Exploring the Multisensory Interaction between Luminous, Thermal and Auditory Environments through the Spatial Promenade Experience: A Case Study of a University Campus in an Oasis Settlement
Abstract
:1. Introduction
- To evaluate the physical and perceptual dimensions of the indoor, semi-outdoor and outdoor luminous, thermal and auditory environment of a university campus located in the oasis of Biskra;
- To examine if there are correlations between the physical dimensions;
- To explore whether there are correlations between the perceptual dimensions of the environments of these spaces.
2. Methodological Approach
2.1. Physical Context
2.2. Stage 1: Objective Approach and Materials Used
2.3. Stage 2: Subjective Approach and Used Questionnaire
2.4. Participants
3. Results
3.1. Stage 1: Physical Data Analysis: On-Site Measurement through Spatial Promenade Experiences
3.1.1. Distribution of the Physical Dimensions of the Environment during the Walks
3.1.2. Correlations between the Dimensions of the Physical Environment
3.2. Stage 2: Perceptual Data Analysis: On-Site Questionnaire with Walkers
4. Conclusions and Discussion
4.1. Synthesizing the Findings
4.2. Strengths and Limitations of the Study
4.3. Implication on Practice and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matallah, M.E.; Alkama, D.; Teller, J.; Ahriz, A.; Attia, S. Quantification of the outdoor thermal comfort within different oases urban fabrics. Sustainability 2021, 13, 3051. [Google Scholar] [CrossRef]
- Berkouk, D.; Bouzir, T.A.K.; Maffei, L.; Masullo, M. Examining the associations between oases soundscape components and walking speed: Correlation or causation? Sustainability 2020, 12, 4619. [Google Scholar] [CrossRef]
- Mesclier, E.; Marshall, A.; Auquier, C.; Chaléard, J. The conceptual approach of oasis as insights on globalisation. Example of the coastal valleys of Northern and Central Peru. In Oases and Globalization; Springer: Cham, Switzerland, 2017; pp. 33–49. [Google Scholar] [CrossRef]
- Kameni Nematchoua, M.; Ricciardi, P.; Reiter, S.; Asadi, S.; Demers, C. Thermal comfort and comparison of some parameters coming from hospitals and shopping centers under natural ventilation: The case of Madagascar Island. J. Build. Eng. 2017, 13, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Mellaikhafi, A.; Tilioua, A.; Souli, H.; Garoum, M.; Alaoui Hamdi, M. Characterization of different earthen construction materials in oasis of South-Eastern Morocco (Errachidia Province). Case Stud. Constr. Mater. 2021, 14, e00496. [Google Scholar] [CrossRef]
- Bassoud, A.; Khelafi, H.; Mokhtari, A.; Bada, A. Evaluation of summer thermal comfort in arid desert areas. Case study: Old adobe building in Adrar (South of Algeria). Build. Environ. 2021, 205, 108140. [Google Scholar] [CrossRef]
- Berkouk, D.; Bouzir, T.; Mazouz, S. Numerical study of the vertical shading devices effect on the thermal performance of promotional apartments in hot dry climate of Algeria. AIP Conf. Proc. 2018, 1968, 030040. [Google Scholar] [CrossRef]
- Mardaljevic, J. Daylight, indoor illumination, and human behavior. In Sustainable Built Environments; Loftness, V., Haase, D., Eds.; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Matallah, M.E.; Alkama, D.; Ahriz, A.; Attia, S. Assessment of the outdoor thermal comfort in oases settlements. Atmosphere 2020, 11, 185. [Google Scholar] [CrossRef] [Green Version]
- Bouzir, T.A.K.; Zemmouri, N.; Berkouk, D. Assessment and analysis of noise pollution in Biskra public gardens (Algeria). AIP Conf. Proc. 2018, 1968, 030069. [Google Scholar] [CrossRef]
- Bouzir, T.A.K.; Berkouk, D.; Zemmouri, N. Evaluation and analysis of the algerian oases soundscape: Case of El Kantara and Sidi Okba. Acoust. Aust. 2019, 48, 131–140. [Google Scholar] [CrossRef]
- Calleri, C.; Astolfi, A.; Armando, A.; Shtrepi, L. On the ability to correlate perceived sound to urban space geometries. Sustain. Cities Soc. 2016, 27, 346–355. [Google Scholar] [CrossRef]
