Comparative Study between Urea and Biogas Digestate Application towards Enhancing Sustainable Fertilization Management in Olive (Olea europaea L., cv. ‘Koroneiki’) Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Biogas Digestate Characteristics, and Treatments
2.2. Soil Sampling and Lab Analyses
2.3. Plant Growth Data
2.4. Tissue Nutrient Analyses, Total Plant Nutrient Content, and N Use Efficiency (NUE)
2.5. Chlorophyll Fluorescence and Gas Exchange Measurements
2.6. Statistical Analysis
3. Results
3.1. Soil Fertility
3.2. Plant Growth (Main Shoot Length, Plant Tissue Weights, and Total Plant Biomass)
3.3. Foliar Nutrition, Total Plant Nutrient Content and N Use Efficiency (NUE)
3.4. Photosystem II Activity (Fv/Fm and Performance Index-PI)
3.5. Photosynthetic Rate, Stomatal Conductance, Transpiration Rate, and Intercellular CO2 Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roussos, P.A.; Gasparatos, D.; Kechrologou, K.; Katsenos, P.; Bouchagier, P. Impact of organic fertilization on soil properties, plant physiology and yield in two newly planted olive (Olea europaea L.) cultivars under Mediterranean conditions. Sci. Hortic. 2017, 220, 11–19. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Papadakis, I.E.; Papaioannou, A.; Chatzissavvidis, C.; Giannakoula, A. Comparative study effects between manure application and a controlled-release fertilizer on the growth, nutrient uptake, photosystem II activity and photosynthetic rate of Olea europaea L. (cv. ‘Koroneiki’). Sci. Hortic. 2020, 264, 109176. [Google Scholar] [CrossRef]
- Miller, R.J.; Smith, R.B. Nitrogen balance in the southern San Joaquin Valley. J. Environ. Qual. 1976, 5, 274–278. [Google Scholar] [CrossRef]
- Fernandez-Escobar, R.; Benlloch, M.; Herrera, E.; Garcia-Novelo, J.M. Effect of traditional and slow-release N fertilizers on growth of olive nursery plants and N losses by leaching. Sci. Hortic. 2004, 101, 39–49. [Google Scholar] [CrossRef]
- Therios, I. Olives. Crop Production Science in Horticulture; C.A.B. International: Cambridge, MA, USA, 2009. [Google Scholar]
- Fernandez-Escobar, R.; Garcia Barragan, T.; Benlloch, M. Estado nutritivo de las plantaciones de olivar en la provincia de Granada. ITEA 1994, 90, 39–49. [Google Scholar]
- Fernandez-Escobar, R.; Marin, L. Nitrogen fertilization in olive orchards. Acta Hort. 1999, 474, 333–335. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, J.; Sun, Z.; Ji, C.; Huang, M.; Zhang, Y.; Xu, P.; Li, S.; Pawlett, M.; Zou, J. Soil N-oxide emissions decrease from intensive greenhouse vegetable fields by substituting synthetic N fertilizer with organic and bio-organic fertilizers. Geoderma 2021, 383, 114730. [Google Scholar] [CrossRef]
