability is poor |
System dynamics | Differential dynamical equations and nonlinear stochastic processes | Population is embedded into the whole system of the society, and might be correlated with a number of factors | Can find the root cause from the internal structure of the system | The subjective color is heavy |
The Results of Population Prediction of Beijing | |||||||
Year | High Scheme | Middle Scheme | Low Scheme | Year | High Scheme | Middle Scheme | Low Scheme |
2011 | 1268.53 | 1259.52 | 1250.52 | 2021 | 1380.98 | 1276.89 | 1179.97 |
2012 | 1279.35 | 1261.25 | 1243.28 | 2022 | 1392.76 | 1278.63 | 1173.14 |
2013 | 1290.26 | 1262.98 | 1236.08 | 2023 | 1404.64 | 1280.39 | 1166.35 |
2014 | 1301.27 | 1264.71 | 1228.92 | 2024 | 1416.63 | 1282.14 | 1159.59 |
2015 | 1312.37 | 1266.44 | 1221.81 | 2025 | 1428.71 | 1283.90 | 1152.88 |
2016 | 1323.56 | 1268.17 | 1214.73 | 2026 | 1440.90 | 1285.66 | 1146.20 |
2017 | 1334.85 | 1269.91 | 1207.70 | 2027 | 1453.19 | 1287.42 | 1139.57 |
2018 | 1346.24 | 1271.65 | 1200.71 | 2028 | 1465.58 | 1289.18 | 1132.97 |
2019 | 1357.72 | 1273.39 | 1193.75 | 2029 | 1478.08 | 1290.95 | 1126.41 |
2020 | 1369.30 | 1275.14 | 1186.84 | 2030 | 1490.69 | 1292.72 | 1119.89 |
The Results of Population Prediction of Shanghai | |||||||
Year | High Scheme | Middle Scheme | Low Scheme | Year | High Scheme | Middle Scheme | Low Scheme |
2011 | 1413.01 | 1410.36 | 1407.72 | 2021 | 1419.95 | 1390.95 | 1362.49 |
2012 | 1413.70 | 1408.41 | 1403.13 | 2022 | 1420.65 | 1389.03 | 1358.05 |
2013 | 1414.40 | 1406.46 | 1398.55 | 2023 | 1421.34 | 1387.10 | 1353.62 |
2014 | 1415.09 | 1404.51 | 1393.99 | 2024 | 1422.04 | 1385.18 | 1349.21 |
2015 | 1415.78 | 1402.57 | 1389.45 | 2025 | 1422.74 | 1383.26 | 1344.81 |
2016 | 1416.48 | 1400.62 | 1384.92 | 2026 | 1423.43 | 1381.35 | 1340.43 |
2017 | 1417.17 | 1398.68 | 1380.40 | 2027 | 1424.13 | 1379.43 | 1336.06 |
2018 | 1417.87 | 1396.75 | 1375.90 | 2028 | 1424.83 | 1377.52 | 1331.70 |
2019 | 1418.56 | 1394.81 | 1371.42 | 2029 | 1425.53 | 1375.61 | 1327.36 |
2020 | 1419.26 | 1392.88 | 1366.95 | 2030 | 1426.23 | 1373.71 | 1323.03 |
The Results of Population Prediction of Guangzhou | |||||||
Year | High Scheme | Middle Scheme | Low Scheme | Year | High Scheme | Middle Scheme | Low Scheme |
2011 | 818.71 | 813.33 | 807.95 | 2021 | 955.68 | 888.81 | 826.23 |
2012 | 831.47 | 820.58 | 809.76 | 2022 | 970.58 | 896.74 | 828.08 |
2013 | 844.43 | 827.89 | 811.57 | 2023 | 985.71 | 904.73 | 829.93 |
2014 | 857.60 | 835.27 | 813.39 | 2024 | 1001.08 | 912.80 | 831.79 |
2015 | 870.97 | 842.72 | 815.21 | 2025 | 1016.69 | 920.94 | 833.66 |