- Maffei, L.; Boucherit, S.; Berkouk, D.; Masullo, M. Physical and perceptual dimensions of open urban spaces in Biskra, Algeria. Inter-Noise Noise Congr. Conf. Proc. 2021, 263, 3160–3166. [Google Scholar] [CrossRef]
- Boiné, K.; Demers, C.; Potvin, A. Spatio-temporal promenades as representations of urban atmospheres. Sustain. Cities Soc. 2018, 42, 674–687. [Google Scholar] [CrossRef]
- Rezvanipour, S.; Hassan, N.; Ghaffarianhoseini, A.; Danaee, M. Why does the perception of street matter? A dimensional analysis of multisensory social and physical attributes shaping the perception of streets. Archit. Sci. Rev. 2021, 64, 359–373. [Google Scholar] [CrossRef]
- Nitidara, N.; Sarwono, J.; Suprijanto, S.; Soelami, F. The multisensory interaction between auditory, visual, and thermal to the overall comfort in public open space: A study in a tropical climate. Sustain. Cities Soc. 2022, 78, 103622. [Google Scholar] [CrossRef]
- Augoyard, J.-F. L’environnement sensible et les ambiances architecturales. L’Espace Géograph. 1995, 24, 302–318. Available online: http://www.jstor.org/stable/44381535 (accessed on 1 February 2022). [CrossRef]
- Francomano, D.; Rodríguez González, M.; Valenzuela, A.; Ma, Z.; Raya Rey, A.; Anderson, C.; Pijanowski, B. Human-nature connection and soundscape perception: Insights from Tierra del Fuego, Argentina. J. Nat. Conserv. 2022, 65, 126110. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, G.; Lee, H.; Lim, K.; Lee, H. Comparison of soundwalks in major European cities. Appl. Acoust. 2021, 178, 108016. [Google Scholar] [CrossRef]
- Yang, T.; Kang, J. Perception difference for approaching and receding sound sources of a listener in motion in architectural sequential spaces. J. Acoust. Soc. Am. 2022, 151, 685–698. [Google Scholar] [CrossRef]
- Henckel, D. Soundwalks as sensewalks: The case for integrated sensewalks. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference Proceedings, InterNoise19, Madrid, Spain, 17–19 June 2019; Institute of Noise Control Engineering: Reston, VA, USA, 2019; Volume 259, pp. 2995–3005. [Google Scholar]
- Henshaw, V. Urban Smellscapes: Understanding and Designing City Smell Environments; Routledge: London, UK; Taylor & Francis Group: New York, NY, USA, 2013. [Google Scholar]
- Radicchi, A. A pocket guide to soundwalking. Some Introductory notes on its origin, established methods and four experimental variations. In Stadtökonomie—Blickwinkel und Perspektiven; Project: Beyond the Noise: Open-Source Soundscapes; Universitätsverlag der TU Berlin: Berlin, Germany, 2017. [Google Scholar]
- Radicchi, A. Combined sound- and lightwalks. A novel, mixed method to assess sound and artificial light of the urban environment at night. In Experiential Walks for Urban Design; Springer: Cham, Switzerland, 2021; pp. 77–91. [Google Scholar] [CrossRef]
- Henckel, D. Combined soundwalks and lightwalks. Cities Health 2019, 5, 86–88. [Google Scholar] [CrossRef]
- Demers, C.; Potvin, A. Ambiance partition: An interdisciplinary reading, measurement, and notation of in situ experiences. In Experiential Walks for Urban Design; Springer: Cham, Switzerland, 2021; pp. 223–240. [Google Scholar] [CrossRef]
- Demers, C.; Potvin, A. Interior-exterior ambiances: Environmental transitions in the recollection of an urban stroll. In Experiential Walks for Urban Design; Springer: Cham, Switzerland, 2021; pp. 243–257. [Google Scholar] [CrossRef]
- Kober, M. A travel through oases in french and arabic literature. In Springer Geography; Springer: Cham, Switzerland, 2017; pp. 17–31. [Google Scholar] [CrossRef]
- Ramakreshnan, L.; Fong, C.; Sulaiman, N.; Aghamohammadi, N. Motivations and built environment factors associated with campus walkability in the tropical settings. Sci. Total Environ. 2020, 749, 141457. [Google Scholar] [CrossRef]
- Rosa Mesquita, A.; Oliveira da Silva, T.; Nunes Pitanga, H.; de Paula dos Santos, A.; Delgado de Souza, T.; de Lima e Silva, P. Guidelines to design bicycle routes on university campuses: A case study at the Federal University of Viçosa. Case Stud. Transp. Policy 2020, 8, 620–626. [Google Scholar] [CrossRef]