- Koszel, M.; Lorencowicz, E. Agricultural use of biogas digestate as a replacement fertilizers. Agric. Agric. Sci. Proc. 2015, 7, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Kesenheimer, K.; Augustin, J.; Hegewald, H.; Köbke, S.; Dittert, K.; Räbiger, T.; Suárez Quiñones, T.; Prochnow, A.; Hartung, J.; Fuß, R.; et al. Nitrification inhibitors reduce N2O emissions induced by application of biogas digestate to oilseed rape. Nutr. Cycl. Agroecos. 2021, 120, 99–118. [Google Scholar] [CrossRef]
- Buchen-Tschiskale, C.; Hagemann, U.; Augustin, J. Soil incubation study showed biogas digestate to cause higher and more variable short-term N2O and N2 fluxes than mineral-N. J. Plant Nutr. Soil Sci. 2020, 183, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Castellano-Hinojosa, A.; Gonzalez-Lopez, J.; Bedmar, E.J. Effect of N fertilization on nitrous oxide emission and the abundance of microbial nitrifiers and denitrifiers in the bulk and rhizosphere soil of Solanum lycopersicum and Phaseolus vulgaris. Plant Soil 2020, 451, 107–120. [Google Scholar] [CrossRef]
- Centeno, A.; Garcia, J.M.; Gomez-del-Campo, M. Effects of N fertilization and nitrification inhibitor product on vegetative growth, production and oil quality in ‘Arbequina’ hedgerow and ‘Picual’ vase-trained orchards. Gracas y Aceites 2017, 68, e215. [Google Scholar] [CrossRef] [Green Version]
- Corrochano-Monsalve, M.; Bozal-Leorri, A.; Sanchez, C.; Gonzalez-Murua, C.; Estavillo, J.M. Joint application of urease and nitrification inhibitors to diminish gaseous nitrogen losses under different tillage systems. J. Clean. Prod. 2021, 289, 125701. [Google Scholar] [CrossRef]
- Souza, E.F.C.; Rosen, C.J.; Venterea, R.T. Co-application of DMPSA and NBPT with urea mitigates both nitrous oxide emissions and nitrate leaching during irrigated potato production. Environ. Pollut. 2021, 284, 117124. [Google Scholar] [CrossRef]
- Tao, R.; Li, J.; Hu, B.; Shah, J.A.; Chu, G. A 2-year study of the impact of reduced nitrogen application combined with double inhibitors on soil N transformation and wheat productivity under drip irrigation. J. Sci. Food Agric. 2021, 101, 1772–1781. [Google Scholar] [CrossRef]
- Ferrari-Machado, P.V.; Neufeld, K.; Brown, S.E.; Voroney, P.R.; Bruulsema, T.W.; Wagner-Riddle, C. High temporal resolution nitrous oxide fluxes from corn (Zea mays L.) in response to the combined use of nitrification and urease inhibitors. Agric. Ecosys. Environ. 2020, 300, 106996. [Google Scholar] [CrossRef]
- Chaddy, A.; Melling, L.; Ishikura, K.; Hatano, R. Soil N2O emissions under different N rates in an oil palm plantation on tropical peatland. Agriculture 2019, 9, 213. [Google Scholar] [CrossRef] [Green Version]
- Maris, S.C.; Teira-Esmatges, M.R.; Arbones, A.; Rufat, J. Effect of irrigation, nitrogen application, and a nitrification inhibitor on nitrous oxide, carbon dioxide and methane emissions from an olive (Olea europaea L.) orchard. Sci. Total Environ. 2015, 538, 966–978. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Therios, I.; Alifragis, D.; Dimassi, K. Effect of sampling time and soil type on Mn, Fe, Zn, Ca, Mg, K and P concentrations of olive (Olea europaea L., cv. ‘Koroneiki’) leaves. Sci. Hortic. 2010, 126, 291–296. [Google Scholar] [CrossRef]
