A Bibliometric Analysis on the Effects of Land Use Change on Ecosystem Services: Current Status, Progress, and Future Directions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods and Workflow
2.2. Data Sources
3. Results
3.1. Basic Information of Field Research
3.1.1. Publishing Trends and Types of Publications
3.1.2. Top Authors
3.1.3. Top Institutions
3.1.4. Top Journals
3.1.5. Subject Category
3.2. Bibliometric Analysis
3.2.1. Co-Occurrence Network of Keyworks
3.2.2. Evolution of Research Hotspots
3.2.3. Citation Analysis
3.2.4. Reference Co-Citation Analysis
3.3. Basic Research Questions in This Field
3.3.1. What Impact Will Land Use Area Changes Have on Ecosystem Services?
3.3.2. How Does the Change in Land Use Pattern Affect Ecosystem Services?
3.3.3. How Does the Change in Land Use Spatial Pattern Affect Ecosystem Services?
3.3.4. What Is the Impact of Land Use Changes on Ecosystem Services at Different Scales?
4. Discussion
4.1. Framework for Field Research
4.2. Future Research Opportunities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Assessment, M.E. Ecosystems and Human Well-being: A Framework for Assessment. Phys. Teach. 2003, 34, 534. [Google Scholar]
- Holdren, J.P.; Ehrlich, P.R. Human population and the global environment. Am. Sci. 1974, 62, 282–292. [Google Scholar] [PubMed]
- Bojie, F.; Liwei, Z. Land-use change and ecosystem services: Concepts, methods and progress. Prog. Geogr. 2014, 33, 441–446. [Google Scholar]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Huang, X.; Ma, J.X. Changes in the ecosystem service values of typical river basins in arid regions of Northwest China. Ecohydrology 2013, 6, 1048–1056. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, X.; Su, J.; Chen, Z.; Zheng, M.; Sun, Y.; Ji, D. Ecological compensation of dongjiang river basin based on evaluation of ecosystem service value. J. Ecol. Rural Environ. 2018, 34, 563–570. [Google Scholar]
- Li, Z.; Deng, X.; Wu, F.; Hasan, S. Scenario analysis for water resources in response to land use change in the middle and upper reaches of the heihe river basin. Sustainability 2015, 7, 3086–3108. [Google Scholar] [CrossRef] [Green Version]
- Zeng, J.; Chen, T.; Yao, X.; Chen, W. Do protected areas improve ecosystem services? A case study of hoh xil nature reserve in Qinghai-Tibetan Plateau. Remote Sens. 2020, 12, 471. [Google Scholar] [CrossRef] [Green Version]
- Bowei, Y.; Enming, R.; Xuelin, C.; Jiankang, S.; Cuiping, Z.; Weihua, X.; Yi, X.; Zhiyun, O. Evaluating the effectiveness of nature reserves in soil conservation on Hainan Island. Acta Ecol. Sin. 2016, 36, 3694–3702. [Google Scholar]
- Solomon, N.; Segnon, A.C.; Birhane, E. Ecosystem service values changes in response to land-use/land-cover dynamics in dry afromontane forest in Northern Ethiopia. Int. J. Environ. Res. Public Health 2019, 16, 4653. [Google Scholar] [CrossRef] [Green Version]
- Taye, F.A.; Folkersen, M.V.; Fleming, C.M.; Buckwell, A.; Mackey, B.; Diwakar, K.C.; Le, D.; Hasan, S.; Ange, C.S. The economic values of global forest ecosystem services: A meta-analysis. Ecol. Econ. 2021, 189, 107145. [Google Scholar] [CrossRef]
- Baciu, G.E.; Dobrotă, C.E.; Apostol, E.N. Valuing forest ecosystem services. Why is an integrative approach needed? Forests 2021, 12, 677. [Google Scholar] [CrossRef]
- Su, M.; Guo, R.; Hong, W. Institutional transition and implementation path for cultivated land protection in highly urbanized regions: A case study of Shenzhen, China. Land Use Policy 2019, 81, 493–501. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Cultivated land protection and rational use in China. Land Use Policy 2021, 106, 105454. [Google Scholar] [CrossRef]
- Wang, K.; Ou, M.; Wolde, Z. Regional differences in ecological compensation for cultivated land protection: An analysis of Chengdu, Sichuan Province, China. Int. J. Environ. Res. Public Health 2020, 17, 8242. [Google Scholar] [CrossRef]