2016 | 884.55 | 850.23 | 817.04 | 2026 | 1032.54 | 929.15 | 835.52 |
2017 | 898.34 | 857.81 | 818.87 | 2027 | 1048.63 | 937.43 | 837.39 |
2018 | 912.34 | 865.46 | 820.70 | 2028 | 1064.98 | 945.79 | 839.27 |
2019 | 926.57 | 873.18 | 822.54 | 2029 | 1081.58 | 954.22 | 841.15 |
2020 | 941.01 | 880.96 | 824.38 | 2030 | 1098.45 | 962.72 | 843.03 |
The Results of Population Prediction of Shenzhen | |||||||
Year | High Scheme | Middle Scheme | Low Scheme | Year | High Scheme | Middle Scheme | Low Scheme |
2011 | 266.41 | 264.37 | 262.32 | 2021 | 341.63 | 313.85 | 288.13 |
2012 | 273.12 | 268.94 | 264.79 | 2022 | 350.23 | 319.28 | 290.85 |
2013 | 280.00 | 273.60 | 267.29 | 2023 | 359.05 | 324.80 | 293.59 |
2014 | 287.05 | 278.33 | 269.81 | 2024 | 368.09 | 330.42 | 296.36 |
2015 | 294.28 | 283.15 | 272.36 | 2025 | 377.36 | 336.14 | 299.16 |
2016 | 301.69 | 288.05 | 274.92 | 2026 | 386.86 | 341.96 | 301.98 |
2017 | 309.28 | 293.03 | 277.52 | 2027 | 396.61 | 347.88 | 304.83 |
2018 | 317.07 | 298.10 | 280.13 | 2028 | 406.59 | 353.90 | 307.70 |
2019 | 325.06 | 303.26 | 282.78 | 2029 | 416.83 | 360.02 | 310.60 |
2020 | 333.24 | 308.51 | 285.44 | 2030 | 427.33 | 366.25 | 313.53 |
The Results of Population Prediction of Beijing | |||||
Year | Population (10 Years) | Population (20 Years) | Year | Population (10 Years) | Population (20 Years) |
2011 | 1279.83 | 1282.84 | 2021 | 1429.27 | 1415.97 |
2012 | 1294.78 | 1296.15 | 2022 | 1444.21 | 1429.29 |
2013 | 1309.72 | 1309.46 | 2023 | 1459.15 | 1442.60 |
2014 | 1324.66 | 1322.78 | 2024 | 1474.10 | 1455.91 |
2015 | 1339.61 | 1336.09 | 2025 | 1489.04 | 1469.23 |
2016 | 1354.55 | 1349.40 | 2026 | 1503.98 | 1482.54 |
2017 | 1369.49 | 1362.72 | 2027 | 1518.93 | 1495.85 |
2018 | 1384.44 | 1376.03 | 2028 | 1533.87 | 1509.17 |
2019 | 1399.38 | 1389.35 | 2029 | 1548.81 | 1522.48 |
2020 | 1414.32 | 1402.66 | 2030 | 1563.76 | 1535.79 |
The Results of Population Prediction of Shanghai | |||||
Year | Population (10 Years) | Population (20 Years) | Year | Population (10 Years) | Population (20 Years) |
2011 | 1418.00 | 1412.06 | 2021 | 1482.12 | 1494.55 |
2012 | 1424.41 | 1420.31 | 2022 | 1488.54 | 1502.80 |
2013 | 1430.82 | 1428.56 | 2023 | 1494.95 | 1511.05 |
2014 | 1437.24 | 1436.81 | 2024 | 1501.36 | 1519.30 |
2015 | 1443.65 | 1445.06 | 2025 | 1507.77 | 1527.55 |
2016 | 1450.06 | 1453.31 | 2026 | 1514.19 | 1535.80 |
2017 | 1456.47 | 1461.56 | 2027 | 1520.60 | 1544.05 |
2018 | 1462.89 | 1469.81 | 2028 | 1527.01 | 1552.29 |
2019 | 1469.30 | 1478.05 | 2029 | 1533.42 | 1560.54 |
2020 | 1475.71 | 1486.30 | 2030 | 1539.84 | 1568.79 |
The Results of Population Prediction of Guangzhou | |||||
