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Featured Application: This review introduces the concept of spatial audio in the perspective of
soundscape practitioners. A selection guide based on the spatial fidelity and degree of perceptual
accuracy of the mentioned spatial audio recording and reproduction techniques is also provided.

Abstract: With the advancement of spatial audio technologies, in both recording and reproduction,
we are seeing more applications that incorporate 3D sound to create an immersive aural experience.
Soundscape design and evaluation for urban planning can now tap into the extensive spatial audio
tools for sound capture and 3D sound rendering over headphones and speaker arrays. In this paper,
we outline a list of available state-of-the-art spatial audio recording techniques and devices, spatial
audio physical and perceptual reproduction techniques, emerging spatial audio techniques for virtual
and augmented reality, followed by a discussion on the degree of perceptual accuracy of recording
and reproduction techniques in representing the acoustic environment.
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1. Introduction

Urban acoustic environments consist of multiple types of sound sources (e.g., traffic sounds,
biological sounds, geophysical sounds, human sounds) [1]. The different types of sound sources have
different acoustical characteristics, meanings and values [2–4]. Conventionally, environmental noise
policies are primarily centered on the energetic reduction of sound pressure levels (SPL). However,
SPL indicators provide limited information on perceived acoustic comfort as it involves higher
cognitive processes. To address the limitations of traditional noise management, the notion of a
soundscape has been applied as a new paradigm. Schafer, a Canadian composer and music educator,
introduced the term soundscape to encompass a holistic acoustic environment as a macrocosmic
musical composition [5]. In this context, soundscape considers sound as a resource rather than waste
and focuses on people’s contextual perception of the acoustic environment [6].

Due to rising prominence of the soundscape approach, ISO TC43 SC1 WG 54 was started with
the aim of standardizing the perceptual assessment of soundscapes. As defined in ISO 12913-1:
definition and conceptual framework, acoustic environment is “sound from all sound sources as
modified by the environment” and the modification by the environment includes effects of various
physical factors (e.g., meteorological conditions, absorption, diffraction, reverberation, and reflection)
on sound propagation. This implies that soundscape is a perceptual construct related to physical
acoustic environment in a place.
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According to ISO 12913-1, the context plays a critical role in the perception of a soundscape,
as it affects the auditory sensation, the interpretation of auditory sensation, and the responses to
the acoustic environment [7]. The context includes all other non-acoustic components of the place
(e.g., physical as well as previous experience of the individual). Herranz-Pascul et al. [8] proposed
a people-activity-place framework for contexts based on four clusters: person, place, person-place
interaction and activity. The suggested framework shows interrelationships between person and
activity and place, which may influence a person’s experience of the acoustic environment.

It is evident from [8] that the human auditory process is deeply entwined in the person-
activity-place framework. Thus, sufficient insight about the human auditory process is imperative
to record and reproduce an acoustic environment with sufficient perceptual accuracy for proper
analysis. For simplicity, Zwicker and Fastl has grouped the human auditory processing system into
two stages: (1) the preprocessing in the peripheral system, and (2) information processing in the
auditory system [9].

Current reproduction methods (e.g., loudspeakers, headphones, etc.) have sufficient fidelity for
proper interpretation of frequency and temporal characteristics in the peripheral system (stage 1).
As the spatial dimension of sound is only interpreted in stage 2, where there is significant exchange of
information between both ears, complexity of reproduction is greatly increased. For instance, to locate
a sound source in space, the characteristics of intensity, phase, and latency must be presented accurately
to both ears. Hence, spatial audio recording and reproduction techniques should be reviewed in the
technological perspective with a focus on their relationship with soundscape perception—the main
goal of this paper.

As recording and reproduction techniques are heavily employed in the soundscape design
process, a brief discussion will shed light on the areas where such techniques are most commonly used.
The soundscape design process can be summarized into three stages, as illustrated in Figure 1 [10].
Stage 1 aims to define and analyze existing soundscapes. In this stage, soundscape researchers
and planners are required to evaluate and identify ‘wanted sounds’ to be preserved or added, and
‘unwanted sounds’ to be removed or reduced based on the context. In Stage 2, soundscape planning
and design scenarios are proposed based on the analysis of the existing soundscapes. The soundscape
design proposals will then be simulated to be objectively and subjectively evaluated by stakeholders
to determine the final soundscape design. In Stage 3, the final soundscape design will be implemented
in situ. After implementation, validation of the soundscape design will be performed with iteration of
Stage 1 for analysis of implemented soundscape design.
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Throughout the soundscape design process, soundscapes can be evaluated based on the real
acoustic environment or virtual (reproduced or synthesized) environment [6,11]. Similarly, in Stage 1
(analysis of existing soundscape) and Stage 3 (implementation of soundscape design), soundscapes
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can be assessed in real or reproduced acoustic environments. The reproduced acoustic environment
is constructed from audio recordings in the real world. If the physical location for soundscape
implementation is not available (i.e., not built), future soundscape design scenarios might also be
evaluated using synthesized (or simulated) acoustic environment in Stage 2 (soundscape planning and
design). Moreover, augmented acoustic technologies consisting of synthesized and real sounds can
also be applied in soundscape design stage if the physical locations are available.

A real acoustic environment is evaluated in situ by means of field study methods, such as
soundwalk and behavior observations, which generally focus on the short-term in situ experience [6,11].
Narrative interview and social survey usually deals with long-term responses or recalled experiences
based on the real acoustic environment [12–14]. In contrast, the virtual acoustic environment, created
by recording followed by reproduction, are usually evaluated in a laboratory conditions [6,11].
Aletta et al. [11] reviewed the advantages and limitations of such methods for soundscape assessment.
Evaluation methods in the real acoustic environments are advantageous as they provide the most
realistic representation of the real-life settings, which can guarantee high ecological validity. However,
those methods are subjected to uncontrolled factors, such as temperature, humidity, daylight and
wind speed. Accordingly, such methods may yield results that are difficult to generalized as they are
limited to a specific context. These methods have been primarily applied to collect and characterize
the existing acoustic environment at the early stages in urban soundscape planning and to validate the
soundscape design at the implementation stages [6,10,15].