- Kang, W.; Yaochuan, L. Research progress of urban land use and its ecosystem services in the context of urban shrinkage. J. Nat. Resour. 2019, 34, 1121–1134. [Google Scholar]
- Barredo, J.I.; Mauri, A.; Caudullo, G. Alpine tundra contraction under future warming scenarios in Europe. Atmosphere 2020, 11, 698. [Google Scholar] [CrossRef]
- Xunling, L.U.; Junling, L.; Shengyan, D. Impact of agricultural landscape heterogeneity on biodiversity and ecosystem services. Acta Ecol. Sin. 2019, 39, 4602–4614. [Google Scholar]
- Linden, V.M.G.; Grass, I.; Joubert, E.; Tscharntke, T.; Weier, S.M.; Taylor, P.J.; Struebig, M.; Struebig, M. Ecosystem services and disservices by birds, bats and monkeys change with macadamia landscape heterogeneity. J. Appl. Ecol. 2019, 56, 2069–2078. [Google Scholar] [CrossRef]
- Deng, X.; Li, Z.; Gibson, J. A review on trade-off analysis of ecosystem services for sustainable land-use management. J. Geogr. Sci. 2016, 26, 953–968. [Google Scholar] [CrossRef] [Green Version]
- Comberti, C.; Thornton, T.F.; Wyllie De Echeverria, V.; Patterson, T. Ecosystem services or services to ecosystems? Valuing cultivation and reciprocal relationships between humans and ecosystems. Glob. Environ. Chang. 2015, 34, 247–262. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.; Zhao, Y.; Shen, H.; Qin, Y.; Liu, X. Spatio-temporal pattern evolution of ecosystem service supply and demand in Beijing-Tianjin-Hebei Region. J. Ecol. Rural Environ. 2018, 34, 968–975. [Google Scholar]
- Wang, J.; Zhai, T.; Lin, Y.; Kong, X.; He, T. Spatial imbalance and changes in supply and demand of ecosystem services in China. Sci. Total Environ. 2019, 657, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lin, Y.; Zhai, T.; He, T.; Qi, Y.; Jin, Z.; Cai, Y. The role of human activity in decreasing ecologically sound land use in China. Land Degrad. Dev. 2018, 29, 446–460. [Google Scholar] [CrossRef]
- Battista, W.; Karr, K.; Sarto, N.; Fujita, R. Comprehensive Assessment of Risk to Ecosystems (CARE): A cumulative ecosystem risk assessment tool. Fish. Res. 2017, 185, 115–129. [Google Scholar] [CrossRef]
- Halpern, B.S.; Selkoe, K.A.; Micheli, F.; Kappel, C.V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 2007, 21, 1301–1315. [Google Scholar] [CrossRef]
- Levin, P.S.; Fogarty, M.J.; Murawski, S.A.; Fluharty, D. Integrated ecosystem assessments: Developing the scientific basis for ecosystem-based management of the ocean. PLoS Biol. 2009, 7, e14. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wang, J.; Li, C.; Chen, B.; Sun, Y. Using bibliometric analysis to understand the recent progress in agroecosystem services research. Ecol. Econ. 2019, 156, 293–305. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Y.; Wu, Z.; Lv, T. A bibliometric analysis on land degradation: Current status, development, and future directions. Land 2020, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Zhang, Y.; Choi, Y.; Li, F. A scientometrics review on land ecosystem service research. Sustainability 2020, 12, 2959. [Google Scholar] [CrossRef] [Green Version]
- Mustajoki, J.; Saarikoski, H.; Belton, V.; Hjerppe, T.; Marttunen, M. Utilizing ecosystem service classifications in multi-criteria decision analysis—Experiences of peat extraction case in Finland. Ecosyst. Serv. 2020, 41, 101049. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Castro, A.J.; Castro, H.; García-Llorente, M. Impacts of land use change on ecosystem services and implications for human well-being in Spanish drylands. Land Use Policy 2016, 54, 534–548. [Google Scholar] [CrossRef]
- Foley, J.A. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, S.; Shi, W.; Zhu, X. Impact of land use land cover changes on ecosystem service value—A case study of Guangdong, Hong Kong, and Macao in South China. PLoS ONE 2020, 15, e0231259. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef]
