Developing a Deep Neural Network for Driver Fatigue Detection Using EEG Signals Based on Compressed Sensing
Abstract
:1. Introduction
- a.
- It provides a new and fully automated method for selecting and extracting discriminative features from the EEG signal to identify two stages of driver fatigue, with a high performance based on DNNs, with a proposed deep architecture, that does not require prior knowledge of, or expertise on, each case/subject;
- b.
- For the first time, the paper presents the application of CS theory in combination with DL to reduce EEG signal samples without the loss of essential signal information, related to automatic driver-fatigue detection, for use in real-time systems;
- c.
- The article illustrates the use of a minimum number of EEG signal channels to detect driver fatigue automatically, with the precondition of high classification accuracy and low detection errors;
- d.
- The selection of the parameters of the proposed method, and the effect of the key parameters on the deep network architecture, were thoroughly investigated in order to automatically detect driver fatigue. Furthermore, comparisons with traditional methods show the superiority of our proposed method. Because of the use of CS in the proposed algorithm, this method is suitable for extensive data processing and real-time processing, and it also provides a new idea for smart driver-fatigue detection;
- e.
- In this study, the environmental noise while driving was considered for the first time among the previous research related to driver-fatigue detection. The results show that the proposed network is robust to noise up to 1 dB.
2. Background
2.1. Compressed Sensing Theory
2.2. Deep Convolutional Neural Networks
2.3. Long Short-Term Memory (LSTM)
3. Proposed Method
3.1. Acquisition of EEG Signals
3.2. Preprocessing
3.3. Signal Compression Based on CS Theory
3.4. The Proposed Deep Neural Network Architecture
3.5. Training and Evaluation
4. Results and Discussion
4.1. Simulation Results
4.2. Comparison with the State-of-the-Art Methods
- The statistical population considered in this study is limited and should be expanded;
- Wet electrodes were used to record the signal, which can be problematic in real-world scenarios, so the performance of dry electrodes must also be evaluated;
- In this study, the scenarios considered for signal recording were only related to passive fatigue, whereas, in real scenarios, fatigue due to stress and active fatigue must also be examined.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Global Status Report on Road Safety; World Health Organization: Geneva, Switzerland, 2015; Volume 3, pp. 154–196. [Google Scholar]
- Rau, P.S. Drowsy driver detection and warning system for commercial vehicle drivers: Field operational test design, data analyses, and progress. In Proceedings of the 19th International Conference on Enhanced Safety of Vehicles, Citeseer, Washington, DC, USA, 6–9 June 2005; pp. 6–9. [Google Scholar]
- Rogado, E.; Garcia, J.L.; Barea, R.; Bergasa, L.M.; López, E. Driver fatigue detection system. In Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics, IEEE, Bangkok, Thailand, 22–25 February 2009; pp. 1105–1110. [Google Scholar]