- Rybarczyk, G.; Gallagher, L. Measuring the potential for bicycling and walking at a metropolitan commuter university. J. Transp. Geogr. 2014, 39, 1–10. [Google Scholar] [CrossRef]
- Aletta, F.; Guattari, C.; Evangelisti, L.; Asdrubali, F.; Oberman, T.; Kang, J. Exploring the compatibility of “method A” and “method B” data collection protocols reported in the ISO/TS 12913-2:2018 for urban soundscape via a soundwalk. Appl. Acoust. 2019, 155, 190–203. [Google Scholar] [CrossRef]
- Jaszczak, A.; Pochodyła, E.; Kristianova, K.; Małkowska, N.; Kazak, J.K. Redefinition of park design criteria as a result of analysis of well-being and soundscape: The case study of the Kortowo Park (Poland). Int. J. Environ. Res. Public Health 2021, 18, 2972. [Google Scholar] [CrossRef] [PubMed]
- Kazumasa, H.; Trieu, B.L.; Nguyen, T.L.; Zhang, W. A preliminary investigation on soundscape perception based on a soundwalk through open spaces of Matsue City. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference Proceedings, InterNoise20, Seoul, Korea, 23–26 August 2020; Institute of Noise Control Engineering: Reston, VA, USA, 2020; Volume 261, pp. 3568–3579. [Google Scholar]
- Asdrubali, F.; D’ALESSANDRO, F.; Baldinelli, G.; Schulte-Fortkamp, B. From the soundscape to the architectural redevelopment of an outdoor public space. In Proceedings of the Forum Acusticum, Krakow, Polonia, 7–12 September 2014. [Google Scholar]
- Hu, S.; He, M.; Liu, G.; Lu, M.; Liang, P.; Liu, F. Correlation between the visual evoked potential and subjective perception at different illumination levels based on entropy analysis. Build. Environ. 2021, 194, 107715. [Google Scholar] [CrossRef]
- Bellia, L.; Cesarano, A.; Iuliano, G.F.; Spada, G. Daylight glare: A review of discomfort indexes. In Proceedings of the Visual Quality and Energy Efficiency in Indoor Lighting: Today for Tomorrow, Roma, Italy, 31 March 2008. [Google Scholar]
- Pierson, C.; Cauwerts, C.; Bodart, M.; Wienold, J. Tutorial: Luminance maps for daylighting studies from high dynamic range photography. LEUKOS 2020, 17, 140–169. [Google Scholar] [CrossRef] [Green Version]
- Sawicki, D.; Wolska, A. Glare at outdoor workplaces—An underestimated factor of occupational risk. Energies 2022, 15, 472. [Google Scholar] [CrossRef]
- Wolska, A.; Sawicki, D. Practical application of HDRI for discomfort glare assessment at indoor workplaces. Measurement 2020, 151, 107179. [Google Scholar] [CrossRef]
- Kalawapudi, K.; Singh, T.; Vijay, R.; Goyal, N.; Kumar, R. Effects of COVID-19 pandemic on festival celebrations and noise pollution levels. Noise Mapp. 2021, 8, 89–93. [Google Scholar] [CrossRef]
- Puyana Romero, V.; Maffei, L.; Brambilla, G.; Ciaburro, G. Acoustic, visual and spatial indicators for the description of the soundscape of waterfront areas with and without road traffic flow. Int. J. Environ. Res. Public Health 2016, 13, 934. [Google Scholar] [CrossRef]
- Nassiri, P.; Karimi, E.; Monazzam, M.; Abbaspour, M.; Taghavi, L. Analytical comparison of traffic noise indices—A case study in district 14 of Tehran City. J. Low Freq. Noise Vib. Act. Control 2016, 35, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.Y.; He, J.; Lam, B.; Gupta, R.; Gan, W.-S. Spatial audio for soundscape design: Recording and reproduction. Appl. Sci. 2017, 7, 627. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Kang, J. Soundscape evaluation: Binaural or monaural? J. Acoust. Soc. Am. 2019, 145, 3208–3217. [Google Scholar] [CrossRef]
- Havelock, D.; Kuwano, S.; Vorländer, M. Handbook of Signal Processing in Acoustics; Springer: New York, NY, USA, 2008. [Google Scholar]
- Poirier, G.; Demers, C.; Potvin, A.; Casault, A. Un journal d’ambiances lumineuses d’Asie. Potentiel de l’analyse rétrospective d’images dans la restitution d’expériences. Ambiances, tomorrow. In Proceedings of the 3rd International Congress on Ambiances, Volos, Greece, 21–24 September 2016; pp. 141–146. [Google Scholar]