On the other hand, the virtual acoustic environment, are usually evaluated under controlled
laboratory conditions. Researchers can design and control the experimental variables, such that it
enables us to investigate various casual relationships or correlations. A laboratory-based experiment
can obtain results that minimize the effects of other distracting environmental factors. Regardless
of the strengths of the laboratory experiments based on virtual acoustic environment, criticisms on
discrepancies between virtual and real environments, such as the absence of physical contact and
possible perceptual alterations, have been raised. In general, the more control researchers exert in a
laboratory experiment, the less ecological validity the findings have, which can be less generalized to
real-life scenarios [11,16]. Despite this limitation, acoustic simulation and reproduction techniques
can provide powerful tools to evaluate the performance of different soundscape design approaches in
Stage 2 before they are implemented in the real world [11].

Currently, the ISO WG54 is working on the Part 2 of the soundscape assessment standard to
provide information on minimum reporting requirement for soundscape studies and applications [17].
The reporting requirement includes physical (recording and reproduction techniques) and perceptual
data collections both on-site (e.g., soundwalk) and off-site (e.g., laboratory experiments). In particular,
recording and reproducing techniques play a critical role to achieve high ecological validity of
soundscape research conducted in the virtual acoustic environment. This is because soundscape
is the human perception of the reproduced acoustic environment, and the perception is dependent
on the perceptual accuracy of the recording and reproduction techniques. Perceptual accuracy is the
basis of auralization [18], and is largely influenced by the spatial properties of sounds such as source
distance, source location, and reverberation [19,20]. Several laboratory experiments on ecological
validation of the reproduction systems have been conducted based on the psycholinguistic measure,
such as semantic differential method [16,21,22]. Those studies compared the subjective responses of
verbal descriptors on soundscape among in situ acoustic environments and the reproduced acoustic
environments created by different techniques in laboratory conditions to explore the ecological validity
of reproduction systems.

Recently, virtual reality (VR) [23–25] and augmented reality (AR) [26–28] technologies have been
increasingly adopted in soundscape studies due to their potential in creating a perceptually accurate
audio-visual scene. To create virtual acoustic environments with high ecological validity, it is essential
to have a holistic understanding of recording and reproducing techniques with respect to soundscape
evaluation methodologies. Even though more studies on the standardization of soundscape recording
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and reproduction in an ecologically valid way that reflect context of real acoustic environment are
necessary, relatively few studies have been done on these technical aspects of soundscape research. This
paper attempts to formulate a framework for the appropriate use of audio recording and reproduction
techniques in soundscape design. Sections 2 and 3 systemically reviews the acoustic recording and
reproduction techniques that can be adopted in soundscape research, respectively. In Section 4,
application of spatial audio in virtual and augmented Reality for soundscape design is discussed.
Lastly, the degree of perceptual accuracy of the recording and reproduction techniques in representing
acoustic environment is addressed in the discussion.

2. Spatial Audio Recording Techniques for Soundscape Design

Recording of the acoustic environment builds the foundation in soundscape research through
analyzing and understanding the soundscape in a real or virtual environment. The recordings,
therefore, requires sufficient characteristics of the acoustic environment to be captured for perceptual
accuracy. To achieve this, it is necessary to consider two aspects of recording: timbre and spatial
qualities. In general, timbre qualities of the recordings are largely dependent on the electrical
and acoustic properties of the microphones, such as frequency response, directionality, impedance,
sensitivity, equivalent noise level, total harmonic distortion, maximal SPL, etc. [29]. In terms of the
spatial aspects, it is common to use multiple microphones for capturing better spatial characteristics
of the acoustic environment. In this section, we will review the audio recording techniques, and
discuss how they can be applied in the field of soundscape. A comparison of the advantages and
disadvantages of these recording techniques are also presented.

2.1. Recording Techniques

In this subsection, we review various recording techniques that are commonly used in audio and
acoustics in academic studies and commercial applications.

2.1.1. Stereo and Surround Recording

Sound recording can be conducted in the form of one, two or any number in microphone
array. Compared to a single microphone recording, stereo recordings could provide more spatial
information on the sound field, including sense of direction, distance, ensemble of the sound stage
and ambience. There are basically four types of stereo recording configurations: coincident pair,
spaced pair, near-coincident pair, and baffled pair. With the evolution of sound playback system from
stereo to surround sound, it is straightforward to record the sound field in surround format, even
though most of the surround sound comes from mixing process. Most surround recordings are to be
played (directly or after some mixing) via 5.1/7.1 surround sound system. There are various types
of surround sound microphone settings. Examples of such surround microphone system include
Optimized Cardioid Triangle (OCT) surround, which employs five cardioid mics with one facing front,
two facing the sides, and two facing rear; IRT surround, which employs four cardioid mics placed in
a square with 90 degree angles; Hamasaki square, which employs four bidirectional mics facing the
sides; and a few other configurations. For more practical guidelines on microphone recordings please
refer to [30,31].

2.1.2. Microphone Array Recording

To better capture the spatial sound field, more microphones or an array of microphones are
required. This idea dated back to the 1930s, where Steinberg and Snow introduced an “acoustic curtain”
system that consists of a wall of microphones, which are directly connected to a matching loudspeaker
array on the playback end [32]. With a good matching (closely positioned) between the microphone
array and loudspeaker array, the recreated sound field is more realistic.

However, such well-matched recording and playback system is hardly practical in today’s
applications, where the configurations of the playback system (including headphone, number and
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positions of loudspeakers) vary greatly in different room settings. As a result, microphone recordings
are no longer used directly without processing, but require real-time or post-processing to analyze the
characteristics of the sound field. In general, a microphone array with signal processing could provide
three types of the information about the sound field [33]: (i) the locations of the sound sources; (ii) the
corresponding (“clean”) sound source signal; and (iii) the characteristics of the sound environment,
including the reflections and ambience. Therefore, microphone arrays are widely used in sound source
localization, noise reduction, speech enhancement, echo cancellation, source separation, room impulse
response estimation, and sound reproduction [34].