- Sahayadhas, A.; Sundaraj, K.; Murugappan, M. Detecting driver drowsiness based on sensors: A review. Sensors 2012, 12, 16937–16953. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.R. Developing a System for High-Resolution Detection of Driver Drowsiness Using Physiological Signals. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2018. [Google Scholar]
- Niculescu, A.I.; Lim, M.Q.; Wibowo, S.A.; Yeo, K.H.; Lim, B.P.; Popow, M.; Chia, D.; Banchs, R.E. Designing ida-an intelligent driver assistant for smart city parking in Singapore. In Proceedings of the IFIP Conference on Human-Computer Interaction, Bamberg, Germany, 14–18 September 2015; pp. 510–513. [Google Scholar]
- Song, X.; Yoon, S.-C.; Rex, E.; Nieves, J.; Moretz, C. Driver drowsiness detection using single-channel dry EEG. In Proceedings of the 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), IEEE, Philadelphia, PA, USA, 2 December 2017; pp. 1–3. [Google Scholar]
- Eichelberger, A.H.; McCartt, A.T. Volvo drivers’ experiences with advanced crash avoidance and related technologies. Traffic Inj. Prev. 2014, 15, 187–195. [Google Scholar] [CrossRef]
- Sommer, D.; Golz, M. Evaluation of PERCLOS based current fatigue monitoring technologies. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, IEEE, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 4456–4459. [Google Scholar]
- Simons, R.; Martens, M.; Ramaekers, J.; Krul, A.; Klöpping-Ketelaars, I.; Skopp, G. Effects of dexamphetamine with and without alcohol on simulated driving. Psychopharmacology 2012, 222, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Das, D.; Zhou, S.; Lee, J.D. Differentiating alcohol-induced driving behavior using steering wheel signals. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1355–1368. [Google Scholar] [CrossRef]
- Mets, M.A.; Kuipers, E.; de Senerpont Domis, L.M.; Leenders, M.; Olivier, B.; Verster, J.C. Effects of alcohol on highway driving in the STISIM driving simulator. Hum. Psychopharmacol. Clin. Exp. 2011, 26, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Bhagat, M.; Routray, A. EEG signal analysis for the assessment and quantification of driver’s fatigue. Transp. Res. Part F Traffic Psychol. Behav. 2010, 13, 297–306. [Google Scholar] [CrossRef]
- Correa, A.G.; Orosco, L.; Laciar, E. Automatic detection of drowsiness in EEG records based on multimodal analysis. Med. Eng. Phys. 2014, 36, 244–249. [Google Scholar] [CrossRef]
- Xiong, Y.; Gao, J.; Yang, Y.; Yu, X.; Huang, W. Classifying driving fatigue based on combined entropy measure using EEG signals. Int. J. Control Autom. 2016, 9, 329–338. [Google Scholar] [CrossRef]
- Chai, R.; Naik, G.R.; Nguyen, T.N.; Ling, S.H.; Tran, Y.; Craig, A.; Nguyen, H.T. Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-based system. IEEE J. Biomed. Health Inform. 2016, 21, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, H.; Fu, R. Automated detection of driver fatigue based on entropy and complexity measures. IEEE Trans. Intell. Transp. Syst. 2013, 15, 168–177. [Google Scholar] [CrossRef]
- Yin, J.; Hu, J.; Mu, Z. Developing and evaluating a mobile driver fatigue detection network based on electroencephalograph signals. Healthc. Technol. Lett. 2017, 4, 34–38. [Google Scholar] [CrossRef]
- Ko, L.-W.; Lai, W.-K.; Liang, W.-G.; Chuang, C.-H.; Lu, S.-W.; Lu, Y.-C.; Hsiung, T.-Y.; Wu, H.-H.; Lin, C.-T. Single channel wireless EEG device for real-time fatigue level detection. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), IEEE, Killarney, Ireland, 12–17 July 2015; pp. 1–5. [Google Scholar]