Year | Population (10 Years) | Population (20 Years) | Year | Population (10 Years) | Population (20 Years) |
2011 | 812.52 | 819.02 | 2021 | 947.45 | 932.48 |
2012 | 826.02 | 830.37 | 2022 | 960.94 | 943.83 |
2013 | 839.51 | 841.72 | 2023 | 974.43 | 955.17 |
2014 | 853.00 | 853.06 | 2024 | 987.92 | 966.52 |
2015 | 866.49 | 864.41 | 2025 | 1001.42 | 977.87 |
2016 | 879.99 | 875.75 | 2026 | 1014.91 | 989.21 |
2017 | 893.48 | 887.10 | 2027 | 1028.40 | 1000.56 |
2018 | 906.97 | 898.44 | 2028 | 1041.89 | 1011.90 |
2019 | 920.46 | 909.79 | 2029 | 1055.38 | 1023.25 |
2020 | 933.95 | 921.14 | 2030 | 1068.88 | 1034.59 |
The Results of Population Prediction of Shenzhen | |||||
Year | Population (10 Years) | Population (20 Years) | Year | Population (10 Years) | Population (20 Years) |
2011 | 274.06 | 292.12 | 2021 | 511.43 | 463.50 |
2012 | 297.80 | 309.26 | 2022 | 535.17 | 480.64 |
2013 | 321.53 | 326.40 | 2023 | 558.91 | 497.78 |
2014 | 345.27 | 343.54 | 2024 | 582.64 | 514.91 |
2015 | 369.01 | 360.67 | 2025 | 606.38 | 532.05 |
2016 | 392.75 | 377.81 | 2026 | 630.12 | 549.19 |
2017 | 416.48 | 394.95 | 2027 | 653.85 | 566.33 |
2018 | 440.22 | 412.09 | 2028 | 677.59 | 583.47 |
2019 | 463.96 | 429.22 | 2029 | 701.33 | 600.60 |
2020 | 487.69 | 446.36 | 2030 | 725.07 | 617.74 |
The Results of Population Prediction of Beijing | |||||
Year | Population (10 Years) | Population (20 Years) | Year | Population (10 Years) | Population (20 Years) |
2011 | 1299.63 | 1294.98 | 2021 | 1411.37 | 1333.79 |
2012 | 1315.16 | 1298.81 | 2022 | 1418.24 | 1337.73 |
2013 | 1329.57 | 1302.65 | 2023 | 1424.52 | 1341.69 |
2014 | 1342.92 | 1306.50 | 2024 | 1430.27 | 1345.65 |
2015 | 1355.26 | 1310.37 | 2025 | 1435.52 | 1349.63 |
2016 | 1366.66 | 1314.24 | 2026 | 1440.32 | 1353.62 |
2017 | 1377.16 | 1318.13 | 2027 | 1444.70 | 1357.63 |
2018 | 1386.83 | 1322.02 | 2028 | 1448.70 | 1361.64 |
2019 | 1395.72 | 1325.93 | 2029 | 1452.35 | 1365.67 |
2020 | 1403.88 | 1329.85 | 2030 | 1455.67 | 1369.71 |
The Results of Population Prediction of Shanghai | |||||
Year | Population (10 Years) | Population (20 Years) | Year | Population (10 Years) | Population (20 Years) |
2011 | 1425.82 | 1413.47 | 2021 | 1474.00 | 1487.02 |
2012 | 1432.83 | 1421.25 | 2022 | 1476.80 | 1493.86 |
2013 | 1439.25 | 1428.93 | 2023 | 1479.33 | 1500.61 |
2014 | 1445.11 | 1436.52 | 2024 | 1481.64 | 1507.26 |
2015 | 1450.46 | 1444.02 | 2025 | 1483.74 | 1513.82 |
2016 | 1455.35 | 1451.42 | 2026 | 1485.65 | 1520.28 |
2017 | 1459.80 | 1458.73 | 2027 | 1487.38 | 1526.65 |
2018 | 1463.87 | 1465.94 | 2028 | 1488.95 | 1532.93 |
