Evaluation of Resilience in Historic Urban Areas by Combining Multi-Criteria Decision-Making System and GIS, with Sustainability and Regeneration Approach: The Case Study of Tehran (IRAN)
Abstract
:1. Introduction
2. The Study Area
3. Methodology
3.1. Criteria Set
3.2. Delphi Technique
3.3. Analytic Hierarchy Process (AHP)
3.4. Data Map
3.5. Resilience Map and Ranking of Neighborhoods and for Regeneration
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leichenko, R. Climate change and urban resilience. Curr. Opin. Environ. Sustain. 2011, 3, 164–168. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Leitner, H.; Sheppard, E.; Webber, S.; Colven, E. Globalizing urban resilience. Urban Geogr. 2018, 39, 1276–1284. [Google Scholar] [CrossRef]
- Glaeser, E.L. Urban resilience. Urban Stud. 2022, 59, 3–35. [Google Scholar] [CrossRef]
- Sharifi, A.; Yamagata, Y. Resilient urban planning: Major principles and criteria. Energy Procedia 2014, 61, 1491–1495. [Google Scholar] [CrossRef] [Green Version]
- Lopez, L.J.R.; Castro, A.I.G. Sustainability and resilience in smart city planning: A Review. Sustainability 2021, 13, 181. [Google Scholar] [CrossRef]
- Feliciotti, A.; Romice, O.; Porta, S. Urban regeneration, masterplans, and resilience: The case of Gorbals, Glasgow. Urban Morphol. 2017, 21, 61–79. [Google Scholar]
- Garcia-Dia, M.J.; DiNapoli, J.M.; Garcia-Ona, L.; Jakubowski, R.; O’Flaherty, D. Concept analysis: Resilience. Arch. Psychiatr. Nurs. 2013, 27, 264–270. [Google Scholar] [CrossRef]
- Merriam-Webster Dictionary. Available online: https://www.merriam-webster.com/dictionary/resilience#:~:text=1%20%3A%20the%20ability%20to%20become,%2C%20pressed%2C%20bent%2C%20etc (accessed on 7 January 2022).
- Sennett, R.A. Building and Dwelling: Ethics for the City; Farrar, Straus and Giroux: New York, NY, USA, 2018. [Google Scholar]
- Abastante, F.; Lami, I.M.; La Riccia, L.; Gaballo, M. Supporting Resilient Urban Planning through Walkability Assessment. Sustainability 2020, 12, 8131. [Google Scholar] [CrossRef]
- Manyena, S.B. The concept of resilience revisited. Disasters 2006, 30, 433–450. [Google Scholar] [CrossRef]
- McPhearson, T.; Andersson, E.; Elmqvist, T.; Frantzeskaki, N. Resilience of and through urban ecosystem services. Ecosyst. Serv. 2015, 12, 152–156. [Google Scholar] [CrossRef]
- Mehmood, A. Of resilient places: Planning for urban resilience. Eur. Plan. Stud. 2016, 24, 407–419. [Google Scholar] [CrossRef] [Green Version]
- Spaans, M.; Waterhout, B. Building up resilience in cities worldwide–Rotterdam as participant in the 100 Resilient Cities Programme. Cities 2017, 61, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Kammouh, O.; Noori, A.Z.; Taurino, V.; Mahin, S.A.; Cimellaro, G.P. Deterministic and Fuzzy-Based Methods to Evaluate Community Resilience Based on The Peoples Framework. Earthq. Eng. Eng. Vib. 2018, 17, 261–275. [Google Scholar] [CrossRef]
- Knaapen, A.M.; Seiler, F.; Schilderman, P.A.; Nehls, P.; Bruch, J.; Schins, R.P.; Borm, P.J. Neutrophils cause oxidative DNA damage in alveolar epithelial cells. Free. Radic. Biol. Med. 1999, 27, 234–240. [Google Scholar] [CrossRef]
- Dimelli, D. Planning resilient cities: The case of Chania. UPLanD-J. Urban Plan. Landsc. Environ. Des. 2020, 5, 65–76. [Google Scholar]
- Walker, B.; Gunderson, L.; Kinzig, A.; Folke, C.; Carpenter, S.; Schultz, L. A handful of heuristics and some propositions for understanding resilience in social-ecological systems. Ecol. Soc. 2006, 11, 13. [Google Scholar] [CrossRef]