- McLean, E. Soil pH and lime requirement. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph, ASA, SSSA: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Gee, G.; Bauder, J. Particle-size analysis. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods; Klute, A., Ed.; ASA, SSSA: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph, ASA, SSSA: Madison, WI, USA, 1982; pp. 539–547. [Google Scholar]
- Hood-Nowotny, R.; Umana, N.H.-N.; Inselbacher, E.; Oswald-Lachouani, P.; Wanek, W. Alternative Methods for Measuring Inorganic, Organic, and Total Dissolved Nitrogen. Soil Sci. Soc. Am. J. 2010, 74, 1018–1027. [Google Scholar] [CrossRef]
- Olsen, S.; Sommers, L. Phosphorus. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph, ASA, SSSA: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Thomas, G.W. Exchangeable cations methods of soil analysis. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph, ASA, SSSA: Madison, WI, USA, 1982; pp. 159–166. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Hansen, T.H.; De Bang, T.C.; Laursen, K.H.; Pedas, P.; Husted, S.; Schjoerring, J.K. Multielement plant tissue analysis using ICP spectrometry. In Plant Mineral Nutrients. Methods in Molecular Biology (Methods and Protocols); Maathuis, F., Ed.; Humana Press: Totowa, NJ, 2013; Volume 953. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters; Division of Agricultural Sciences, University of California: Riverside, CA, USA, 1961; p. 309. [Google Scholar]
- Chapin, F.S.; Van Cleve, K. Approaches to studying nutrient uptake, use and loss in plants. In Plant Physiological Ecology-Field Methods and Instrumentation; Pearcy, R.W., Ehleringer, J.R., Mooney, H.A., Rundel, P.W., Eds.; Springer: New York, NY, USA, 1991; pp. 185–207. [Google Scholar]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the chlorophyll a fluorescence transient. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Papageorgiou, G., Govindjee, G., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 321–362. [Google Scholar]
- Schreiber, U.; Schliwa, U.; Bilger, W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 1986, 10, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Alifragis, D. Soil: Genesis—Properties—Classification; Aibazis Publications: Thessaloniki, Greece, 2008; p. 582. (In Greek) [Google Scholar]
- Klimczyk, Μ.; Siczek, A.; Schimmelpfennig, L. Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission. Sci. Total Environ. 2021, 771, 145483. [Google Scholar] [CrossRef] [PubMed]