- Wu, X.; Lin, A.; Li, Y.; Wu, H.; Cen, L.; Liu, H.; Song, D. Simulating spatiotemporal land use change in middle and high latitude regions using multiscale fusion and cellular automata: The case of Northeast China. Ecol. Indic. 2021, 133, 108449. [Google Scholar] [CrossRef]
- Sterling, S.M.; Ducharne, A.; Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Chang. 2013, 3, 385–390. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Zhang, C.; Liu, M.; Sun, G.; Chappelka, A.; Ren, W.; Xu, X.; Lu, C.; Pan, S.; et al. Century-scale responses of ecosystem carbon storage and flux to multiple environmental changes in the Southern United States. Ecosystems 2012, 15, 674–694. [Google Scholar] [CrossRef] [Green Version]
- Meyfroidt, P.; Lambin, E.F.; Erb, K.; Hertel, T.W. Globalization of land use: Distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 2013, 5, 438–444. [Google Scholar] [CrossRef]
- Mooney, H.A.; Duraiappah, A.; Larigauderie, A. Evolution of natural and social science interactions in global change research programs. Proc. Natl. Acad. Sci. USA 2013, 110 (Suppl. 1), 3665–3672. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.; Hu, B.; Zhang, Z. Impacts of land use change on ecosystem service value based on SDGs report—Taking Guangxi as an example. Ecol. Indic. 2021, 133, 108366. [Google Scholar] [CrossRef]
- Wang, M.; Wander, M.; Mueller, S.; Martin, N.; Dunn, J.B. Evaluation of survey and remote sensing data products used to estimate land use change in the United States: Evolving issues and emerging opportunities. Environ. Sci. Policy 2022, 129, 68–78. [Google Scholar] [CrossRef]
- Xiao, C.; Li, P.; Feng, Z.; Zheng, F. Global border watch: From land use change to joint action. ITC J. 2021, 103, 102494. [Google Scholar] [CrossRef]
- Junping, Q. Bibliometrics, 2nd ed.; Science Press: Beijing, China, 2019. [Google Scholar]
- Jie, L. Scientometrics and Knowledge Networks Analysis, 2nd ed.; Capital University of Economics and Business Press: Beijing, China, 2017. [Google Scholar]
- Yuan, Z.; Li, J.; Li, F. Visualization analysis on discipline dynamic of tillage erosion in recent 30 years based on Citespace. Res. Soil Water Conserv. 2021, 28, 407–411. [Google Scholar]
- Mauricius Co-Occurrence Analysis. Available online: https://blog.csdn.net/zhaozhn5/article/details/78120507 (accessed on 1 August 2021).
- Brin, S.; Page, L. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. ISDN Syst. 1998, 30, 107–117. [Google Scholar] [CrossRef]
- Bibliometrics, a Detailed Analysis of the Meaning of Co-Cited Documents. Available online: https://www.jianshu.com/p/ec1afa9fa03b (accessed on 1 August 2021).
- Garfield, E.; Paris, S.W.; Stock, W.G. HistCiteTM: A software tool for informetric analysis of citation linkage. Inf. Wiss. Prax. 2006, 57, 391–400. [Google Scholar]
- Xiao, P.; Zhou, Y.; Li, X.; Xu, J.; Zhao, C. Assessment of heavy metals in agricultural land: A literature review based on bibliometric analysis. Sustainability 2021, 13, 4559. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Waltman, L.; van Eck, N.J.; Noyons, E.C.M. A unified approach to mapping and clustering of bibliometric networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Price, D.J.D.S. Little Science, Big Science and Beyond; Columbia University Press: New York, NY, USA, 1965. [Google Scholar]
- Zhong, W. Evaluation about the core authors based on price law and comprehensive index method—Take journal of library development as an example. Sci. Technol. Manag. Res. 2012, 2, 57–60. [Google Scholar]