- Wang, Y.; Liu, X.; Zhang, Y.; Zhu, Z.; Liu, D.; Sun, J. Driving fatigue detection based on EEG signal. In Proceedings of the 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), IEEE, Qinhuangdao, China, 18–20 September 2015; pp. 715–718. [Google Scholar]
- Zhendong, M.; Jinghai, Y. Mobile Healthcare System for Driver Based on Drowsy Detection Using EEG Signal Analysis. Metall. Min. Ind. 2015, 7, 266–273. [Google Scholar]
- Nugraha, B.T.; Sarno, R.; Asfani, D.A.; Igasaki, T.; Munawar, M.N. Classification of Driver Fatigue State Based on Eeg Using Emotiv Epoc+. J. Theor. Appl. Inf. Technol. 2016, 86, 347–359. [Google Scholar]
- Hu, J. Automated detection of driver fatigue based on AdaBoost classifier with EEG signals. Front. Comput. Neurosci. 2017, 11, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, J.; Wang, P.; Hu, J. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system. PLoS ONE 2017, 12, e0188756. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.; Gao, Z.-K.; Yang, Y.-X.; Dang, W.-D.; Grebogi, C. Multiplex limited penetrable horizontal visibility graph from EEG signals for driver fatigue detection. Int. J. Neural Syst. 2019, 29, 1850057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, H.; Qiu, T.; Liu, C.; Huang, P. Research on fatigue driving detection using forehead EEG based on adaptive multi-scale entropy. Biomed. Signal Processing Control 2019, 51, 50–58. [Google Scholar] [CrossRef]
- Gao, Z.-K.; Li, Y.-L.; Yang, Y.-X.; Ma, C. A recurrence network-based convolutional neural network for fatigue driving detection from EEG. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 113126. [Google Scholar] [CrossRef]
- Karuppusamy, N.S.; Kang, B.-Y. Multimodal System to Detect Driver Fatigue Using EEG, Gyroscope, and Image Processing. IEEE Access 2020, 8, 129645–129667. [Google Scholar] [CrossRef]
- Jiao, Y.; Deng, Y.; Luo, Y.; Lu, B.-L. Driver sleepiness detection from EEG and EOG signals using GAN and LSTM networks. Neurocomputing 2020, 408, 100–111. [Google Scholar] [CrossRef]
- Liu, Y.; Lan, Z.; Cui, J.; Sourina, O.; Müller-Wittig, W. Inter-subject transfer learning for EEG-based mental fatigue recognition. Adv. Eng. Inform. 2020, 46, 101157. [Google Scholar] [CrossRef]
- Lustig, M.; Donoho, D.L.; Santos, J.M.; Pauly, J.M. Compressed sensing MRI. IEEE Signal Process. Mag. 2008, 25, 72–82. [Google Scholar] [CrossRef]
- Bi, D.; Xie, Y.; Ma, L.; Li, X.; Yang, X.; Zheng, Y.R. Multifrequency compressed sensing for 2-D near-field synthetic aperture radar image reconstruction. IEEE Trans. Instrum. Meas. 2017, 66, 777–791. [Google Scholar] [CrossRef]
- Herrmann, F.J.; Hennenfent, G. Non-parametric seismic data recovery with curvelet frames. Geophys. J. Int. 2008, 173, 233–248. [Google Scholar] [CrossRef] [Green Version]
- Tran, M.-Q.; Liu, M.-K.; Tran, Q.-V. Milling chatter detection using scalogram and deep convolutional neural network. Int. J. Adv. Manuf. Technol. 2020, 107, 1505–1516. [Google Scholar] [CrossRef]
- Tran, M.-Q.; Elsisi, M.; Liu, M.-K. Effective feature selection with fuzzy entropy and similarity classifier for chatter vibration diagnosis. Measurement 2021, 184, 109962. [Google Scholar] [CrossRef]