- Demers, C. Qualities of light and space: Contrast as a global integrator. In Proceedings of the First Symposium of the Quality of Light, Ottawa, ON, Canada, 9–10 May 1998. [Google Scholar]
- Axelsson, Ö.; Nilsson, M.; Berglund, B. A principal components Model of soundscape perception. J. Acoust. Soc. Am. 2010, 128, 2836–2846. [Google Scholar] [CrossRef] [PubMed]
- He, X.; An, L.; Hong, B.; Huang, B.; Cui, X. Cross-cultural differences in thermal comfort in campus open spaces: A longitudinal field survey in China’s cold region. Build. Environ. 2020, 172, 106739. [Google Scholar] [CrossRef]
- Li, B.; Liu, J.; Yao, R. Investigation and analysis on classroom thermal environment in winter in Chongqing. J. Heat. Vent. Air Cond. 2007, 115–117. [Google Scholar]
- Rijal, H.; Yoshida, K.; Humphreys, M.; Nicol, J. Development of an adaptive thermal comfort model for energy-saving building design in Japan. Archit. Sci. Rev. 2020, 64, 109–122. [Google Scholar] [CrossRef]
- Rijal, H.; Humphreys, M.; Nicol, J. Towards an adaptive model for thermal comfort in Japanese offices. Build. Res. Inf. 2017, 45, 717–729. [Google Scholar] [CrossRef]
- Fang, Z.; Zheng, Z.; Feng, X.; Shi, D.; Lin, Z.; Gao, Y. Investigation of outdoor thermal comfort prediction models in South China: A case study in Guangzhou. Build. Environ. 2021, 188, 107424. [Google Scholar] [CrossRef]
- Masullo, M.; Maffei, L.; Iachini, T.; Rapuano, M.; Cioffi, F.; Ruggiero, G.; Ruotolo, F. A questionnaire investigating the emotional salience of sounds. Appl. Acoust. 2021, 182, 108281. [Google Scholar] [CrossRef]
- Cohen, P.; Shashua-Bar, L.; Keller, R.; Gil-Ad, R.; Yaakov, Y.; Lukyanov, V.; Bar, P.; Tanny, J.; Cohen, S.; Potchter, O. Urban outdoor thermal perception in hot arid beer sheva, Israel: Methodological and gender aspects. Build. Environ. 2019, 160, 106169. [Google Scholar] [CrossRef]
- Al-Ghonamy, A. Analysis and evaluation of road traffic noise in al-dammam: A business city of the eastern province of KSA. J. Environ. Sci. Technol. 2010, 3, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Masuko, S.; Shimazaki, Y.; Yamanaka, T.; Kobayashi, T. Evaluation of outdoor thermal comfort under different building external-wall-surface with different reflective directional properties using CFD analysis and model experiment. Build. Environ. 2022, 207, 108478. [Google Scholar] [CrossRef]
- Kent, M.; Cheung, T.; Altomonte, S.; Schiavon, S.; Lipczyńska, A. A bayesian method of evaluating discomfort due to glare: The effect of order bias from a large glare source. Build. Environ. 2018, 146, 258–267. [Google Scholar] [CrossRef]
- Quek, G.; Wienold, J.; Khanie, M.; Erell, E.; Kaftan, E.; Tzempelikos, A.; Konstantzos, I.; Christoffersen, J.; Kuhn, T.; Andersen, M. Comparing performance of discomfort glare metrics in high and low adaptation levels. Build. Environ. 2021, 206, 108335. [Google Scholar] [CrossRef]
- Jain, S.; Karmann, C.; Wienold, J. Behind electrochromic glazing: Assessing user’s perception of glare from the sun in a controlled environment. Energy Build. 2022, 256, 111738. [Google Scholar] [CrossRef]
- Axelsson, Ö.; Nilsson, M.; Hellström, B.; Lundén, P. A field experiment on the impact of sounds from a jet-and-basin fountain on soundscape quality in an urban park. Landsc. Urban Plan. 2014, 123, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Cao, X.; Meng, Q. Effects of a human sound-based index on the soundscapes of urban open spaces. Sci. Total Environ. 2022, 802, 149869. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, L.; Xiong, Y.; Yang, Y. Effects of soundscape perception on visiting experience in a renovated historical block. Build. Environ. 2019, 165, 106375. [Google Scholar] [CrossRef]
- Ren, X.; Kang, J.; Liu, X. Soundscape perception of urban recreational green space. Landsc. Archit. Front. 2016, 4, 42–55. Available online: https://journal.hep.com.cn/laf/EN/Y2016/V4/I4/42#2 (accessed on 21 December 2021).