- Shi, Y.; Zhu, Q.; Xu, L.; Lu, Z.; Wu, Y.; Wang, X.; Fei, Y.; Deng, J. Independent or influential? spatial-temporal features of coordination level between urbanization quality and urbanization scale in china and its driving mechanism. Int. J. Environ. Res. Public Health 2020, 17, 15875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Chen, S.; Xu, Y.; Li, G.; Su, W. Impacts of land-use change on habitat quality during 1985–2015 in the Taihu Lake Basin. Sustainability 2019, 11, 3513. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Liu, L.; Huang, J. Integrating the SD-CLUE-S and InVEST models into assessment of oasis carbon storage in northwestern China. PLoS ONE 2017, 12, e01724942. [Google Scholar] [CrossRef] [PubMed]
- Porter-Bolland, L.; Bonilla-Moheno, M.; Garcia-Frapolli, E.; Morteo-Montiel, S. Forest Ecosystems and Conservation; Islebe, G., Calmé, S., Schmook, B., Leon, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 377–398. [Google Scholar]
- Zhuravleva, I.; Turubanova, S.; Potapov, P.; Hansen, M.; Tyukavina, A.; Minnemeyer, S.; Laporte, N.; Goetz, S.; Verbelen, F.; Thies, C. Satellite-based primary forest degradation assessment in the Democratic Republic of the Congo, 2000–2010. Environ. Res. Lett. 2013, 8, 024034. [Google Scholar] [CrossRef] [Green Version]
- Dwomoh, F.K.; Wimberly, M.C.; Cochrane, M.A.; Numata, I. Forest degradation promotes fire during drought in moist tropical forests of Ghana. For. Ecol. Manag. 2019, 440, 158–168. [Google Scholar] [CrossRef]
- Soltani, A.; Angelsen, A.; Eid, T. Poverty, forest dependence and forest degradation links: Evidence from Zagros, Iran. Environ. Dev. Econ. 2014, 19, 607–630. [Google Scholar] [CrossRef]
- Aizen, M.A.; Garibaldi, L.A.; Cunningham, S.A.; Klein, A.M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann. Bot. 2009, 103, 1579–1588. [Google Scholar] [CrossRef]
- Augstburger, H.; Rist, S. Assessing the capacity of three Bolivian food systems to provide farm-based agroecosystem services. J. Land Use Sci. 2020, 15, 142–171. [Google Scholar] [CrossRef]
- Córdoba, C.; Triviño, C.; Toro Calderón, J. Agroecosystem resilience. A conceptual and methodological framework for evaluation. PLoS ONE 2020, 15, e0220349. [Google Scholar] [CrossRef] [Green Version]
- Warren, R.; Price, J.; Fischlin, A.; de la Nava Santos, S.; Midgley, G. Increasing impacts of climate change upon ecosystems with increasing global mean temperature rise. Clim. Chang. 2011, 106, 141–177. [Google Scholar] [CrossRef]
- Calzadilla, A.; Zhu, T.; Rehdanz, K.; Tol, R.S.J.; Ringler, C. Climate change and agriculture: Impacts and adaptation options in South Africa. Water Resour. Econ. 2014, 5, 24–48. [Google Scholar] [CrossRef]
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating targets for sustainable intensification. BioScience 2017, 67, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Kumar, B.; Hiremath, R.B.; Balachandra, P.; Ravindranath, N.H. Bioenergy and food security: Indian context. Energy Sustain. Dev. 2009, 13, 265–270. [Google Scholar] [CrossRef]
- Xiaoqian, L.; Tao, P.; Hua, S.; Xizhang, G. A bibliometric investigation of research on social-ecological system resilience. Adv. Earth Sci. 2019, 34, 765–777. [Google Scholar]
- Ding, Y.; Yan, E.; Frazho, A.; Caverlee, J. PageRank for ranking authors in co-citation networks. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 2229–2243. [Google Scholar] [CrossRef] [Green Version]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Evans, M.P. Analysing Google rankings through search engine optimization data. Internet Res. 2007, 17, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.C.; Chou, Y.L.; Guo, J.L. A core journal decision model based on weighted page rank. Program 2011, 45, 397–414. [Google Scholar] [CrossRef]
- Wolff, S.; Schulp, C.J.E.; Kastner, T.; Verburg, P.H. Quantifying spatial variation in ecosystem services demand: A global mapping approach. Ecol. Econ. 2017, 136, 14–29. [Google Scholar] [CrossRef]
- Fu, Q.; Li, B.; Hou, Y.; Bi, X.; Zhang, X. Effects of land use and climate change on ecosystem services in Central Asia’s arid regions: A case study in Altay Prefecture, China. Sci. Total Environ. 2017, 607, 633–646. [Google Scholar] [CrossRef]