2019 | 1467.57 | 1473.06 | 2029 | 1490.38 | 1539.12 |
2020 | 1470.94 | 1480.09 | 2030 | 1491.67 | 1545.22 |
The Results of Population Prediction of Guangzhou | |||||
Year | Population (10 Years) | Population (20 Years) | Year | Population (10 Years) | Population (20 Years) |
2011 | 824.27 | 814.38 | 2021 | 931.32 | 912.58 |
2012 | 834.40 | 824.69 | 2022 | 942.76 | 921.73 |
2013 | 844.65 | 834.90 | 2023 | 954.34 | 930.76 |
2014 | 855.02 | 845.01 | 2024 | 966.07 | 939.64 |
2015 | 865.53 | 855.01 | 2025 | 977.94 | 948.39 |
2016 | 876.16 | 864.91 | 2026 | 989.95 | 957.00 |
2017 | 886.93 | 874.68 | 2027 | 1002.12 | 965.47 |
2018 | 897.82 | 884.34 | 2028 | 1014.43 | 973.79 |
2019 | 908.85 | 893.88 | 2029 | 1026.89 | 981.97 |
2020 | 920.02 | 903.29 | 2030 | 1039.51 | 990.01 |
The Results of Population Prediction of Shenzhen | |||||
Year | Population (10 Years) | Population (20 Years) | Year | Population (10 Years) | Population (20 Years) |
2011 | 299.93 | 274.81 | 2021 | 581.05 | 548.75 |
2012 | 320.44 | 294.49 | 2022 | 620.77 | 588.04 |
2013 | 342.34 | 315.58 | 2023 | 663.21 | 630.15 |
2014 | 365.74 | 338.17 | 2024 | 708.54 | 675.27 |
2015 | 390.75 | 362.39 | 2025 | 756.98 | 723.62 |
2016 | 417.46 | 388.34 | 2026 | 808.73 | 775.43 |
2017 | 446.00 | 416.14 | 2027 | 864.02 | 830.95 |
2018 | 476.49 | 445.94 | 2028 | 923.09 | 890.45 |
2019 | 509.06 | 477.87 | 2029 | 986.19 | 954.21 |
2020 | 543.87 | 512.08 | 2030 | 1053.61 | 1022.53 |
The Results of Population Prediction of Beijing | |||||
Year | Population (10 Years) | Population (20 Years) | Year | Population (10 Years) | Population (20 Years) |
2011 | 1281.70 | 1277.93 | 2021 | 1430.31 | 1446.31 |
2012 | 1295.84 | 1293.85 | 2022 | 1446.09 | 1464.32 |
2013 | 1310.13 | 1309.96 | 2023 | 1462.04 | 1482.55 |
2014 | 1324.58 | 1326.28 | 2024 | 1478.16 | 1501.02 |
2015 | 1339.19 | 1342.79 | 2025 | 1494.47 | 1519.71 |
2016 | 1353.97 | 1359.52 | 2026 | 1510.95 | 1538.64 |
2017 | 1368.90 | 1376.45 | 2027 | 1527.62 | 1557.80 |
2018 | 1384.00 | 1393.59 | 2028 | 1544.47 | 1577.20 |
2019 | 1399.27 | 1410.94 | 2029 | 1561.51 | 1596.84 |
2020 | 1414.70 | 1428.52 | 2030 | 1578.73 | 1616.73 |
The Results of Population Prediction of Shanghai | |||||
Year | Population (10 Years) | Population (20 Years) | Year | Population (10 Years) | Population (20 Years) |
2011 | 1419.65 | 1411.38 | 2021 | 1480.54 | 1497.13 |
2012 | 1425.62 | 1419.73 | 2022 | 1486.77 | 1505.98 |
2013 | 1431.62 | 1428.13 | 2023 | 1493.03 | 1514.89 |
2014 | 1437.65 | 1436.58 | 2024 | 1499.31 | 1523.85 |
2015 | 1443.70 | 1445.08 | 2025 | 1505.62 | 1532.87 |
2016 | 1449.77 | 1453.62 | 2026 | 1511.96 | 1541.94 |