- Roberts, P.; Sykes, H. (Eds) Urban Regeneration: A Handbook; Sage: New York, NY, USA, 1999. [Google Scholar]
- Korkmaz, C.; Balaban, O. Sustainability of urban regeneration in Turkey: Assessing the performance of the North Ankara Urban Regeneration Project. Habitat Int. 2020, 95, 102081. [Google Scholar] [CrossRef]
- Barnett, J. The Elusive City: Five Centuries of Design, Ambition and Miscalculation; HarperCollins Publishers: New York, NY, USA, 1986. [Google Scholar]
- Li, X.; Hui, E.C.; Chen, T.; Lang, W.; Guo, Y. From Habitat III to the new urbanization agenda in China: Seeing through the practices of the “three old renewals” in Guangzhou. Land Use Policy 2019, 81, 513–522. [Google Scholar] [CrossRef]
- Li, X.; Zhang, F.; Hui, E.C.M.; Lang, W. Collaborative workshop and community participation: A new approach to urban regeneration in China. Cities 2020, 102, 102743. [Google Scholar] [CrossRef]
- Izadi, M.S.; Moshaver, M.K.; Sajjadzadeh, H.; Tavassoli, M. Locating urban catalyst projects in inefficient urban textures with the regeneration approach: A case study on Tehran. J. Hist. Cult. Art Res. 2018, 7, 136–151. [Google Scholar] [CrossRef]
- Bailey, N. The role, organisation and contribution of community enterprise to urban regeneration policy in the UK. Prog. Plan. 2012, 77, 1–35. [Google Scholar] [CrossRef]
- Ujang, N.; Zakariya, K. The notion of place, place meaning and identity in urban regeneration. Procedia-Soc. Behav. Sci. 2015, 170, 709–717. [Google Scholar] [CrossRef] [Green Version]
- Sarvar, H. Identification worn-out urban textures based on the physical parameters Case Study: Region One Tabriz city. Sustain. City 2019, 2, 1–14. [Google Scholar]
- Najd, M.D.; Ismail, N.A.; Maulan, S.; Yunos, M.Y.M.; Niya, M.D. Visual preference dimensions of historic urban areas: The determinants for urban heritage conservation. Habitat Int. 2015, 49, 115–125. [Google Scholar] [CrossRef]
- Ortega, A.E. Multiscale Information Management for Historic Districts’ Energy Retrofitting: A Framework, a Methodology, a Model. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2015. [Google Scholar]
- Egusquiza, A.; Ginestet, S.; Espada, J.C.; Flores-Abascal, I.; Garcia-Gafaro, C.; Giraldo-Soto, C.; Escadeillas, G. Co-creation of local eco-rehabilitation strategies for energy improvement of historic urban areas. Renew. Sustain. Energy Rev. 2021, 135, 110332. [Google Scholar] [CrossRef]
- Sekkat, K. Urban concentration and poverty in developing countries. Growth Change 2017, 48, 435–458. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, K.; Hamzenejad, M.; Meshkini, A. The spatial analysis of the livability of 22 districts of Tehran Metropolis using multi-criteria decision-making approaches. Sustain. Cities Soc. 2018, 38, 382–404. [Google Scholar] [CrossRef]
- Ghasemi, K.; Hamzenejad, M.; Meshkini, A. An analysis of the spatial distribution pattern of social-cultural services and their equitable physical organization using the TOPSIS technique: The case-study of Tehran, Iran. Sustain. Cities Soc. 2019, 51, 101708. [Google Scholar] [CrossRef]
- Rahnama, M.R.; Naderi, R.A.; Zafaranlo, A. Organizing the old urban texture by SWOT method (The case study: Naderi Hill in Shirvan). Indian J. Fundam. Appl. Life Sci. 2014, 4, 466–479. [Google Scholar]