- Farina, A. Soundscape Ecology; Springer Science + Business Media: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Fuller, S.; Axel, A.; Tucker, D.; Gage, S. Connecting soundscape to landscape: Which acoustic index best describes landscape configuration? Ecol. Indic. 2015, 58, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Bruce Martin, S.; Cott, P.A. The under-ice soundscape in Great Slave Lake near the city of Yellowknife, Northwest Territories, Canada. J. Great Lakes Res. 2016, 42, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Boucherit, S.; Berkouk, D.; Bouzir, T.; Khelil, S. Analyzing the luminous environment in a university campus in Biskra, Algeria: A pilot study. IOP Conf. Ser. Earth Environ. Sci. 2022, 952, 012013. [Google Scholar] [CrossRef]
- Kim, S.; Brown, R. Pedestrians’ behavior based on outdoor thermal comfort and micro-scale thermal environments, Austin, TX. Sci. Total Environ. 2022, 808, 152143. [Google Scholar] [CrossRef]
- Tian, Y.; Hong, B.; Zhang, Z.; Wu, S.; Yuan, T. Factors influencing resident and tourist outdoor thermal comfort: A comparative study in China’s cold region. Sci. Total Environ. 2022, 808, 152079. [Google Scholar] [CrossRef] [PubMed]
- Manavvi, S.; Rajasekar, E. Evaluating outdoor thermal comfort in urban open spaces in a humid subtropical climate: Chandigarh, India. Build. Environ. 2022, 209, 108659. [Google Scholar] [CrossRef]
- Balez, S. Smell walks. In Experiential Walks for Urban Design; Springer: Cham, Switzerland, 2021; pp. 93–114. [Google Scholar] [CrossRef]
N | Very | Fairly | Little | Neutral | Little | Fairly | Very | |||
---|---|---|---|---|---|---|---|---|---|---|
Luminous environment | 1 | Uniform | 3 | 2 | 1 | 0 | −1 | −2 | −3 | Non-Uniform |
2 | Bright | 3 | 2 | 1 | 0 | −1 | −2 | −3 | Dark | |
3 | Contrast | 3 | 2 | 1 | 0 | −1 | −2 | −3 | Low contrast | |
4 | Glaring | 3 | 2 | 1 | 0 | −1 | −2 | −3 | No glare | |
5 | Attention | 3 | 2 | 1 | 0 | −1 | −2 | −3 | Distraction | |
6 | Pleasant1 | 3 | 2 | 1 | 0 | −1 | −2 | −3 | Unpleasant1 | |
Sound environment | 7 | Exciting | 3 | 2 | 1 | 0 | −1 | −2 | −3 | Monotonous |
8 | Chaotic | 3 | 2 | 1 | 0 | −1 | −2 | −3 | Calm | |
9 | Eventful | 3 | 2 | 1 | 0 | −1 | −2 | −3 | Uneventful | |
10 | Pleasant2 | 3 | 2 | 1 | 0 | −1 | −2 | −3 | Unpleasant2 | |
Thermal environment | 11 | Hot | 3 | 2 | 1 | 0 | −1 | −2 | −3 | Cold |
12 | Humid | 3 | 2 | 1 | 0 | −1 | −2 | −3 | Dry | |
13 | Satisfied | 3 | 2 | 1 | 0 | −1 | −2 | −3 | Dissatisfied | |
14 | Pleasant3 | 3 | 2 | 1 | 0 | −1 | −2 | −3 | Unpleasant3 |