Microphone arrays are classified into two categories based on whether they are moving or
stationary during the recording. Moving microphone arrays could be used for static or moving sound
events. For static sound events, the movements of the microphone array create multiple virtual arrays
or enlarges the array size so that more precise information on the sound field could be obtained.
A facility enabling the regular movements of the array equipment (e.g., a motor) is required for the
moving arrays system. In this case, the assumption that the sound field is spatially static, is very
critical. In addition, the effect of recording system movement on the recordings (including the time
difference, Doppler effect) should be accounted for. Furthermore, if the movement pattern of the
array could be recorded, moving arrays could also be useful in recording non-static sound events. For
example, the array could follow the main sound event to give it more focus.

The other category of microphone arrays is the static array. For practical reasons, static arrays are
widely adopted as it is easier to set up a static microphone array for recording than moving arrays. Since
microphones are to simulate human ears, it is reasonable to establish static microphone arrays as sound
reproduction normally assumes the listeners to be static. The most commonly-used static microphone
array is the uniform linear array (ULA), which is regularly deployed in beamforming applications.
Multiple linear arrays can be arranged in a plane to realize a planar array. Circular array is another
commonly used geometric configuration of static microphone array. Compared to linear arrays, circular
array provides a two-dimensional scan (360◦ in the horizontal plane) with uniform performance.
Extensions to the circular array include multiple circular arrays at the same plane with different radius,
or multiple circular arrays at different planes to form a sphere (i.e., spherical microphone array).
Spherical microphone arrays are attractive as they can be decomposed using spherical harmonics,
which facilitates the sound field representation and interpretation. Spherical arrays with a large radius
can be configured to surround the sound event, creating a third-person perspective, while compact
spherical arrays are used to record sound events from the listener’s perspective (i.e., first-person
perspective). Theoretical foundations of spherical array processing are discussed in-depth in [35]
As shown in Figure 2, examples of circular or spherical array include B&K [36], Nokia OZO [37],
MTB [38], Eigenmike microphone from MHAcoustics [39], and the VisiSonics [40] microphone array.
An illustration of various microphone array geometries can be found in [41].
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For interactive sound reproduction applications, such as virtual reality, the listening positions
might be changing from time to time. In this case, the way of using moving array or static array might
be different. Under this circumstance, the moving array should be used to follow the main sound
event [42]. The static array can also be used with advanced signal processing applied so that the
reproduced sound adapts to sound event or user movements [29].

2.1.3. Binaural Recording

Binaural recording is an extended form of stereo recording. Ideally, binaural recording only
captures the sound received at the left and right ear positions (eardrum for the dummy head and
blocked or open entrance of the ear canal for human listeners). Therefore, binaural recording is the
format that is the closest to the human hearing, when it is played through calibrated headphones.
By recording sound at the eardrum positions, it automatically embeds all the cues needed for sound
localization in the 3D space and the natural alteration of the sound timbre due to propagation, reflection,
and scattering of sound as it interacts with our body.

The different binaural recording setups can be classified into four main types: (1) binaural
microphones inserted in the ears of the human listeners; (2) microphones in the dummy head with
torso, head and ears; (3) microphones in the simulator with head and ears; (4) microphones in the
simulator with only ears.

First, a miniature microphone is usually placed at the entrance of the ear canal of human beings
since it is impractical and difficult to be placed inside the ear canal near the eardrum. Examples of
binaural microphones vary from professional, calibrated types (e.g., from Brüel & Kjær [43], shown in
Figure 3) or low-cost types. Some other binaural recording microphones are integrated into a headset.
An appropriate recording device is required to obtain the binaural recording.

In addition to the use of human beings for binaural recording, dummy heads are also commonly
used in academia and the industry to obtain consistent and comparable results. A dummy head
usually consists of a torso, head and ears, which are made up of special materials whose acoustic
properties are similar to human body and its anthropometry generally follows closely with the average
of the whole or a certain part of the population [44]. Several dummy heads that consist of a torso, head
and ears include KEMAR (Knowles Electronics Manikin for Acoustic Research) [45], Brüel & Kjær 4128
HATS (head and torso simulator) [46], Head acoustics HMS IV [47], as shown in Figure 4. An example
for dummy heads with only a head and two ears is the Neumann KU-100 [48]. As shown in Figure 5,
the 3Dio binaural microphones [45] offer superb portability for binaural recording when compared
to the bulky dummy heads, but at the expense of lacking head shadowing effects due to the absence
of a head. Furthermore, the 3Dio omni binaural microphone records sound from four different head
orientations, which could probably be more useful in interactive spatial audio in VR applications.
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2.1.4. Ambisonic Recording

Ambisonics is a method of recording and reproducing audio of a sound field in full-sphere
surround. Essentially, ambisonics is a multi-channel surround sound format that does not contain any
information or requirement for the playback configuration as demanded by other surround sound
recording formats. This implies that the ambisonics recorded signals can be used in any playback
setups. It is capable of full surround, including height and depth from a single point source in
space [49].