- Liu, M.-K.; Tran, M.-Q.; Weng, P.-Y. Fusion of vibration and current signatures for the fault diagnosis of induction machines. Shock. Vib. 2019, 2019, 7176482. [Google Scholar] [CrossRef]
- Mahmoud, K.; Lehtonen, M.; Darwish, M.M. Deep Learning-Based Industry 4.0 and Internet of Things towards Effective Energy Management for Smart Buildings. Sensors 2021, 21, 1038. [Google Scholar]
- Elsisi, M.; Tran, M.Q. Development of an IoT Architecture Based on a Deep Neural Network against Cyber Attacks for Automated Guided Vehicles. Sensors 2021, 21, 8467. [Google Scholar] [CrossRef]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Sheykhivand, S.; Rezaii, T.Y.; Mousavi, Z.; Delpak, A.; Farzamnia, A. Automatic identification of epileptic seizures from EEG signals using sparse representation-based classification. IEEE Access 2020, 8, 138834–138845. [Google Scholar] [CrossRef]
- Pati, Y.C.; Rezaiifar, R.; Krishnaprasad, P.S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers, IEEE, Pacific Grove, CA, USA, 1–3 November 1993; pp. 40–44. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Choe, J.; Shim, H. Attention-based dropout layer for weakly supervised object localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2219–2228. [Google Scholar]
- Sheykhivand, S.; Rezaii, T.Y.; Farzamnia, A.; Vazifehkhahi, M. Sleep stage scoring of single-channel EEG signal based on RUSBoost classifier. In Proceedings of the 2018 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), IEEE, Kota Kinabalu, Malaysia, 8 November 2018; pp. 1–6. [Google Scholar]
- Jang, E.; Gu, S.; Poole, B. Categorical reparameterization with gumbel-softmax. arXiv 2016, arXiv:1611.01144. [Google Scholar]
- Mousavi, Z.; Rezaii, T.Y.; Sheykhivand, S.; Farzamnia, A.; Razavi, S. Deep convolutional neural network for classification of sleep stages from single-channel EEG signals. J. Neurosci. Methods 2019, 324, 108312. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, M.; Yousefi Rezaii, T.; Sheykhivand, S. Recognition of Emotions Provoked by Auditory Stimuli using EEG Signal Based on Sparse Representation-Based Classification. Tabriz J. Electr. Eng. 2019, 49, 331–341. [Google Scholar]
- Sheykhivand, S.; Mousavi, Z.; Mojtahedi, S.; Rezaii, T.Y.; Farzamnia, A.; Meshgini, S.; Saad, I. Developing an efficient deep neural network for automatic detection of COVID-19 using chest X-ray images. Alex. Eng. J. 2021, 60, 2885–2903. [Google Scholar] [CrossRef]
- Sheykhivand, S.; Meshgini, S.; Mousavi, Z. Automatic Detection of Various Epileptic Seizures from EEG Signal Using Deep Learning Networks. Comput. Intell. Electr. Eng. 2020, 11, 1–12. [Google Scholar]
- Graves, A. Generating sequences with recurrent neural networks. arXiv 2013, arXiv:1308.0850. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Sheykhivand, S.; Mousavi, Z.; Rezaii, T.Y.; Farzamnia, A. Recognizing emotions evoked by music using CNN-LSTM networks on EEG signals. IEEE Access 2020, 8, 139332–139345. [Google Scholar] [CrossRef]
- Smets, E.; Garssen, B.; Bonke, B.D.; De Haes, J. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J. Psychosom. Res. 1995, 39, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C. The Chalder fatigue scale (CFQ 11). Occup. Med. 2015, 65, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.-L.; Pan, J.; Hathaway, R.; Barkey, M. Fatigue Testing and Analysis: Theory and Practice; Butterworth-Heinemann: Oxford, UK, 2005; Volume 13. [Google Scholar]