Illum | DGP | Avr Lum | Ta | RH | SPL | Leq | L10 | L50 | L90 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Illum | S | C | 0.205 | 0.247 a | 0.105 | –0.282 b | 0.046 | 0.071 | 0.091 | 0.025 | 0.031 | |||||||||
DGP | 0.060 | S | C | 0.953 b | 0.173 | –0.298 b | –0.193 | –0.210 | –0.245 a | –0.189 | –0.107 | |||||||||
Avr Lum | 0.023 | 0.000 | S | C | 0.158 | –0.312 b | –0.213 a | –0.230a | –0.264 a | –0.210 | –0.125 | |||||||||
Ta | 0.339 | 0.114 | 0.150 | S | C | –0.894 b | 0.155 | 0.142 | 0.119 | 0.159 | 0.194 | |||||||||
RH | 0.009 | 0.006 | 0.004 | 0.000 | S | C | 0.051 | 0.055 | 0.067 | 0.051 | 0.012 | |||||||||
SPL | 0.677 | 0.077 | 0.050 | 0.156 | 0.641 | S | C | 0.993b | 0.973 b | 0.997 b | 0.956 b | |||||||||
Leq | 0.519 | 0.054 | 0.034 | 0.195 | 0.616 | 0.000 | S | C | 0.991 b | 0.989 b | 0.920 b | |||||||||
L10 | 0.407 | 0.024 | 0.015 | 0.277 | 0.542 | 0.000 | 0.000 | S | C | 0.964 b | 0.871 b | |||||||||
L50 | 0.823 | 0.084 | 0.053 | 0.145 | 0.642 | 0.000 | 0.000 | 0.000 | S | C | 0.951 b | |||||||||
L90 | 0.780 | 0.330 | 0.254 | 0.075 | 0.916 | 0.000 | 0.000 | 0.000 | 0.000 | S | C |
Indices | Factors | |||
---|---|---|---|---|
1 (25.41%) | 2 (24.39%) | 3 (14.06%) | 4 (8.05%) | |
Humid–Dry | −0.902 | 0.005 | −0.091 | 0.048 |
Pleasant3–Unpleasant3 | 0.895 | −0.001 | −0.010 | 0.038 |
Satisfied–Dissatisfied | 0.864 | −0.032 | 0.121 | 0.006 |
Hot–Cold | −0.844 | −0.143 | −0.082 | −0.094 |
Contrast–Low contrast | 0.100 | 0.902 | −0.020 | −0.179 |
Bright–Dark | 0.007 | 0.901 | −0.067 | −0.279 |
Pleasant1–Unpleasant1 | −0.016 | −0.879 | 0.067 | 0.201 |
Chaotic–Calm | −0.005 | 0.030 | −0.892 | −0.089 |
Eventful–Uneventful | −0.027 | −0.070 | 0.878 | −0.072 |
Pleasant2–Unpleasant2 | 0.207 | −0.061 | 0.652 | −0.048 |
Exciting–Monotonous | 0.330 | 0.057 | 0.350 | 0.150 |
Uniform–Non Uniform | 0.038 | −0.08 | 0.026 | 0.885 |
Glaring–No Glare | −0.066 | 0.321 | −0.066 | −0.731 |
Attention–Distraction | 0.017 | −0.348 | −0.071 | 0.694 |
Indices | Factors | ||||
---|---|---|---|---|---|
1 (27.26%) | 2 (17.27%) | 3 (12.23%) | 4 (9.17%) | 5 (8.48%) | |
Uniform–Non Uniform | −0.918 | −0.081 | −0.080 | −0.046 | 0.010 |
Bright–Dark | 0.876 | 0.165 | 0.072 | 0.153 | 0.059 |
Glaring–No Glare | 0.861 | 0.240 | 0.021 | 0.146 | 0.186 |
Contrast–Low Contrast | −0.777 | 0.354 | −0.062 | −0.080 | 0.098 |
Attention–Distraction | 0.616 | −0.044 | −0.114 | −0.164 | 0.085 |
Pleasant1–Unpleasant1 | −0.481 | 0.354 | −0.153 | 0.034 | 0.142 |
Pleasant3–Unpleasant 3 | 0.253 | 0.811 | 0.107 | −0.028 | −0.009 |
Satisfied–Dissatisfied | −0.137 | 0.807 | 0.095 | 0.040 | −0.278 |
Pleasant2–Unpleasant2 | 0.003 | 0.014 | 0.895 | 0.018 | 0.136 |
Eventful–Uneventful | 0.104 | 0.169 | 0.811 | 0.179 | −0.192 |