2017 | 1455.87 | 1462.22 | 2027 | 1518.32 | 1551.06 |
2018 | 1462.00 | 1470.87 | 2028 | 1524.71 | 1560.23 |
2019 | 1468.15 | 1479.57 | 2029 | 1531.13 | 1569.46 |
2020 | 1474.33 | 1488.33 | 2030 | 1537.57 | 1578.74 |
The Results of Population Prediction of Guangzhou | |||||
Year | Population (10 Years) | Population (20 Years) | Year | Population (10 Years) | Population (20 Years) |
2011 | 809.11 | 816.87 | 2021 | 957.91 | 943.15 |
2012 | 822.89 | 828.70 | 2022 | 974.22 | 956.80 |
2013 | 836.90 | 840.69 | 2023 | 990.81 | 970.66 |
2014 | 851.15 | 852.87 | 2024 | 1007.68 | 984.71 |
2015 | 865.64 | 865.21 | 2025 | 1024.83 | 998.97 |
2016 | 880.37 | 877.74 | 2026 | 1042.28 | 1013.43 |
2017 | 895.36 | 890.45 | 2027 | 1060.03 | 1028.10 |
2018 | 910.61 | 903.34 | 2028 | 1078.07 | 1042.99 |
2019 | 926.11 | 916.42 | 2029 | 1096.43 | 1058.09 |
2020 | 941.88 | 929.69 | 2030 | 1115.09 | 1073.41 |
The Results of Population Prediction of Shenzhen | |||||
Year | Population (10 Years) | Population (20 Years) | Year | Population (10 Years) | Population (20 Years) |
2011 | 268.32 | 273.74 | 2021 | 569.60 | 558.38 |
2012 | 289.29 | 293.97 | 2022 | 614.14 | 599.63 |
2013 | 311.91 | 315.69 | 2023 | 662.15 | 643.94 |
2014 | 336.30 | 339.02 | 2024 | 713.92 | 691.52 |
2015 | 362.59 | 364.06 | 2025 | 769.74 | 742.61 |
2016 | 390.94 | 390.96 | 2026 | 829.92 | 797.48 |
2017 | 421.50 | 419.85 | 2027 | 894.80 | 856.40 |
2018 | 454.46 | 450.87 | 2028 | 964.76 | 919.68 |
2019 | 489.99 | 484.18 | 2029 | 1040.19 | 987.63 |
2020 | 528.30 | 519.96 | 2030 | 1121.52 | 1060.60 |
Error Test of Each Scheme in Beijing | ||||||
Year | High Scheme | Middle Scheme | Low Scheme | |||
Error | Relative Error | Error | Relative Error | Error | Relative Error | |
2011 | −9.37 | −0.73% | −18.38 | −1.44% | −27.38 | −2.14% |
2012 | −18.15 | −1.40% | −36.25 | −2.79% | −54.22 | −4.18% |
2013 | −26.04 | −1.98% | −53.32 | −4.05% | −80.22 | −6.09% |
2014 | −32.13 | −2.41% | −68.69 | −5.15% | −104.48 | −7.84% |
2015 | −32.83 | −2.44% | −78.76 | −5.85% | −123.39 | −9.17% |
2016 | −39.44 | −2.89% | −94.83 | −6.96% | −148.27 | −10.88% |
2017 | −24.15 | −1.78% | −89.09 | −6.56% | −151.30 | −11.13% |
2018 | −29.76 | −2.16% | −104.35 | −7.58% | −175.29 | −12.74% |
Error Test of Each Scheme in Shanghai | ||||||
Year | High Scheme | Middle Scheme | Low Scheme | |||
Error | Relative Error | Error | Relative Error | Error | Relative Error | |
2011 | −6.39 | −0.45% | −9.04 | −0.64% | −11.68 | −0.82% |
2012 | −13.20 | −0.92% | −18.49 | −1.30% | −23.77 | −1.67% |
2013 | −17.90 | −1.25% | −25.84 | −1.80% | −33.75 | −2.36% |
2014 | −23.61 | −1.64% | −34.19 | −2.38% | −44.71 | −3.11% |