- Hailegnaw, N.S.; Mercl, F.; Kulhanek, M.; Szakova, J.; Tlustos, P. Co-application of high temperature biochar with 3,4-dimethylpyrazol e-phosphate treated ammonium sulphate improves nitrogen use efficiency in maize. Sci. Rep. 2021, 11, 5711. [Google Scholar] [CrossRef] [PubMed]
- Chatzistathis, T. Micronutrient Deficiency in Soils and Plants; Bentham Science Publishers: Sharjah, United Arab Emirates, 2014. [Google Scholar]
- Gong, B.; He, E.; Qiu, H.; Van Gestel, C.A.M.; Romeiro-Freire, A.; Zhao, L.; Xu, X.; Cao, X. Interactions of arsenic, copper and zinc in soil-plant system: Partition, uptake and phytotoxicity. Sci. Total Environ. 2020, 745, 140926. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Therios, I. How soil nutrient availability influences plant biomass and how biomass stimulation alleviates heavy metal toxicity in soils: The cases of nutrient use efficient genotypes and phytoremediators, respectively. In Biomass Now-Cultivation and Utilization; Matovic, D.M., Ed.; IntechOpen: Rijeka, Croatia, 2013; pp. 427–448. ISBN 978-953-51-1106-1. [Google Scholar]
Texture | pH | Organic Matter | CaCO3 | NO3-N | P (Olsen) | K | Ca | Mg | Fe | Mn | Zn | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|---|
% | mg kg−1 | |||||||||||
SCL | 7.26 | 1.32 | 9.8 | 15.37 | 6.51 | 309 | 2228 | 226 | 3.43 | 9.31 | 1.05 | 0.72 |
Soil Treatments | Texture | pH | Organic Matter | CaCO3 | NO3-N | P (Olsen) | K | Ca | Mg | Fe | Mn | Zn | Cu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | mg kg−1 | ||||||||||||
UREA | SCL | 8.14 | 1.33 b | 12.8 | 13.80 a | 5.41 c | 202 c | 2199 | 501.67 | 4.89 | 7.82 | 2.39 c | 0.64 c |
UREA + DCD | SCL | 8.13 | 1.57 ab | 10.4 | 9.23 ab | 4.72 c | 204 c | 2255 | 567.25 | 4.77 | 8.92 | 2.48 bc | 0.62 c |
BD | SCL | 8.22 | 1.72 a | 10.7 | 13.34 a | 23.52 a | 344 b | 2304 | 579.75 | 5.37 | 8.39 | 3.29 ab | 1.19 a |
BD + DCD | SCL | 8.15 | 1.77 a | 10.2 | 10.26 ab | 26.40 a | 377 ab | 2290 | 574.00 | 5.39 | 9.31 | 4.10 a | 1.13 a |
ACID. BD | SCL | 8.10 | 1.53 ab | 10.8 | 9.81 ab | 27.80 a | 440 a | 2236 | 639.25 | 5.33 | 8.65 | 4.05 a | 1.19 a |
ACID. BD + DCD | SCL | 8.08 | 1.51 ab | 9.7 | 8.19 b | 15.77 b | 531 a | 2196 | 681.75 | 4.74 | 9.27 | 3.11 b | 0.96 ab |
CONTROL | SCL | 8.17 | 1.34 b | 11.7 | 4.85 c | 4.52 c | 218 c | 2134 | 685.50 | 4.90 | 7.12 | 2.29 c | 0.71 bc |
Soil Treatment | Basal Leaves (g.) | Apical Leaves (g.) | Basal Stems (g.) | Apical Stems (g.) | Root (g.) | Shoot/Root | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FW | DW | FW | DW | FW | DW | FW | DW | FW | DW | FW | DW | |
UREA | 64.67 a | 27.78 a | 49.00 b | 20.41 b | 134.00 a | 71.00 a | 42.33 ab | 18.89 b | 136.87 a | 35.37 ab | 2.16 ab | 3.94 a |
UREA + DCD | 42.47 b | 18.10 b | 57.09 ab | 24.03 ab | 111.66 ab | 60.25 ab | 44.66 ab | 20.99 ab | 104.74 a | 31.85 b | 2.57 a | 3.91 a |
BD | 63.96 a | 30.89 a | 45.94 b | 21.62 b | 139.18 a | 81.87 a | 46.01 ab | 23.20 ab | 123.91 a | 41.06 ab | 2.54 a | 3.92 a |