- Amini, M.; Saremi, H.; Ghalibaf, M. The role of urban governance in the urban worn texture regeneration process, case study: District 12 of Tehran. Geogr. Res. Q. J. 2018, 33, 202–217. [Google Scholar] [CrossRef] [Green Version]
- Sarvari, H.; Mehrabi, A.; Chan, D.W.; Cristofaro, M. Evaluating urban housing development patterns in developing countries: Case study of Worn-out Urban Fabrics in Iran. Sustain. Cities Soc. 2021, 70, 102941. [Google Scholar] [CrossRef]
- Alipour-Nakhi, A.; Ahmari, N.; Rezaei, S. Renovation and rehabilitation strategies for worn-out texture of Ab-Anbar-no District in Sari using SWOT technique. Open J. Geol. 2016, 6, 270. [Google Scholar] [CrossRef] [Green Version]
- Granda, S.; Ferreira, T.M. Assessing vulnerability and fire risk in old urban areas: Application to the historical centre of Guimaraes. Fire Technol. 2019, 55, 105–127. [Google Scholar] [CrossRef]
- Nikookar, M.; Ahmadi, N. Analysis of the performance characteristics of Borujerd worn-out textures using SWOT. Cumhur. Üniversitesi Edeb. Fakültesi Bilimleri Derg. 2015, 36, 4035–4048. [Google Scholar]
- Samiei, A.; Sayafzadeh, A. Analysis of the worn-out tissues characteristics and providing of intervention pattern, case study: Eslamshahr city, Tehran. Curr. Urban Stud. 2016, 4, 267. [Google Scholar] [CrossRef] [Green Version]
- Tiesdell, S.; Heath, T.; Oc, T. Revitalising Historic Urban Quarters; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Doratli, N.; Hoskara, S.O.; Fasli, M. An analytical methodology for revitalization strategies in historic urban quarters: A case study of the Walled City of Nicosia, North Cyprus. Cities 2004, 21, 329–348. [Google Scholar] [CrossRef]
- Rodwell, D. Conservation: Background. In Conservation and Sustainability in Historic Cities; Blackwell Publishing: Chennai, India; Singapore, 2007; pp. 1–22. [Google Scholar]
- Sadeghi, J.; Oghabi, M.; Sarvari, H.; Sabeti, M.S.; Kashefi, H.; Chan, D. Identification and Prioritization of Seismic Risks in Urban Worn-Out Textures Using Fuzzy Delphi Method. Environ. Eng. Manag. J. (EEMJ) 2021, 20, 1035–1046. [Google Scholar]
- Mahmodinia, M.; Sarami, H.; Ramesht, M.-H.; Taghvae, M. Evaluation of Resilience of Historical Texture to Natural Hazards (Earthquake) (Case Study: Yazd City). Q. J. Hum. Geogr. 2021, 13, 638–654. (In Persian) [Google Scholar]
- Rostami, M.H.; Tebiyan, S.Z.; Khandan, M. Resilience Analysis of Historical Regions in Shiraz using Geographic Information System (GIS). J. Shahr-E-Tabavar 2020, 2, 53–66. (In Persian) [Google Scholar]
- Moaddab, R.; Hosseini, K.A. An investigation on effective dimensions and indicators in measuring resilience of historic-commercial urban fabrics against earthquake with a special view to traditional Bazaars. Environ. Manag. Hazards 2020, 7, 265–280. (In Persian) [Google Scholar]
- Serre, D.; Barroca, B.; Balsells, M.; Becue, V. Contributing to urban resilience to floods with neighbourhood design: The case of Am Sandtorkai/Dalmannkai in Hamburg. J. Flood Risk Manag. 2018, 11, 69–83. [Google Scholar] [CrossRef]
- Ribeiro, P.J.G.; Gonçalves, L.A.P.J. Urban resilience: A conceptual framework. Sustain. Cities Soc. 2019, 50, 101625. [Google Scholar] [CrossRef]
- Jabareen, Y. The risk city resilience trajectory. In The Risk City; Springer: Dordrecht, The Netherlands, 2015; pp. 137–159. [Google Scholar]
- Rose, A. Resilience, and sustainability in the face of disasters. Environ. Innov. Soc. Transit. 2011, 1, 96–100. [Google Scholar] [CrossRef]