Ambisonics format, or more precisely first order ambisonics (FOA), which is widely known as
B-format surround signal, can be achieved by a special type of microphone in the shape of tetrahedron
using four nearly coincident capsules. In other words, ambisonics can be simply understood as an
extension of XY stereo recording with addition of the two other dimensions. The four components are
labelled as W, X, Y and Z, where W is corresponding to an omnidirectional microphone and X, Y, Z
corresponds to three spatial directions, i.e., front-back, left-right, and up-down, respectively, captured
using figure-of-eight microphone capsules. For a given source signal, S with azimuth angle θ and
elevation angle φ, ambisonics pans the desired four components as:

W = S√
2

X = S · cos θ · cos φ

Y = S · sin θ · cos φ

Z = S · sin φ

The resulting four-channel signal can then be transcoded into outputs of various formats, from a
single source in mono to multichannel surround sound arrays. The major advantage being that with the
initial capture, you can use post processing to vary the pan, tilt, zoom and rotation of the sound field,
which is hard to achieve with other systems. The limitation of the first order ambisonics is the limited
spatial resolution, which affects the sound localization and is only effective in a relatively smaller sweet
spot. To improve the performance of first order ambisonics, higher order ambisonics are employed
by adding more microphones to record sound field at higher orders. As a result, the reproduction of
higher order ambisonics also requires more loudspeakers.
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Examples of ambisonics microphones in the market include: Sennheiser AMBEO VR
Microphone [50], Core Sound TetraMic [51], SoundField SPS200 Software Controlled Microphone [52],
as shown in the Figure 6. Moreover, the spherical microphone arrays described in Section 2.1.2 can
also be converted into first or higher order ambisonics format. For example, the Eigenmike consists of
32 microphones, which supports up to 4th order ambisonics. A comprehensive objective and subjective
comparative study regarding the use of different ambisonics microphones was conducted in [53,54].
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2.2. Application of Spatial Audio Recording in Soundscape Studies

The section discusses how we can adopt different recordings techniques for soundscape studies.
As the application of soundscape is relatively new, there are no comprehensive standards in terms of
how recordings should be conducted for studies or reports on soundscape. Soundscape researchers
employ different recording techniques for capturing the acoustic environment depending on various
factors, such as the fidelity of reproduction medium, ease of capture, cost, etc.

Binaural and ambisonics are the two most common recording techniques in soundscape studies.
Many have used binaural measurement systems, such as an artificial head or binaural microphones
to record acoustic environment and binaural recordings are used for the reproduction of acoustic
environments in laboratory-based listening experiments [54–56]. Ambisonic recording methods have
recently received much attention in soundscape studies, as they are not restricted by playback mediums.
Boren et al. [28] captured the acoustic environment in different parts of New York with an ambisonic
microphone. Davies et al. [22] also used a FOA ambisonics microphone to record urban areas in
Manchester, UK.

Although the mentioned recording methods for soundscape applications are not extensive,
some insights can be gained to better understand how different recording techniques can be used in
soundscape studies. Let us consider the three stages of the soundscape design process as introduced in
Section 1. In Stage 1, recordings are used to evaluate the existing soundscape. In Stage 2, recordings are
used to design a better soundscape. Finally, recordings are captured to validate the design soundscape
after its implementation. In all these stages, the most critical requirement for soundscape recording is
that it must sufficiently represent the characteristics of the acoustic environment in question that would
facilitate the reproduction of the acoustic environment with sufficient perceptual accuracy. It should
be made clear that the degree of perceptual accuracy is dependent on the goal of the study. On this
note, the recording techniques must also be chosen with consideration of the reproduction mediums.
A detailed review of the spatial audio reproduction techniques can be found in Section 3.

While the community continues to develop recording techniques for spatial audio reproduction,
there are some trends and early examples that we can learn from. The strengths and weaknesses of
these recording techniques in terms of their applications in soundscape studies are summarized
in Table 1. With its simplicity, it is evident that ambisonics is the leading recording technique
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for interactive spatial audio reproduction. On the other hand, conventional stereo and surround
recording techniques can still be employed for specific applications, such as non-diegetic sound
(or ambience) of the acoustic environment in soundscape studies. Microphone arrays are very useful
to capture a more complete sound field (depending on the number of microphones used) and could
be used in postprocessing to further emphasize certain sound components, such as, speech from
noisy environment. Binaural recording still works great with static listening positions, but it does
not allow interactions in soundscape studies. Even monophonic microphones are required for dry
recordings that can be spatialized with post-processing, such as in auralization. Thus, it is clear that
choosing the most suitable recording techniques depends on the reproduction techniques as well as
the degree of perceptual accuracy required for soundscape studies. For high degree of perceptual
accuracy, interactive spatial audio reproduction is required, and thus, ambisonic recordings might be a
more suitable choice.

Table 1. Comparison of recording techniques for soundscape studies.

Recording
Techniques Strengths Weaknesses Remarks

Stereo and
Surround recording

• Legacy recording methods;
• Widely adopted in industry;
• Direct playback over

loudspeaker system.

• Does not capture 3D sound field
(usually only covers 1D or 2D);

• Not suitable for direct playback
over headphones;

• Does not support
head movements.

• Limited spatial quality in
soundscape studies.

Microphone arrays

• Ability to focus on certain
sounds in different
sound fields;

• Support head movements.

• Requires large number of
microphones for
good performance;

• Requires sophisticated signal
processing to obtain desired
sound from recording.

• A general method that could be
used to record a more complete
sound field for
soundscape reproduction.

Ambisonics

• Records 3D sound fields with
only 4 microphones;

• Good mathematical
foundations for recording
and playback;

• Efficient rendering for
interactive applications;

• Rapidly increasing popularity
in industry.

• Not suitable for non-diegetic
sound like music;

• Better performance requires
higher order ambisonics;

• Absence of
international standards.

• Well suited for interactive
reproduction in
soundscape studies.

Binaural recordings

• Closest to human hearing;
• Direct playback

over headphones.

• Specialized equipment needed,
e.g., ear simulators, or wearable
binaural microphones;

• Lack of support for
head movements;

• Non-personalized rendering
(e.g., dummy head recordings).

• Most commonly used recording
technique for soundscape studies
due to its simplicity;

• Good spatial quality but limited
interaction in soundscape studies

• Personalized rendering (i.e., from
in-ear binaural microphones).