2015 | −27.19 | −1.88% | −40.40 | −2.80% | −53.52 | −3.71% |
2016 | −33.52 | −2.31% | −49.38 | −3.41% | −65.08 | −4.49% |
2017 | −37.83 | −2.60% | −56.32 | −3.87% | −74.60 | −5.13% |
2018 | −44.13 | −3.02% | −65.25 | −4.46% | −86.10 | −5.89% |
Error Test of Each Scheme in Guangzhou | ||||||
Year | High Scheme | Middle Scheme | Low Scheme | |||
Error | Relative Error | Error | Relative Error | Error | Relative Error | |
2011 | 4.11 | 0.50% | −1.27 | −0.16% | −6.65 | −0.82% |
2012 | 9.17 | 1.12% | −1.72 | −0.21% | −12.54 | −1.53% |
2013 | 12.13 | 1.46% | −4.41 | −0.53% | −20.73 | −2.49% |
2014 | 15.20 | 1.80% | −7.13 | −0.85% | −29.01 | −3.44% |
2015 | 16.78 | 1.96% | −11.47 | −1.34% | −38.98 | −4.56% |
2016 | 14.55 | 1.67% | −19.77 | −2.27% | −52.96 | −6.09% |
2017 | 0.34 | 0.04% | −40.19 | −4.48% | −79.13 | −8.81% |
2018 | −15.66 | −1.69% | −62.54 | −6.74% | −107.30 | −11.56% |
Error Test of Each Scheme in Shenzhen | ||||||
Year | High Scheme | Middle Scheme | Low Scheme | |||
Error | Relative Error | Error | Relative Error | Error | Relative Error | |
2011 | −1.49 | −0.55% | −3.53 | −1.32% | −5.58 | −2.08% |
2012 | −14.48 | −5.03% | −18.66 | −6.49% | −22.81 | −7.93% |
2013 | −30.50 | −9.82% | −36.90 | −11.89% | −43.21 | −13.92% |
2014 | −45.15 | −13.59% | −53.87 | −16.22% | −62.39 | −18.78% |
2015 | −60.71 | −17.10% | −71.84 | −20.24% | −82.63 | −23.28% |
2016 | −83.31 | −21.64% | −96.95 | −25.18% | −110.08 | −28.59% |
2017 | −125.72 | −28.90% | −141.97 | −32.64% | −157.48 | −36.20% |
2018 | −137.93 | −30.31% | −156.90 | −34.48% | −174.87 | −38.43% |
Error Test of Each Scheme in Beijing | Error Test of Each Scheme in Shanghai | |||||||
year | 10 Years Sample | 20 Years Sample | 10 Years Sample | 20 Years Sample | ||||
Error | Relative Error | Error | Relative Error | Error | Relative Error | Error | Relative Error | |
2011 | 1.93 | 0.15% | 4.94 | 0.39% | −1.40 | −0.10% | −7.34 | −0.52% |
2012 | −2.72 | −0.21% | −1.35 | −0.10% | −2.49 | −0.17% | −6.59 | −0.46% |
2013 | −6.58 | −0.50% | −6.84 | −0.52% | −1.48 | −0.10% | −3.74 | −0.26% |
2014 | −8.74 | −0.66% | −10.62 | −0.80% | −1.46 | −0.10% | −1.89 | −0.13% |
2015 | −5.59 | −0.42% | −9.11 | −0.68% | 0.68 | 0.05% | 2.09 | 0.14% |
2016 | −8.45 | −0.62% | −13.60 | −1.00% | 0.06 | 0.00% | 3.31 | 0.23% |
2017 | 10.49 | 0.77% | 3.72 | 0.27% | 1.47 | 0.10% | 6.56 | 0.45% |
2018 | 8.44 | 0.61% | 0.03 | 0.00% | 0.89 | 0.06% | 7.81 | 0.53% |
Error Test of Each Scheme in Guangzhou | Error Test of Each Scheme in Shenzhen | |||||||
Year | 10 Years Sample | 20 Years Sample | 10 Years Sample | 20 Years Sample | ||||