- Selesnick, I.W.; Burrus, C.S. Generalized digital Butterworth filter design. IEEE Trans. Signal Process. 1998, 46, 1688–1694. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Liu, Y.; Chen, K.; Wang, L.; Li, Z.; Ai, Q.; Ma, L. Research on Channel Selection and Multi-Feature Fusion of EEG Signals for Mental Fatigue Detection. Entropy 2021, 23, 457. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Bazregarzadeh, H.; Kazemi, K. Automated detection of driver fatigue from electroencephalography through wavelet-based connectivity. Biocybern. Biomed. Eng. 2021, 41, 316–332. [Google Scholar] [CrossRef]
- Pinkus, A. Approximation theory of the MLP model in neural networks. Acta Numer. 1999, 8, 143–195. [Google Scholar] [CrossRef]
- Salakhutdinov, R.; Hinton, G. Deep boltzmann machines. In Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, Clearwater Beach, FA, USA, 16–18 April 2009; pp. 448–455. [Google Scholar]
- Schuldt, C.; Laptev, I.; Caputo, B. Recognizing human actions: A local SVM approach. In Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, IEEE, Cambridge, UK, 26 August 2004; pp. 32–36. [Google Scholar]
- Rosafalco, L.; Manzoni, A.; Mariani, S.; Corigliano, A. Fully convolutional networks for structural health monitoring through multivariate time series classification. Adv. Modeling Simul. Eng. Sci. 2020, 7, 38. [Google Scholar] [CrossRef]
L | Layer Type | Activation Function | Output Shape | Size of Kernel and Pooling | Strides | Number of Filters | Padding | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CR = 0 | CR = 40 | CR = 50 | CR = 60 | CR = 70 | CR = 80 | CR = 90 | |||||||
1 | Convolution1-D | Leaky ReLU | (None, 250, 16) | 128 × 1 | 20 × 1 | 12 × 1 | 10 × 1 | 8 × 1 | 6 × 1 | 4 × 1 | 2 × 1 | 16 | yes |
2 | Max-Pooling1-D | (None, 125, 16) | 2 × 1 | 2 × 1 | no | ||||||||
3 | Convolution1-D | Leaky ReLU | (None, 125, 32) | 3 × 1 | 1 × 1 | 32 | yes | ||||||
4 | Max-Pooling1-D | (None, 62, 32) | 2 × 1 | 2 × 1 | no | ||||||||
5 | Convolution1-D | Leaky ReLU | (None, 62, 64) | 3 × 1 | 1 × 1 | 64 | yes | ||||||
6 | Max-Pooling1-D | (None, 31, 64) | 2 × 1 | 2 × 1 | no | ||||||||
7 | Convolution1-D | Leaky ReLU | (None, 31, 64) | 3 × 1 | 1 × 1 | 64 | yes | ||||||
8 | Max-Pooling1-D | (None, 15 64) | 2 × 1 | 2 × 1 | no | ||||||||
9 | Convolution1-D | Leaky ReLU | (None, 15, 64) | 3 × 1 | 1 × 1 | 64 | yes | ||||||
10 | Max-Pooling1-D | (None, 7, 64) | 2 × 1 | 2 × 1 | no | ||||||||
11 | Convolution1-D | Leaky ReLU | (None, 7, 64) | 3 × 1 | 1 × 1 | 64 | yes | ||||||
12 | Max-Pooling1-D | - | (None, 3, 64) | 2 × 1 | 2 × 1 | no | |||||||
13 | Convolution1-D | Leaky ReLU | (None, 3, 64) | 3 × 1 | 1 × 1 | 64 | yes | ||||||
14 | Max-Pooling1-D | (None, 1, 64) | 2 × 1 | 2 × 1 | no | ||||||||
15 | LSTM | Leaky ReLU | (None, 50) | ||||||||||
16 | LSTM | Leaky ReLU | (None, 30) | ||||||||||
17 | LSTM | Leaky ReLU | (None, 2) | ||||||||||
18 | Softmax | (None, 2) |
Parameters | Search Space | Optimal Value |
---|---|---|
Optimizer | RMSProp, Adam, Sgd, Adamax, Adadelta | RMSProp, |
Cost function | MSE, Cross-Entropy | Cross-Entropy |
Number of convolution layers | 3, 5, 7, 9, 11 | 7 |
Number of LSTM layers | 2, 3, 5 | 3 |
Number of filters in the first convolution layer | 16, 32, 64, 128 | 16 |
Number of filters in the second convolution layer | 16, 32, 64, 128 | 32 |