3. Spatial Audio Reproduction Techniques for Soundscape Design

Perceptually accurate reproduction of the acoustic environment is crucial to achieve high
ecological validity for evaluation of soundscape in laboratory conditions. This requires synthesis
and rendering of different sound sources to create an immersive playback system, for instance, in
subjective listening tests with sufficient perceptual accuracy. Soundscape composition and acoustic
reproduction was pioneered by Schafer and his group in 1970s when they published a record titled
“The Vancouver soundscape” [57]. As the reproduction techniques for spatial audio become more
advanced, the soundscape researchers started adopting them in their studies from stereophonic
techniques, multi-channel setups [57], to ambisonics and wave field synthesis [58].

A rendering algorithm along with multiple transducers are often used for reproduction of spatial
sound. The sound can be rendered using either a pair of headphones or an array of loudspeakers
arranged in a specific configuration. The aim of the system is to reproduce the sound field in such a
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manner so as to give a sense of perception of spaciousness and directivity of sound objects located
in 3D space [27]. The sounds generated in such a scenario are often referred to as virtual sound in
contrast to real sound we commonly hear in everyday life [59].

The earliest attempt for reproduction of sound dates back to the phonograph invented in 1887.
The first stereo system was introduced by Bluemin [60] in 1931 with its first commercial use in 1949.
Dolby introduced the first surround sound system in 1970 and in the same year, Gerzon invented
ambisonics [49]. In 1984, binaural reproduction technique is introduced by Sony and since 1989,
the transaural technique gained popularity [61]. In 1993, another technique called the wave field
synthesis (WFS) was proposed with its first major commercial application demonstrated in 2001 by
Carrouso. In 2011, IOSONO came up with the world’s first real-time spatial audio processor for WFS.
In 2015, MPEG-H standard was announced, with the aim to ensure all types of sound formats are
supported in any types of playback systems. The most recent attempts of spatial audio rendering were
focused on VR/AR applications [27,62].

The above mentioned spatial audio reproduction techniques are primarily divided into two
categories. The first category uses the technique of physical reconstruction of sound, which aims
to synthesize the entire sound field in the listening area as close to the desired signal as possible.
The second category is the perceptual reconstruction of sound, which employs psychoacoustic
techniques to create a perception of spatial characteristics of sound [59]. The evolution of reproduction
techniques is shown in Figure 7 along with their classification into physical and perceptual
reproduction methods.
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The primary aim of the section is to introduce the spatial audio techniques and to highlight the
soundscape studies that have used these techniques. Moreover, since these techniques have different
encoding and decoding formats, they require appropriate tools for rendering audio. Table A1 in
Appendix A describes some of such tools that are available, where, many of these tools are open source
and free to use. Usage of such tools in soundscape studies could enable the researchers to choose
appropriate techniques according to the merits and demerits of each technique, which are described in
the following Sections 3.1 and 3.2 and summarized in Table 2 in Section 3.3.

3.1. Physical Reconstruction of Sound

The aim of physical reconstruction of sound is to create the sound field in the listening area as
close as possible to the desired sound field [59]. The oldest and one of the most popular methods of
sound reproduction for soundscape uses two speakers in stereo configuration, i.e., placed at an angle
of ±30◦ from the listener [60]. In soundscape studies, the stereo configuration was used by Schafer
and his group. Vogel et al. [63] used stereophonic sound technique to study soundscape for French
cities in 1997. Payne used a 2.1 channel system for testing the Perceived Restorativeness Soundscape
Scale (PRSS) [64].
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Multi-channel reproduction methods became popular in consumer devices from 1950.
The international standard ITU-R BS.1116-1 establishes the recommendation for reproducing sound
and assessment methods for multi-channel sound systems [65]. These methods have been widely
used in the reproduction of acoustic environment in soundscapes. Gustavino et al. studied the
subjective perception for playback through different multi-channel setups [66]. The speakers were
arranged in different spatial configurations with a hexagon shaped prototype listening room created
to test out different reproduction methods. The results of the experiments showed that while frontal
perception was best for a 1-D configuration, the spatial definition of audio was best reproduced
with 2-D configuration consisting of 6 speakers located at edges of the hexagonal room. In another
article, Guastavino et al. [16] showed that multichannel reproduction is more suitable for processing
complex auditory scenes, and playback of urban soundscapes in laboratory conditions, as compared
to stereophonic reproduction techniques.

Wave field synthesis and ambisonics are the other two physical reconstruction techniques, which
aim to create the same acoustical pressure field as present in the surrounding. Ambisonics, introduced
by Gerzon et al. [49] is based on the decomposition of a sound field using spherical harmonics.
Ambisonic reproduction is flexible to be applied in any sound playback configurations, which
makes it very attractive to be used in a wide variety of applications [67]. Davis et al. [21] used
the first order ambisonic microphones to record the background ambient soundscape and used a
monophonic microphone to record the foreground sounds separately. The soundscape synthesis
was carried out using a simulation tool. It allowed the sounds to be layered with each other and
effects, like reverberation and reflections, to be added in real-time [68]. An eight-channel loudspeaker
setup was used in a semi-anechoic chamber for playback. Boren et al. [58] described the usage of
16-channel audio configuration for playback of soundscape recording done in different parts of New
York using sound field tetramic for recording. Moreover, there is increased support for ambisonics
in VR/AR through leading industry players, including Google [69], BBC [70], and Facebook [71].
The ambisonics systems mentioned thus far are in the first-order configuration, with satisfactory but
limited spatial resolution as compared to higher-order configurations, as discussed in Section 2.1.4.
However, higher-order ambisonics systems are still pre-mature and costly today.

In a study for comparing the ecological validity among the different reproduction methods
related to physical reconstruction of sound, Gustavino et al. [16] compared the stereophonic and
ambisonic reproduction techniques. The study analyzed verbal data collected through questionnaires,
and compared it to the field survey using semantic differential analyses for different sound samples.
The study concluded that a “neutral visual environment” along with spatial immersion of recreated
soundstage is essential to ensure high ecological validity.