- Schirpke, U.; Kohler, M.; Leitinger, G.; Fontana, V.; Tasser, E.; Tappeiner, U. Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosyst. Serv. 2017, 26, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Metzger, M.J.; Rounsevell, M.; Acosta-Michlik, L.; Leemans, R.; Schrotere, D. The vulnerability of ecosystem services to land use change. Agric. Ecosyst. Environ. 2006, 114, 69–85. [Google Scholar] [CrossRef]
- Schroter, D.; Cramer, W.; Leemans, R.; Prentice, I.C.; Araujo, M.B.; Arnell, N.W.; Bondeau, A.; Bugmann, H.; Carter, T.R.; Gracia, C.A.; et al. Ecosystem service supply and vulnerability to global change in Europe. Science 2005, 310, 1333–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Dong, X.; Liu, H.; Wei, H.; Fan, W.; Lu, N.; Xu, Z.; Ren, J.; Xing, K. Linking land use change, ecosystem services and human well-being: A case study of the Manas River Basin of Xinjiang, China. Ecosyst. Serv. 2017, 27, 113–123. [Google Scholar] [CrossRef]
- Mamat, A.; Halik, U.; Rouzi, A. Variations of ecosystem service value in response to land-use change in the Kashgar Region, Northwest China. Sustainability 2018, 10, 2001. [Google Scholar] [CrossRef] [Green Version]
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B-Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- Martinez-Harms, M.J.; Bryan, B.A.; Figueroa, E.; Pliscoff, P.; Runting, R.K.; Wilson, K.A. Scenarios for land use and ecosystem services under global change. Ecosyst. Serv. 2017, 25, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Dun, Y. A review on the effects of land use change on ecosystem services. Resour. Environ. Yangtze Basin 2015, 24, 798–808. [Google Scholar]
- Gao-di, X.; Cai-xia, Z.; Lei-ming, Z.; Wen-hui, C.; Shi-mei, L.I. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Ming-Yang, Z.; Ke-Lin, W.; Hong-Song, C.; Chun-Hun, Z.; Hui-Yu, L.; Yue-Min, Y.; Fei-De, F. Quantified evaluation and analysis of ecosystem services in Karst areas based on remote sensing. Acta Ecol. Sin. 2009, 29, 5891–5901. [Google Scholar]
- Wang, Y.; Pan, J. Building ecological security patterns based on ecosystem services value reconstruction in an arid inland basin: A case study in Ganzhou District, NW China. J. Clean. Prod. 2019, 241, 118337. [Google Scholar] [CrossRef]
- Zuo, Q.; Li, X.; Hao, L.; Hao, M. Spatiotemporal evolution of land-use and ecosystem services valuation in the belt and road initiative. Sustainability 2020, 12, 6583. [Google Scholar] [CrossRef]
- Hebing, H.U.; Hongyu, L.; Jingfeng, H.; Jing, A.N. Spatio-temporal variation in the value of ecosystem services and its response to land use intensity in an urbanized watershed. Acta Ecol. Sin. 2013, 33, 2565–2576. [Google Scholar] [CrossRef]
- Yuan, K.; Li, F.; Yang, H.; Wang, Y. The influence of land use change on ecosystem service value in Shangzhou District. Int. J. Environ. Res. Public Health 2019, 16, 13218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, H.; Ren, Z.; Wang, Q. Images analysis of land use change and its eco-environmental effects in wind drift sand region—A case study on yuyang district of the Northern Shaanxi Province. Sci. Geogr. Sin. 2008, 28, 770–775. [Google Scholar]
- Zang, Z.; Zou, X.; Zuo, P.; Song, Q.; Wang, C.; Wang, J. Impact of landscape patterns on ecological vulnerability and ecosystem service values: An empirical analysis of Yancheng Nature Reserve in China. Ecol. Indic. 2017, 72, 142–152. [Google Scholar] [CrossRef]
- Tang, X.; Chen, B.; Lu, Q.; Han, F. The ecological location correction of ecosystem service value:a case study of Beijing City. Acta Ecol. Sin. 2010, 30, 3526–3535. [Google Scholar]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; DeFries, R.S.; Diaz, S.; Dietz, T.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M.; et al. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