Chaotic–Calm | −0.060 | −0.088 | 0.016 | −0.877 | −0.162 |
Exciting–Monotonous | 0.039 | −0.126 | 0.244 | 0.827 | −0.252 |
Hot–Cold | 0.002 | −0.022 | 0.063 | −0.114 | 0.900 |
Humid–Dry | 0.142 | −0.459 | −0.159 | 0.171 | 0.689 |
Indices | Factors | |||
---|---|---|---|---|
1 (28.97%) | 2 (22.42%) | 3 (14.60%) | 4 (8.03%) | |
Hot–Cold | −0.941 | 0.038 | 0.009 | 0.061 |
Satisfied–Dissatisfied | 0.935 | −0.048 | 0.013 | 0.097 |
Humid–Dry | −0.931 | 0.113 | −0.141 | −0.023 |
Pleasant3–Unpleasant3 | 0.905 | −0.030 | 0.091 | −0.057 |
Attention–Distraction | −0.179 | 0.868 | −0.051 | 0.062 |
Contrast–Low Contrast | 0.014 | 0.829 | −0.089 | 0.268 |
Bright–Dark | 0.072 | −0.732 | 0.060 | 0.009 |
Chaotic–Calm | −0.061 | 0.117 | −0.901 | 0.025 |
Pleasant2–Unpleasant2 | 0.034 | 0.019 | 0.895 | −0.085 |
Eventful–Uneventful | 0.097 | −0.128 | 0.858 | −0.113 |
Uniform–Non Uniform | 0.110 | −0.079 | 0.148 | −0.695 |
Glaring–No Glare | 0.136 | 0.517 | −0.126 | 0.664 |
Pleasant1–Unpleasant1 | −0.041 | −0.482 | 0.174 | −0.655 |
Exciting–Monotonous | 0.047 | −0.255 | 0.317 | 0.461 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berkouk, D.; Bouzir, T.A.K.; Boucherit, S.; Khelil, S.; Mahaya, C.; Matallah, M.E.; Mazouz, S. Exploring the Multisensory Interaction between Luminous, Thermal and Auditory Environments through the Spatial Promenade Experience: A Case Study of a University Campus in an Oasis Settlement. Sustainability 2022, 14, 4013. https://doi.org/10.3390/su14074013
Berkouk D, Bouzir TAK, Boucherit S, Khelil S, Mahaya C, Matallah ME, Mazouz S. Exploring the Multisensory Interaction between Luminous, Thermal and Auditory Environments through the Spatial Promenade Experience: A Case Study of a University Campus in an Oasis Settlement. Sustainability. 2022; 14(7):4013. https://doi.org/10.3390/su14074013
Chicago/Turabian StyleBerkouk, Djihed, Tallal Abdel Karim Bouzir, Samiha Boucherit, Sara Khelil, Chafik Mahaya, Mohamed Elhadi Matallah, and Said Mazouz. 2022. "Exploring the Multisensory Interaction between Luminous, Thermal and Auditory Environments through the Spatial Promenade Experience: A Case Study of a University Campus in an Oasis Settlement" Sustainability 14, no. 7: 4013. https://doi.org/10.3390/su14074013
APA StyleBerkouk, D., Bouzir, T. A. K., Boucherit, S., Khelil, S., Mahaya, C., Matallah, M. E., & Mazouz, S. (2022). Exploring the Multisensory Interaction between Luminous, Thermal and Auditory Environments through the Spatial Promenade Experience: A Case Study of a University Campus in an Oasis Settlement. Sustainability, 14(7), 4013. https://doi.org/10.3390/su14074013