3.2. Perceptual Reconstruction of Sound

Perceptual reconstruction techniques for spatial audio aim to replicate the natural listening
experience by generating sufficient audio cues to represent the physical sound. Binaural technique,
according to Blauert [72], is defined as “a body of methods that involve the acoustic input signals to
both ears of the listener for achieving practical purposes, e.g., by recording, analyzing, synthesizing,
processing, presenting and evaluating such signals”. Reproduction through this technique has two
parts: one is the synthesis and rendering portion of the signal, and the other is the playback system.
Head related transfer functions (HRTFs) are used to describe the change in sound spectrum due to the
interaction of sound waves with listener’s body, head and pinna [59]. The synthesis and rendering of
binaural audio is usually realized by convolving a dry sound source with the HRTF at a particular
direction. For accurate reproduction, personalized binaural rendering using individualized HRTFs is
required [73]. There are various techniques to accurately measure or synthesize the individualized
HRTFs [74,75]. Recently, He et al. [76,77] proposed a fast and continuous HRTF acquisition system that
incorporates the head-tracker to allow unconstrained head movements for human subjects. Binaural
technique is used by soundscape researchers to playback the recorded sound with sufficient spatial
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fidelity. Axelsson et al. [54] used it for their study with the aim of finding the underlying and primary
components of soundscape perception. They used an artificial head (Brüel & Kjær Type 4100) for
binaural recording and headphone (Senheiser HD600) for playback.

Binaural reproduction can also be realized over a pair of loudspeakers. Transaural audio is the
method used to deliver correct binaural signals to ears of a listener using speakers (mostly in a stereo
setup). However, there are some challenges to this approach, namely effective crosstalk cancellation
and limited sweet spot range. Several solutions to these problems have been described in the literature,
e.g., [78]. Often, double transaural approaches [78] are used to make sure that the front back confusion
is minimum. However, this method has rarely been used in soundscape studies. Gustavino et al. [79]
compared the quality of spatial audio reproduction between transaural, ambisonics and stereo methods.
They used the Ircam default decoder to playback different auditory scenes from both indoors and
outdoors [66], such as road traffic noise, a car interior, music concert, etc. Two experiments were
performed, one for overall spatial quality evaluation and the other for localization accuracy. The results
from the study indicate that ambisonics provide good immersion but poor localization for a sound
scene. Stereophony and transaural techniques, on the other hand could be useful in the case where
precise localization is required but do not have good immersive spatial sound.

3.3. Comparison of Different Spatial Audio Reproduction Techniques for Soundscape Studies

It is crucial that soundscape researchers select the appropriate sound reproduction technique for
their use to make sure that the playback sounds similar to the natural listening scenario. To this end,
Table 2 highlights the strengths and weaknesses of common reproduction techniques mentioned above,
extended from studies in [80].

Table 2. Strengths and weaknesses of reproduction techniques for soundscape studies.

Reproduction
Techniques

Number of
Channels Strengths Weaknesses

Perceptual Reconstruction

Binaural Two

• Enables creation of virtual source
in 3D space with two channels.

• Lower equipment cost as
compared to other solutions.

• It is only suitable for single user.
• Individualized HRTFs needed to

avoid front back confusions and
in-head localizations.

Transaural Two or four

• Enhances spaciousness and
realism of audio with limited
number of speakers.

• Accurate rendering of spatial
images using fewer loudspeakers.

• Requires effective
crosstalk cancellation.

• It is only suitable for single user.

Physical Reconstruction

Stereo Two • Legacy reproduction method.
• Widely adopted in industry.

• Poor spatial effect.
• The sound phantom image is always

created at sweet spot.

Multichannel Three or more

• Better spaciousness of 360◦ audio
as compared to stereo setups.

• Well adopted by industry.

• Large numbers of channels and
speaker systems needed for
spatial realism.

• Unable to achieve accurate accurate
360 degree phantom images.

Ambisonics (N + 1)2 for Nth
Ambisonic

• Can be used with any
speaker arrangement.

• Core technology is not patented
and free to use.

• Listener movement can cause artifacts
in sound.

• Complicated setup.
• Not popular in industry.

Wave Field
Synthesis

More than 100
usually

• The sweet spot covers entire
listening area.

• The virtual sound sources
independent of listener position

• High frequency sounds beyond
aliasing frequency not
well reproduced.

• Large number of speakers needed.
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In addition to the above techniques, Auralization techniques have recently become popular among
soundscape researchers to achieve sufficient perceptual accuracy of acoustic reproduction. Auralization
can be defined as a technique of creating audible sound files from numerical data [81]. It is not strictly
a perceptual technique and can include the physical reproduction methods as well. The technique has
been used in reproducing various acoustic environments, such as concert halls [82], auditoriums [83]
and in room acoustics. The development of accurate models and efficient algorithms for accurate
sound reproduction employs various techniques, like ray tracing [84], radiosity methods [85], finite
element methods, etc. [86]. These models are used in conjugation with the reproduction setups to add
audio effects and cues for increasing realism and spaciousness for spatial sound.

4. Spatial Audio in Virtual and Augmented Reality for Soundscape Design

Due to the importance of audio-visual interaction in soundscape perception, the audio techniques
reviewed in this paper are commonly paired with a variety of visual mediums. Increasingly, virtual
reality (VR) and augmented reality (AR) systems have been employed in soundscape research. Visuals
recorded using omni-directional cameras, or designed in 3D modelling software, when rendered
through head-mounted displays, are perceived to be immersive and realistic. To complement the
immersive visuals, the accompanying audio has to possess a minimum degree-of spatialness to achieve
natural realism. This argument stems from the perceptual nature of soundscapes and thus, a disjoint
in the spatialness of the audio and visual elements will degrade the ecological validity [87]. Hence, the
general rule of thumb for audio with VR and AR should correlate with the receivers’ movements
(mostly head movements), to create an interactive and immersive perception of soundscape.