- Daqian, W.; Jian, L.; Tongli, H.; Shujun, W.; Renqin, W. Profit and loss analysis on ecosystem services value based on land use change in Yellow River Delta. Trans. Chin. Soc. Agric. Eng. 2009, 25, 256–261. [Google Scholar]
- Kremen, C.; Williams, N.M.; Aizen, M.A.; Gemmill-Herren, B.; LeBuhn, G.; Minckley, R.; Packer, L.; Potts, S.G.; Roulston, T.; Steffan-Dewenter, I.; et al. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol. Lett. 2007, 10, 299–314. [Google Scholar] [CrossRef]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the State of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Su, C.H.; Fu, B.J. Discussion on links among landscape pattern, ecological process, and ecosystem services. Chin. J. Nat. 2012, 34, 277–283. [Google Scholar]
- Wei, F.; Yihe, L.; Bo-jie, F.; Weiyin, H. Landscape ecological risk assessment under the influence of typical human activities in Loess Plateau, Northern Shaanxi. J. Ecol. Rural Environ. 2019, 35, 290–299. [Google Scholar]
- Ou, W.; Wang, H.; Tao, Y. A land cover-based assessment of ecosystem services supply and demand dynamics in the Yangtze River Delta region. Acta Ecol. Sin. 2018, 38, 6337–6347. [Google Scholar]
- Bremer, L.L.; Farley, K.A.; DeMaagd, N.; Suarez, E.; Carate Tandalla, D.; Vasco Tapia, S.; Vasconez, P.M. Biodiversity outcomes of payment for ecosystem services: Lessons from paramo grasslands. Biodivers. Conserv. 2019, 28, 885–908. [Google Scholar] [CrossRef]
- Ming-yang, Z.; Ke-lin, W.; Hui-yu, L.; Hong-song, C.; Chun-hua, Z.; Yue-min, Y. Responses of ecosystem service values to landscape pattern change in typical Karst area of northwest Guangxi, China. Chin. J. Appl. Ecol. 2010, 21, 1174–1179. [Google Scholar]
- Zhang, Y.; Wu, D.; Xiao, L. A review on the impact of land use/land cover change on ecosystem services from a spatial scale perspective. J. Nat. Resour. 2020, 35, 1172–1189. [Google Scholar]
- Ren, T.; Zhou, Z. Influence of agricultural structure transformation on ecosystem services and human well-being: Case study in Xi’an metropolitan area. Acta Ecol. Sin. 2019, 39, 2353–2365. [Google Scholar]
- Min, X.; Zihong, Z.; Bingzi, Z.; Bo, W.; Jingjie, L. Simulation of ecological land changes and corresponding ecosystem service values in Rapid Urbanization Area. Soils 2018, 50, 1022–1031. [Google Scholar]
- Zorrilla-Miras, P.; Palomo, I.; Gómez-Baggethun, E.; Martín-López, B.; Lomas, P.L.; Montes, C. Effects of land-use change on wetland ecosystem services: A case study in the Doñana marshes (SW Spain). Landsc. Urban Plan. 2014, 122, 160–174. [Google Scholar] [CrossRef]
- Clerici, N.; Paracchini, M.L.; Maes, J. Land-cover change dynamics and insights into ecosystem services in European stream riparian zones. Ecohydrol. Hydrobiol. 2014, 14, 107–120. [Google Scholar] [CrossRef]
- Yangyang, S.; Xiao, L.U.; Xianjin, H.; Miao, Y.U. Arable Land Use Transitions and Its Response of Ecosystem Services Value Change in Jiangsu Coastal Areas. Arable land use transitions and its response of ecosystem services value change in Jiangsu coastal areas. J. Nat. Resour. 2017, 32, 961–976. [Google Scholar]
- Zhang, Y.; Wu, D. Multi-scale analysis of ecosystem service trade-offs and associated influencing factors in Beijing-Tianjin-Hebei Region. Areal Res. Dev. 2019, 38, 141–147. [Google Scholar]
- Zexiang, S.; Zhifeng, L.; Chunyang, H.E.; Jianguo, W. Multi-scale analysis of ecosystem service trade-offs in urbanizing drylands of China: A case study in the Hohhot-Baotou-Ordos-Yulin region. Acta Ecol. Sin. 2016, 36, 4881–4891. [Google Scholar]
- Scholes, R.J.; Reyers, B.; Biggs, R.; Spierenburg, M.J.; Duriappah, A. Multi-scale and cross-scale assessments of social—Ecological systems and their ecosystem services. Curr. Opin. Environ. Sustain. 2013, 5, 16–25. [Google Scholar] [CrossRef]