BD + DCD | 34.04 bc | 16.04 bc | 64.16 a | 30.26 a | 111.52 a | 66.61 ab | 56.60 a | 28.38 a | 114.67 a | 38.83 ab | 2.33 ab | 3.63 ab |
ACID. BD | 51.67 ab | 25.82 ab | 68.25 a | 34.14 a | 119.03 a | 71.25 a | 43.43 ab | 22.33 ab | 142.24 a | 51.18 a | 1.99 b | 3.04 b |
ACID. BD + DCD | 52.43 ab | 25.92 ab | 60.95 a | 30.15 a | 125.91 a | 74.82 a | 42.43 ab | 22.06 ab | 117.33 a | 42.11 ab | 2.66 a | 3.82 a |
CONTROL | 27.55 c | 12.67 c | 56.26 ab | 27.67 ab | 92.87 b | 53.25 b | 40.05 b | 19.95 b | 122.11 a | 34.60 ab | 1.93 b | 3.58 ab |
Soil Treatment | Day 0 | Day 8 | Day 18 | Day 27 | Day 34 | Day 43 | Day 51 | Day 57 | Day 64 | Day 71 | Day 81 | Day 88 | Day 95 | Day 102 | Day 109 | Day 117 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UREA | 0 | 0.33 a | 0.20 a | 0.44 a | 0.23 a | 0.11 c | 0.08 c | 0.17 b | 0.09 c | 0.23 c | 0.36 b | 0.33 bc | 0.62 a | 0.47 b | 0.76 a | 0.83 a |
UREA + DCD | 0 | 0.21 ab | 0.10 b | 0.04 d | 0.21 ab | 0.18 b | 0.09 c | 0.20 ab | 0.07 c | 0.28 bc | 0.20 c | 0.21 c | 0.32 c | 0.32 c | 0.25 d | 0.75 ab |
BD | 0 | 0.03 e | 0.20 a | 0.33 a | 0.12 b | 0.34 a | 0.21 ab | 0.25 a | 0.35 a | 0.53 a | 0.47 ab | 0.57 a | 0.50 ab | 0.46 b | 0.46 b | 0.46 c |
BD + DCD | 0 | 0.06 d | 0.07 c | 0.22 b | 0.28 a | 0.22 ab | 0.28 a | 0.16 b | 0.35 a | 0.32 b | 0.62 a | 0.46 ab | 0.57 ab | 0.60 ab | 0.71 a | 0.53 c |
ACID. BD | 0 | 0.06 d | 0.27 a | 0.09 c | 0.03 c | 0.20 b | 0.15 b | 0.08 c | 0.28 a | 0.17 d | 0.37 b | 0.42 b | 0.46 b | 0.50 ab | 0.39 c | 0.31 d |
ACID. BD + DCD | 0 | 0.14 b | 0.26 a | 0.18 b | 0.14 b | 0.18 b | 0.21 ab | 0.29 a | 0.14 b | 0.37 b | 0.33 b | 0.64 a | 0.53 ab | 0.71 a | 0.64 ab | 0.68 b |
CONTROL | 0 | 0.12 c | 0 d | 0.08 c | 0.32 a | 0.05 d | 0.18 b | 0.26 a | 0.28 a | 0.21 cd | 0.25 bc | 0.42 b | 0.28 c | 0.35 c | 0.42 bc | 0.31 d |
Soil Treatment | Day 123 | Day 130 | Day 137 | Day 146 | Day 153 | Day 160 | Day 167 | Day 174 | Day 181 | Day 188 | Day 195 | Day 202 | Day 209 | Day 216 | Day 223 | Day 230 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UREA | 1.00 a | 0.61 a | 0.42 c | 0.33 a | 0.14 bc | 0.42 b | 0.47 a | 0.47 ab | 1.04 a | 1.33 a | 1.33 ab | 0.66 c | 0.33 b | 0.23 b | 0.28 a | 0.37 bc |
UREA + DCD | 0.79 ab | 0.50 a | 0.75 a | 0.27 a | 0.14 bc | 0.39 b | 0.10 d | 0.39 b | 0.60 bc | 0.89 ab | 1.25 ab | 0.67 c | 0.57 a | 0.28 b | 0.17 b | 0.21 d |
BD | 0.25 c | 0.50 a | 0.60 ab | 0.30 a | 0.32 a | 0.57 a | 0.50 a | 0.57 a | 0.67 b | 1.07 a | 1.14 b | 0.89 ab | 0.32 b | 0.28 b | 0.35 a | 0.53 b |
BD + DCD | 0.25 c | 0.32 b | 0.53 b | 0.08 b | 0.25 a | 0.21 c | 0.17 c | 0.57 a | 0.78 ab | 0.60 c | 0.82 c | 0.71 bc | 0.17 c | 0.46 a | 0.25 ab | 0.37 bc |
ACID. BD | 0.29 c | 0.32 b | 0.53 b | 0.11 b | 0.17 b | 0.21 c | 0.32 b | 0.57 a | 0.96 a | 0.78 ab | 1.10 b | 0.96 a | 0.53 a | 0.25 b | 0.17 b | 0.40 bc |