Although spatial audio techniques for VR are discussed in detail in various studies [88,89],
sufficient care is needed when applying these techniques into soundscape research. With the above
rule in mind, the spatial audio recording techniques that is suitable for VR (or virtual sound in AR)
must be able to capture the acoustic environment from all directions. From this perspective, ambisonics
recording is the most commonly used recording techniques for VR/AR, though general microphone
arrays with suitable post-processing can also be applied.

The spatial audio reproduction for VR/AR is usually realized through binaural rendering with
head-tracking, though multichannel playback systems with an ambisonics decoder is also possible.
In the binaural rendering system, when the human head moves, these HRTFs must be updated
accordingly to account for the changes of the sound directions, which help to create a more interactive
and natural listening experience. Note that the binaural rendering of the ambisonics recording is
implemented by virtual loudspeakers in the ambisonics reproduction setup. For instance, a stationary
VR scene that allows for head-track views of the visual scene (e.g., user is standing still in the virtual
environment but able to turn the head to “look” around) needs to be accompanied by head-tracked
binaural reproduction. An example of a reproduced VR scene with head-tracked binaural reproduction
over headphones is shown in the right half of Figure 8. Recently, this approach has been used
in soundscape research since it allows more immersive reproduction of the acoustic environment.
One good example that soundscape research has benefitted from the use of VR techniques is in the
SONORUS project [90]. Maffei et al. used VR for evaluating the influence of visual characteristics of
barriers and wind turbine on noise perception [23,91,92].

Along with VR, the rising popularity of AR devices can be attributed to its availability in the
consumer space. Devices such as the Hololens and Meta 2 have the capability to render holograms
through head mounted displays [93,94]. With the consumerization of AR systems, soundscape
researchers and practitioners have access to tools that can virtually augment visual and audio elements
in the real environment. The general rule for applying audio to AR should still be adhered to,
for achieving the desired perceptual accuracy during auralization in the soundscape design process.

There are several ongoing research works to achieve a high degree of perceptual accuracy for AR
audio. Härmä et al. [95] described an augmented reality audio headset using binaural microphones to
assist the listener with pseudo-acoustic scenes. Tikander et al. [96] also developed a mixer for equalizing
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and mixing virtual objects with real environment. Ranjan et al. [27] proposed an augmented reality
headset in which they use open-back headphones with pairs of external and internal microphones to
achieve sound playback that is very similar to natural listening scenario.

These devices and upcoming innovations would be useful for projects that involve altering
the soundscapes of existing locations. They could be used in soundscape studies to test different
hypothesis in an immersive environment, which allows both virtual reproduced and real ambient
sounds to be heard at the same time. AR devices have the advantage of including different elements of
the perceptual construct of the soundscape, including meteorological conditions and other sensory
factors [7]. Moreover, if accurate spatial sound is used with these AR devices, it would enable the
soundscape researchers to fuse the virtual sound sources seamlessly with the real sound, thus enabling
highly accurate interpretation of auditory sensation by the user. The viability of an augmented
reality audio-visual system has been demonstrated with a consumer AR headgear and open-backed
headphones with positional translation- and head-tracked spatial audio, as shown in the left half of
Figure 8.
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In essence, VR systems with high fidelity spatial audio are well suited for an immersive acoustic
environment with a good degree of control under laboratory conditions; whereas AR systems with
high fidelity spatial audio are more immersive but are subject to a high degree of variability in the in
situ environment. Hence, soundscape practitioners should exercise care in the selection of audio-visual
mediums and should consider the complementary nature of VR and AR techniques mentioned.

5. Discussion

Soundscape design should be based on the relationship between human perceptual construct
and physical phenomenon of the acoustic environment. As shown in Figure 1, acoustic recording
and reproduction techniques are essentially adopted through every stage of soundscape design
process. In particular, soundscape recording and reproduction techniques play a more critical role
in Stage 2 for proposing and evaluating the soundscape designs before their implementations in
situ. In Stage 2, various soundscape design approaches might be applied to improve the existing
poor acoustic conditions, and those approaches should be assessed through subjective tests based on
human perception of acoustic environment. In this context, soundscape design needs to consider the
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degree of ecological validity of the soundscape for reliable solutions, which largely depends on the
adopted recording and reproduction techniques. Therefore, for clarity, the discussion will be focused
on highlighting the degree of perceptual accuracy of the recording and reproduction techniques
introduced in Sections 2 and 3 respectively, in representing the acoustic environment.

As stated in ISO 12913-1:2014, any evaluation of soundscape is based upon the human perception
of the acoustic environment (actual or simulated). The technique of constructing an audible acoustic
environment, or Auralisation, is commonly used for soundscape evaluation in controlled environments.
According to Vorländer [81], the goal of auralisation also stems from the human perception of the
acoustic environment, in which the synthesized acoustics only needs to be perceptually correct and not
physically perfect. Perceptual accuracy, also called plausibility, of the virtual acoustic environment is
defined by Lindau and Weinzierl as “a simulation in agreement with the listener’s expectation towards
an equivalent real acoustic event” [98]. The listener’s expectation, however, is subjective and can vary
depending on the intended tasks in the acoustic environment. Ultimately, the ecological validity of
a virtual acoustic environment will be application specific. This task-specific criterion implies that
there are different levels of perceptual accuracy that can create “a suitable reproduction of all required
quality features for a given application” [87]. Out of the quality features suggested by Pellegrini,
emphasis will be directed to features, which are attributed to recording and reproduction techniques.

Therefore, it would be beneficial to classify the characteristics of the acoustic environment,
such that the appropriate techniques are selected to achieve the desired level of perceptual accuracy.
The characteristics of the acoustic environment are summarized in Table 3.

Table 3. Recommended audio reproduction and recording techniques for virtualizing/augmenting
acoustic environments.