Number of filters in other convolution layers | 16, 32, 64, 128 | 64 |
Number of neurons in the first LSTM layer | 30, 50, 70 | 50 |
Number of neurons in the second LSTM layer | 30, 50, 70 | 30 |
Size of filter in the first convolution layer | 3, 16, 32, 64, 128 | 128 |
Size of filter in other convolution layers | 3, 16, 32, 64, 128 | 3 |
Dropout rate before the first convolution layer | 0, 0.2, 0.3, 0.4, 0.5 | 0.2 |
Dropout rate after the first convolution layer | 0, 0.2, 0.3, 0.4, 0.5 | 0.3 |
Dropout rate after the LSTM layers | 0, 0.2, 0.3, 0.4, 0.5 | 0.2 |
Batch size | 4, 8, 10, 16, 32, 64 | 10 |
Learning rate | 0.01, 0.001, 0.0001 | 0.0001 |
Region | A (%) | B (%) | C (%) | D (%) | E (%) | F (%) |
---|---|---|---|---|---|---|
ACC for NC | 98.7 | 96 | 98.2 | 97.6 | 99.1 | 93.5 |
ACC for CR = 40 | 96.3 | 95.15 | 95.9 | 94.9 | 95 | 91.3 |
ACC for CR = 50 | 96.1 | 95 | 95.7 | 94.6 | 94.8 | 89.9 |
ACC for CR = 60 | 95.5 | 94.09 | 94.8 | 94.1 | 94.6 | 89.2 |
ACC for CR = 70 | 94.8 | 93.94 | 94.2 | 93.8 | 94.4 | 88.8 |
ACC for CR = 80 | 94.1 | 93.48 | 93.6 | 93.1 | 94.4 | 88.6 |
ACC for CR = 90 | 93.7 | 92.72 | 91.1 | 91.8 | 92 | 86.1 |
Methods | Feature Learning from Raw Data (%) | Manual Features (%) |
---|---|---|
DCLSTM | 98 | 80 |
DCLSTM with CS | 95 | 76 |
FCNN | 88 | 80 |
DBM | 85 | 77 |
SVM | 72 | 78 |
MLP | 70 | 79 |
Research | Feature Method | Highest Accuracy (%) |
---|---|---|
Corea et al. [14] | Multimodal Analysis | 83 |
Xiong et al. [15] | AE and SE | 90 |
Chai et al. [16] | Entropy Rate Bound Minimization Analysis | 88.2 |
Zhang et al. [17] | Entropy and Complexity Measure | 96.5 |
Yin et al. [18] | FE | 95 |
Ko et al. [19] | FFT | 90 |
Wang et al. [20] | PSD | 83 |
Mu et al. [21] | EEG Frequency Ratio | 85 |
Nugraha et al. [22] | Emotive | 96 |
Karuppusamy et al. [28] | DNN | 73 |
Liu et al. [30] | Deep Transfer Learning | 93 |
Hu et al. [23] | Multiple Entropy | 97.5 |
Min et al. [24] | Multiple Entropy | 98.3 |
Cai et al. [25] | Horizontal Visibility Graph | 98 |
Luo et al. [26] | Adaptive Scaling Factor and Multiple Entropy | 95 |
Jiao et al. [29] | CWT-GAN-LSTM | 98 |
Gao et al. [27] | CNN | 95 |
P-M (DCLSTM) | DCLSTM | 99.23 |
P-M (DCLSTM with CS) | DCLSTM-CS | 96.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheykhivand, S.; Rezaii, T.Y.; Meshgini, S.; Makoui, S.; Farzamnia, A. Developing a Deep Neural Network for Driver Fatigue Detection Using EEG Signals Based on Compressed Sensing. Sustainability 2022, 14, 2941. https://doi.org/10.3390/su14052941
Sheykhivand S, Rezaii TY, Meshgini S, Makoui S, Farzamnia A. Developing a Deep Neural Network for Driver Fatigue Detection Using EEG Signals Based on Compressed Sensing. Sustainability. 2022; 14(5):2941. https://doi.org/10.3390/su14052941
Chicago/Turabian StyleSheykhivand, Sobhan, Tohid Yousefi Rezaii, Saeed Meshgini, Somaye Makoui, and Ali Farzamnia. 2022. "Developing a Deep Neural Network for Driver Fatigue Detection Using EEG Signals Based on Compressed Sensing" Sustainability 14, no. 5: 2941. https://doi.org/10.3390/su14052941
APA StyleSheykhivand, S., Rezaii, T. Y., Meshgini, S., Makoui, S., & Farzamnia, A. (2022). Developing a Deep Neural Network for Driver Fatigue Detection Using EEG Signals Based on Compressed Sensing. Sustainability, 14(5), 2941. https://doi.org/10.3390/su14052941