- Seppelt, R.; Lautenbach, S.; Volk, M. Identifying trade-offs between ecosystem services, land use, and biodiversity: A plea for combining scenario analysis and optimization on different spatial scales. Curr. Opin. Environ. Sustain. 2013, 5, 458–463. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Müller, F.; Burkhard, B. The indicator side of ecosystem services. Ecosyst. Serv. 2012, 1, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Mandić, A. Structuring challenges of sustainable tourism development in protected natural areas with driving force–pressure–state–impact–response (DPSIR) framework. Environ. Syst. Decis. 2020, 40, 560–576. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W.; Tolessa, T.; Kindu, M. Estimating the impacts of land use/land cover changes on Ecosystem Service Values: The case of the Andassa watershed in the Upper Blue Nile basin of Ethiopia. Ecosyst. Serv. 2018, 31, 219–228. [Google Scholar] [CrossRef]
- Hou, Y.; Zhou, S.; Burkhard, B.; Müller, F. Socioeconomic influences on biodiversity, ecosystem services and human well-being: A quantitative application of the DPSIR model in Jiangsu, China. Sci. Total Environ. 2014, 490, 1012–1028. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Kolosz, B.W.; Athanasiadis, I.N.; Cadisch, G.; Dawson, T.P.; Giupponi, C.; Honzák, M.; Martinez-Lopez, J.; Marvuglia, A.; Mojtahed, V.; Ogutu, K.B.Z.; et al. Conceptual advancement of socio-ecological modelling of ecosystem services for re-evaluating Brownfield land. Ecosyst. Serv. 2018, 33, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Li, S.; Chang, J. Combining ecosystem service relationships and DPSIR framework to manage multiple ecosystem services. Environ. Monit. Assess. 2015, 187, 117. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, J.; Loaiciga, H.; Guo, H.; Hong, S. A DPSIR model for ecological security assessment through indicator screening: A case study at Dianchi Lake in China. PLoS ONE 2015, 10, e0131732. [Google Scholar]
- Xie, H.; Zhang, Y.; Zeng, X.; He, Y. Sustainable land use and management research: A scientometric review. Landsc. Ecol. 2020, 35, 2381–2411. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; Han, H. Future impacts of land use change on ecosystem services under different scenarios in the ecological conservation area, Beijing, China. Forests 2020, 11, 584. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
No. | Research Questions | Purpose | Answer |
---|---|---|---|
1 | What is the contemporary status of the field? | Analyzing publishing trends, key authors, top institutions, top journals, and subject areas. | Section 3.1 |
2 | What is the evolution route of research in this field? | Analyzing the characteristics of keywords in each time period. | Section 3.2 |
3 | What is the research framework in this field? | Identifying the key components and the relationship between them. | Section 3.3 and Section 4.1 |
4 | What are the potential research opportunities? | Analyzing the current problems, and provide reference for follow-up research. | Section 4.2 |
Criteria | Details |
---|---|
TS | ‘Land use change’ and ‘Ecosystem services’ |
Languages | ‘All language’ |
Document types | ‘All document types’ |
Period | 2005–2020 |
Database | ‘Web of Science Core CollectionTM’ |
No. | Author | Records | TLCS | TGCS | Institution |
---|---|---|---|---|---|
1 | Peter H. Verburg | 30 | 129 | 1602 | Vrije Universiteit Amsterdam |
2 | Brett A.Bryan | 20 | 153 | 706 | Deakin University |
3 | Stephen Polasky | 17 | 273 | 1591 | University of Minnesota |
4 | Sandra Lavorel | 15 | 213 | 3598 | Université Grenoble Alpes |
5 | Catharina J.E. Schulp | 13 | 66 | 459 | Vrije Universiteit Amsterdam |
6 | Ulrike Tappeiner | 13 | 69 | 439 | University of Innsbruck, |
7 | Lang Zhang | 13 | 10 | 238 | Shanghai Academy of Landscape Architecture Science and Planning |