Error | Relative Error | Error | Relative Error | Error | Relative Error | Error | Relative Error | |
2011 | −2.08 | −0.25% | 4.42 | 0.54% | 6.16 | 2.30% | 24.22 | 9.04% |
2012 | 3.72 | 0.45% | 8.07 | 0.98% | 10.20 | 3.55% | 21.66 | 7.53% |
2013 | 7.21 | 0.87% | 9.42 | 1.13% | 11.03 | 3.55% | 15.90 | 5.12% |
2014 | 10.60 | 1.26% | 10.66 | 1.27% | 13.07 | 3.93% | 11.34 | 3.41% |
2015 | 12.30 | 1.44% | 10.22 | 1.20% | 14.02 | 3.95% | 5.68 | 1.60% |
2016 | 9.99 | 1.15% | 5.75 | 0.66% | 7.75 | 2.01% | −7.19 | −1.87% |
2017 | −4.52 | −0.50% | −10.90 | −1.21% | −18.52 | −4.26% | −40.05 | −9.21% |
2018 | −21.03 | −2.27% | −29.56 | −3.18% | −14.78 | −3.25% | −42.91 | −9.43% |
Error Test of Each Scheme in Beijing | Error Test of Each Scheme in Shanghai | |||||||
Year | 10 Years Sample | 20 Years Sample | 10 Years Sample | 20 Years Sample | ||||
Error | Relative Error | Error | Relative Error | Error | Relative Error | Error | Relative Error | |
2011 | 21.73 | 1.70% | 17.08 | 1.34% | 6.42 | 0.45% | −5.93 | −0.42% |
2012 | 17.66 | 1.36% | 1.31 | 0.10% | 5.93 | 0.42% | −5.65 | −0.40% |
2013 | 13.27 | 1.01% | −13.65 | −1.04% | 6.95 | 0.48% | −3.37 | −0.24% |
2014 | 9.52 | 0.71% | −26.90 | −2.02% | 6.41 | 0.45% | −2.18 | −0.15% |
2015 | 10.06 | 0.75% | −34.83 | −2.59% | 7.49 | 0.52% | 1.05 | 0.07% |
2016 | 3.66 | 0.27% | −48.76 | −3.58% | 5.35 | 0.37% | 1.42 | 0.10% |
2017 | 18.16 | 1.34% | −40.87 | −3.01% | 4.80 | 0.33% | 3.73 | 0.26% |
2018 | 10.83 | 0.79% | −53.98 | −3.92% | 1.87 | 0.13% | 3.94 | 0.27% |
Error Test of Each Scheme in Guangzhou | Error Test of Each Scheme in Shenzhen | |||||||
Year | 10 Years Sample | 20 Years Sample | 10 Years Sample | 20 Years Sample | ||||
Error | Relative Error | Error | Relative Error | Error | Relative Error | Error | Relative Error | |
2011 | 9.67 | 1.19% | −0.22 | −0.03% | 32.03 | 11.96% | 6.91 | 2.58% |
2012 | 12.10 | 1.47% | 2.39 | 0.29% | 32.84 | 11.42% | 6.89 | 2.40% |
2013 | 12.35 | 1.48% | 2.60 | 0.31% | 31.84 | 10.25% | 5.08 | 1.64% |
2014 | 12.62 | 1.50% | 2.61 | 0.31% | 33.54 | 10.10% | 5.97 | 1.80% |
2015 | 11.34 | 1.33% | 0.82 | 0.10% | 35.76 | 10.07% | 7.40 | 2.08% |
2016 | 6.16 | 0.71% | −5.09 | −0.59% | 32.46 | 8.43% | 3.34 | 0.87% |
2017 | −11.07 | −1.23% | −23.32 | −2.60% | 11.00 | 2.53% | −18.86 | −4.34% |
2018 | −30.18 | −3.25% | −43.66 | −4.70% | 21.49 | 4.72% | −9.06 | −1.99% |
Error Test of Each Scheme in Beijing | Error Test of Each Scheme in Shanghai | |||||||
Year | 10 Years Sample | 20 Years Sample | 10 Years Sample | 20 Years Sample | ||||
Error | Relative Error | Error | Relative Error | Error | Relative Error | Error | Relative Error | |