ACID. BD + DCD | 0.58 b | 0.32 b | 0.42 c | 0.11 b | 0.10 c | 0.21 c | 0.28 b | 0.50 ab | 0.50 c | 0.75 b | 0.71 c | 0.42 d | 0.21 c | 0.32 b | 0.17 b | 0.75 a |
CONTROL | 0.08 d | 0.14 c | 0.21 d | 0.38 a | 0.28 a | 0.42 b | 0.35 b | 0.42 b | 0.42 d | 0.42 d | 1.64 a | 0.42 d | 0 d | 0.28 b | 0.07 c | 0.31 c |
Soil Treatment | N | P | K | Ca | Mg | |||||
---|---|---|---|---|---|---|---|---|---|---|
% DW | ||||||||||
Basal Leaves | Apical Leaves | Basal Leaves | Apical Leaves | Basal Leaves | Apical Leaves | Basal Leaves | Apical Leaves | Basal Leaves | Apical Leaves | |
UREA | 1.86 ab | 2.28 a | 0.08 b | 0.10 | 1.14 | 1.29 | 1.51 | 1.20 | 0.18 | 0.15 |
UREA + DCD | 2.19 a | 2.44 a | 0.11 ab | 0.12 | 1.16 | 1.27 | 1.24 | 1.18 | 0.18 | 0.17 |
BD | 1.71 ab | 1.70 ab | 0.09 ab | 0.11 | 1.03 | 1.23 | 1.40 | 0.96 | 0.19 | 0.14 |
BD + DCD | 1.88 ab | 1.93 ab | 0.12 a | 0.12 | 1.18 | 1.29 | 1.20 | 1.05 | 0.19 | 0.16 |
ACID. BD | 1.46 b | 1.48 b | 0.10 ab | 0.11 | 1.07 | 1.22 | 1.41 | 1.04 | 0.18 | 0.16 |
ACID. BD + DCD | 1.61 ab | 1.52 b | 0.11 ab | 0.12 | 1.21 | 1.26 | 1.24 | 1.02 | 0.18 | 0.16 |
CONTROL | 1.57 b | 1.82 ab | 0.10 ab | 0.10 | 1.06 | 1.10 | 1.40 | 1.18 | 0.17 | 0.17 |
Soil Treatment | Fe | Mn | Zn | Cu | ||||
---|---|---|---|---|---|---|---|---|
mg kg−1 DW | ||||||||
Basal Leaves | Apical Leaves | Basal Leaves | Apical Leaves | Basal Leaves | Apical Leaves | Basal Leaves | Apical Leaves | |
UREA | 354 | 269 | 54 ab | 48 a | 22 ab | 20 ab | 8 ab | 4 b |
UREA + DCD | 359 | 283 | 63 a | 52 a | 25 ab | 30 a | 10 a | 9 a |
BD | 334 | 221 | 62 a | 42 ab | 22 ab | 16 b | 5 c | 2 c |
BD + DCD | 312 | 265 | 44 b | 47 a | 19 b | 17 b | 5 c | 3.5 b |
ACID. BD | 308 | 238 | 51 ab | 38 b | 23 ab | 22 ab | 4 c | 3 bc |
ACID. BD + DCD | 301 | 265 | 57 a | 36 b | 27 ab | 26 a | 7 b | 3 bc |
CONTROL | 305 | 270 | 60 a | 45 ab | 30 a | 24 ab | 5 c | 3.5 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzistathis, T.; Tzanakakis, V.A.; Papaioannou, A.; Giannakoula, A. Comparative Study between Urea and Biogas Digestate Application towards Enhancing Sustainable Fertilization Management in Olive (Olea europaea L., cv. ‘Koroneiki’) Plants. Sustainability 2022, 14, 4785. https://doi.org/10.3390/su14084785
Chatzistathis T, Tzanakakis VA, Papaioannou A, Giannakoula A. Comparative Study between Urea and Biogas Digestate Application towards Enhancing Sustainable Fertilization Management in Olive (Olea europaea L., cv. ‘Koroneiki’) Plants. Sustainability. 2022; 14(8):4785. https://doi.org/10.3390/su14084785
Chicago/Turabian StyleChatzistathis, Theocharis, Vasileios A. Tzanakakis, Athanasios Papaioannou, and Anastasia Giannakoula. 2022. "Comparative Study between Urea and Biogas Digestate Application towards Enhancing Sustainable Fertilization Management in Olive (Olea europaea L., cv. ‘Koroneiki’) Plants" Sustainability 14, no. 8: 4785. https://doi.org/10.3390/su14084785