Characteristics of the Acoustic Environment Recommended Techniques

Use Case(s) (Selected
References, if Any)Spatial

Fideli 1
Type of

Environment 2

Movements Virtual Sound
Source

Localization 3

Reproduction
Techniques

Recording
TechniquesListener

Position 4 Head

Low

Virtual (R/S) × × 0D Mono loudspeaker;
stereo headphone Mono Masking road traffic noise

with birdsongs [99]

Virtual (R/S) × × 1D
Stereo/surround

loudspeaker;
stereo headphone

Stereo/surround

Reproduced acoustic
environment [25];

Perceived restorative-ness
soundscape scale [71]

Virtual (R/S) × × 2D

Surround sound
loudspeakers
with height

Array

Ambisonics (2D) Ambisonics Perception of reproduced
soundscapes [22]

Med

Virtual (R/S) × × 3D− Ambisonics; Binaural Ambisonics; Binaural;

Auralising noise mitigation
measures [100]; Masking

noise with water
sounds [101,102]

Virtual (R/S) × × 3D+ Personalized
binaural (PB) 5

Personalized binaural;
Ambisonics 6

Virtual (R/S) × X 3D+ Binaural/PB with
head tracking Ambisonics

High

Virtual(S) X X 3D+
WFS; Binaural/PB with

positional &
head tracking

Mono (anechoic);
Ambisonics LISTEN project [103]

Real +
Virtual(S) 7 X X 3D+

WFS; Binaural/PB with
positional &

head tracking

Mono (anechoic);
Ambisonics

Augmented
soundscape [27,97]

1 Spatial fidelity refers to the quality of the perceived spatiality (location of sound in 3D space) of sound sources,
which directly influences the auditory sensation. 2 Acoustic environments can be real, captured, and reproduced
(R), or synthesized from existing sound tracks (S). 3 As described in Section 5. 4 Refers to listeners’ translation
movements. The virtual sound reproduction must be able to adapt the sound to translation movements. 5 Refers to
binaural rendering with individualized HRTFs. 6 Requires convolution of down-mixed binaural with individualized
HRTFs. 7 This refers to the case of recreating a virtual soundscape in a real acoustic environment. * Note that
not all spatial audio recording and reproduction techniques reviewed have been used in soundscape studies,
e.g., personalized binaural recording and rendering. The perceptual accuracy and ecological validity of these
techniques need to be further examined.
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The acoustic environment characteristics are organized firstly by its type, namely: (1) “Virtual(R)”,
a simulated environment reproduced from recordings at a real location; (2) “Virtual(S)”, a simulated
environment produced by auralization [81]; and (3) “Real”, the actual physical environment.

Next, the characteristics based on interactivity of the listener in the acoustic environment is
identified. The interactivity or ‘Movement’ characteristics in the table are extremely relevant for
VR and AR applications, as described in Section 4 For instance, the sound has to be in sync with
the receivers’ positional and head movements as in the real environment (for AR) or in the virtual
environment (in VR).

The ability to localize sound sources in the acoustic environment is also an important characteristic,
which is also included and labelled as “Virtual sound source localization” in Table 3. The degree of
localization is further categorized into 0D, 1D, 2D, 3D−, and 3D+. Virtual sound source localization
in: (1) 0D refers to the perception with no spatial cues; (2) 1D refers to sound perception limited to
left and right in horizontal plane; (3) 2D refers to sound perception with the inclusion of azimuthal
and elevation dimensions; and (4) 3D refers to the sound perception with azimuth, elevation and
distance, where − and + shows poor and good performance, respectively. Lastly, based on the degree
of movement and localization characteristics, the spatial fidelity of the acoustic environment is simply
classified into three grades for simplicity: Low, Medium, and High.

The description of the acoustic environment characteristics in Table 3, are accompanied by their
respective reproduction and recording techniques. The limitations of the soundscape study, in terms
of the spatial characteristics of the acoustic environment, can be decided by referring to Table 3. For
reference, past soundscape evaluation studies are included in the last column of the table. It should
be stressed that Table 3 does not suggest that all soundscape studies should employ high spatial
fidelity audio, but instead provides a guide to construct the experimental conditions needed for
soundscape research.

6. Conclusions

Recently, soundscape approaches have attracted more attention due to the increasing importance
of evidence-based and perception-driven solutions to build better urban acoustic environments.
Soundscape recording and reproducing techniques are essential tools for soundscape research and
design. The present paper provides an overall picture of various spatial audio recording and
reproduction techniques, which can be applied in soundscape studies and applications. Soundscape
researchers should understand the strengths and weaknesses of these spatial audio recording and
reproduction techniques, and apply the most appropriate techniques to suit their research purposes.
Notably, the emerging VR/AR technologies, together with the advanced spatial audio recording and
reproduction techniques, enable a more interactive and immersive auditory and visual perception,
and would be a great fit for soundscape design with high ecological validity. Future research
needs to focus more on spatial aspects of soundscape design elements for developing more accurate
soundscape models.
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Appendix A

Table A1. Tools for rendering spatial audio for soundscape studies.

Tools (Type of Application) Reproduction Format/Rendering Usage

BIN TRA AMB WFS STE VAR MUL AUR

Soundscape Renderer (C++ application
for rendering) [104] × × ×

Transpan (Max/MSP application) [105] × ×
Simmetry 3D (Multi channel

reproduction) [106] ×

PSTD (Blender interface for
auralization) [107] ×

UrbanRemix (Collaborative soundscape
measurement) [108] ×

CATT acoustics (Room acoustics and
auralization) [109] × ×

EARS (Indoor auralization) [110] × × ×
Urban street auralizer (Micro scale urban

areas simulation) [111] × × ×

FB360 spatializer
(Sound spatializer for VR) [71] × × × × ×

Google VR (Spatial sound plugin) [112] × × ×
Slab 3D plugin (Rendering plugin) [113] × ×
Hololens spatial audio plugin (AR based

spatial sound rendering) [94] ×

BIN: Binaural, TRA: Transaural, AMB: Ambisonic first order WFS: Wave field synthesis, STE: Stereo, VAR: VR/AR,
MUL: Multi channel surround Sound, VBAP: Vector Base Amplitude Panning, and AUR: Auralization.
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