2011 | 3.80 | 0.30% | 0.03 | 0.00% | 0.25 | 0.02% | −8.02 | −0.56% |
2012 | −1.66 | −0.13% | −3.65 | −0.28% | −1.28 | −0.09% | −7.17 | −0.50% |
2013 | −6.17 | −0.47% | −6.34 | −0.48% | −0.68 | −0.05% | −4.17 | −0.29% |
2014 | −8.82 | −0.66% | −7.12 | −0.53% | −1.05 | −0.07% | −2.12 | −0.15% |
2015 | −6.01 | −0.45% | −2.41 | −0.18% | 0.73 | 0.05% | 2.11 | 0.15% |
2016 | −9.03 | −0.66% | −3.48 | −0.26% | −0.23 | −0.02% | 3.62 | 0.25% |
2017 | 9.90 | 0.73% | 17.45 | 1.28% | 0.87 | 0.06% | 7.22 | 0.50% |
2018 | 8.00 | 0.58% | 17.59 | 1.28% | 0.00 | 0.00% | 8.87 | 0.61% |
Error Test of Each Scheme in Guangzhou | Error Test of Each Scheme in Shenzhen | |||||||
Year | 10 Years Sample | 20 Years Sample | 10 Years Sample | 20 Years Sample | ||||
Error | Relative Error | Error | Relative Error | Error | Relative Error | Error | Relative Error | |
2011 | −5.49 | −0.67% | 2.27 | 0.28% | 0.42 | 0.16% | 5.84 | 2.18% |
2012 | 0.59 | 0.07% | 6.40 | 0.78% | 1.69 | 0.59% | 6.37 | 2.21% |
2013 | 4.60 | 0.55% | 8.39 | 1.01% | 1.41 | 0.45% | 5.19 | 1.67% |
2014 | 8.75 | 1.04% | 10.47 | 1.24% | 4.10 | 1.23% | 6.82 | 2.05% |
2015 | 11.45 | 1.34% | 11.02 | 1.29% | 7.60 | 2.14% | 9.07 | 2.56% |
2016 | 10.37 | 1.19% | 7.74 | 0.89% | 5.94 | 1.54% | 5.96 | 1.55% |
2017 | −2.64 | −0.29% | −7.55 | −0.84% | −13.50 | −3.10% | −15.15 | −3.48% |
2018 | −17.39 | −1.87% | −24.66 | −2.66% | −0.54 | −0.12% | −4.13 | −0.91% |
Model | Malthusian Model (High Growth Rate) | Malthusian Model (Middle Growth Rate) | Malthusian Model (Low Growth Rate) | Unary Linear Regression Model (10 Years) | Unary Linear Regression Model (20 Years) |
---|---|---|---|---|---|
Average relative error rate (%) | 3.885% | 0.825% | −2.122% | −0.018% | 0.166% |
Model | Logistic biological competition model (10 years) | Logistic biological competition model (20 years) | GM (1, 1) model (10 years) | GM (1, 1) model (20 years) | Multi-model average |
Average relative error rate (%) | 0.371% | −0.303% | 0.005% | 1.327% | 0.460% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Mu, T.; Li, X.; Dong, J. Population Prediction of Chinese Prefecture-Level Cities Based on Multiple Models. Sustainability 2022, 14, 4844. https://doi.org/10.3390/su14084844
Chen L, Mu T, Li X, Dong J. Population Prediction of Chinese Prefecture-Level Cities Based on Multiple Models. Sustainability. 2022; 14(8):4844. https://doi.org/10.3390/su14084844
Chicago/Turabian StyleChen, Lixuan, Tianyu Mu, Xiuting Li, and Jichang Dong. 2022. "Population Prediction of Chinese Prefecture-Level Cities Based on Multiple Models" Sustainability 14, no. 8: 4844. https://doi.org/10.3390/su14084844