8 | Bojie Fu | 12 | 102 | 430 | Beijing Normal University |
9 | Feng Li | 12 | 105 | 393 | Chinese Academy of Sciences |
10 | Yuanxin Liu | 12 | 42 | 277 | Capital Normal University |
11 | Tobias Kuemmerle | 11 | 56 | 719 | Humboldt University |
12 | Wei Song | 11 | 66 | 302 | Chinese Academy of Sciences |
13 | Jeffery D. Connor | 10 | 77 | 261 | University of South Australia |
14 | Adrienne Grêt-Regamey | 10 | 22 | 421 | ETH Zurich |
15 | Felix Kienast | 10 | 47 | 476 | Swiss Federal Institute for Forest, Snow and Landscape Research |
16 | Jing Li | 10 | 36 | 177 | Chongqing Geomatics Center |
17 | Yue Liu | 10 | 54 | 198 | Guizhou Institute of Technology |
18 | Erik Nelson | 10 | 247 | 1136 | Stanford University |
19 | Tobias Plieninger | 10 | 34 | 932 | University of Copenhagen |
20 | Erich Tasser | 10 | 59 | 377 | EURAC Research |
No. | Institution | Records | TLCS | TGCS | Country |
---|---|---|---|---|---|
1 | Chinese Academy of Sciences | 178 | 500 | 2771 | China |
2 | University of Chinese Academy of Sciences | 73 | 102 | 596 | China |
3 | Beijing Normal University | 56 | 215 | 1309 | China |
4 | Vrije Univ Amsterdam | 44 | 247 | 3094 | Netherlands |
5 | University of Wisconsin | 36 | 214 | 2057 | United States |
6 | Stanford University | 35 | 199 | 1946 | United States |
7 | Humboldt State University | 34 | 104 | 1890 | United States |
8 | University of Minnesota | 34 | 344 | 2776 | United States |
9 | Wageningen University | 33 | 288 | 5295 | Netherlands |
10 | US Geological Survey | 28 | 64 | 903 | United States |
No. | Journal | Records | TLCS | TGCS | A_TLCS | A_TGCS |
---|---|---|---|---|---|---|
1 | Sustainability | 86 | 3 | 345 | 0.03 | 4.01 |
2 | Land Use Policy | 79 | 197 | 2251 | 2.49 | 28.49 |
3 | Science of The Total Environment | 79 | 203 | 1511 | 2.57 | 19.13 |
4 | Ecological Indicators | 72 | 242 | 1612 | 3.36 | 22.39 |
5 | Ecosystem Services | 58 | 186 | 1094 | 3.21 | 18.86 |
6 | Plos One | 37 | 0 | 669 | 0 | 18.08 |
7 | Landscape Ecology | 35 | 131 | 874 | 3.74 | 24.97 |
8 | Agriculture Ecosystems & Environment | 33 | 259 | 1421 | 7.85 | 43.06 |
9 | Regional Environmental Change | 31 | 64 | 529 | 2.06 | 17.06 |
10 | Journal of Environmental Management | 30 | 63 | 671 | 2.10 | 22.37 |
No. | Publication | PageRank | TLCS | TGCS | Journal |
---|---|---|---|---|---|
1 | [78] | 0.013822 | 20 | 73 | Ecosystem Services |
2 | [73] | 0.007735 | 0 | 1532 | Ecological Complexity |
3 | [79] | 0.007697 | 90 | 404 | Agriculture, Ecosystems & Environment |
4 | [76] | 0.006945 | 7 | 20 | Ecological Economics |
5 | [80] | 0.006163 | 81 | 999 | Science |
6 | [81] | 0.005856 | 10 | 38 | Ecosystem Services |
7 | [82] | 0.005853 | 0 | 9 | Sustainability |
8 | [77] | 0.005559 | 21 | 65 | Science of the Total Environment |
9 | [83] | 0.005503 | 70 | 879 | Philosophical Transactions of the Royal Society B: Biological Sciences |
10 | [84] | 0.005112 | 0 | 28 | Ecosystem Services |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Xiao, P. A Bibliometric Analysis on the Effects of Land Use Change on Ecosystem Services: Current Status, Progress, and Future Directions. Sustainability 2022, 14, 3079. https://doi.org/10.3390/su14053079
Xu J, Xiao P. A Bibliometric Analysis on the Effects of Land Use Change on Ecosystem Services: Current Status, Progress, and Future Directions. Sustainability. 2022; 14(5):3079. https://doi.org/10.3390/su14053079
Chicago/Turabian StyleXu, Jie, and Pengnan Xiao. 2022. "A Bibliometric Analysis on the Effects of Land Use Change on Ecosystem Services: Current Status, Progress, and Future Directions" Sustainability 14, no. 5: 3079. https://doi.org/10.3390/su14053079
APA StyleXu, J., & Xiao, P. (2022). A Bibliometric Analysis on the Effects of Land Use Change on Ecosystem Services: Current Status, Progress, and Future Directions. Sustainability, 14(5), 3079. https://doi.org/10.3390/su14053079