- Rozenstein, O.; Karnieli, A. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl. Geogr. 2011, 31, 533–544. [Google Scholar] [CrossRef]
- Hashmi, S.; Maleki, M.; Jomezade, B.; Hazeh, S.; Bagheri, K. Potential Evaluation of SMA and NSMA Methods Implementation to Extract Sub-pixel Impervious Surfaces from Landsat 8 Imagery (OLI), (Case Study: Sari). Geogr. Thought 2019, 10, 115–138. [Google Scholar]
- Maleki, M.; Tavakkolisabour, S.M.; Arjmand, B.; Rahmati, M. Simultaneous Analysis of Radar Look Angel and Placement of Features to Identification of Terrain Feature (Mianrahan Basin in West of Iran). Int. J. Landsc. Plan. Archit. 2017, 3, 1–10. [Google Scholar]
- Alqurashi, A.; Kumar, L. Investigating the use of remote sensing and GIS techniques to detect land use and land cover change: A review. Adv. Remote Sens. 2013, 2, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.W.; Zeng, G.M.; Zhang, H.; Yang, B.; Jiao, S. The integrated eco-environment assessment of the red soil hilly region based on GIS—A case study in Changsha City, China. Ecol. Model. 2007, 202, 540–546. [Google Scholar] [CrossRef]
- Kamali, M.; Alesheikh, A.A.; Borazjani, S.A.; Jahanshahi, A.; Khodaparast, Z.; Khalaj, M. Delphi-AHP and weighted index overlay-GIS approaches for industrial site selection case study: Large extractive industrial units in Iran. J. Settl. Spat. Plan. 2017, 8, 99–105. [Google Scholar] [CrossRef]
- Bagheri, M.; Ibrahim, Z.Z.; Mansor, S.; Manaf, L.A.; Akhir, M.F.; Talaat, W.I.A.W.; Pour, A.B. Land-Use Suitability Assessment Using Delphi and Analytical Hierarchy Process (D-AHP) Hybrid Model for Coastal City Management: Kuala Terengganu, Peninsular Malaysia. ISPRS Int. J. Geo-Inf. 2021, 10, 621. [Google Scholar] [CrossRef]
- Banica, A.; Rosu, L.; Muntele, I.; Grozavu, A. Towards urban resilience: A multi-criteria analysis of seismic vulnerability in Iasi City (Romania). Sustainability 2017, 9, 270. [Google Scholar] [CrossRef] [Green Version]
- Ghajari, Y.E.; Alesheikh, A.A.; Modiri, M.; Hosnavi, R.; Abbasi, M. Spatial modelling of urban physical vulnerability to explosion hazards using GIS and fuzzy MCDA. Sustainability 2017, 9, 1274. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Song, J.; Peng, J.; Wu, J. Landslides-oriented urban disaster resilience assessment—A case study in ShenZhen, China. Sci. Total Environ. 2019, 661, 95–106. [Google Scholar] [CrossRef]
- Tayyab, M.; Zhang, J.; Hussain, M.; Ullah, S.; Liu, X.; Khan, S.N.; Al-Shaibah, B. GIS-Based Urban Flood Resilience Assessment Using Urban Flood Resilience Model: A Case Study of Peshawar City, Khyber Pakhtunkhwa, Pakistan. Remote Sens. 2021, 13, 1864. [Google Scholar] [CrossRef]
- Hosseini, A.; Pourahmad, A.; Pajoohan, M. Assessment of institutions in sustainable urban-management effects on sustainable development of Tehran: Learning from a developing country. J. Urban Plan. Dev. 2016, 142, 05015009. [Google Scholar] [CrossRef]
- Bokaie, M.; Zarkesh, M.K.; Arasteh, P.D.; Hosseini, A. Assessment of urban heat island based on the relationship between land surface temperature and land use/land cover in Tehran. Sustain. Cities Soc. 2016, 23, 94–104. [Google Scholar] [CrossRef]
- Nojedehi, P.; Heidari, M.; Ataei, A.; Nedaei, M.; Kurdestani, E. Environmental assessment of energy production from landfill gas plants by using Long-range Energy Alternative Planning (LEAP) and IPCC methane estimation methods: A case study of Tehran. Sustain. Energy Technol. Assess. 2016, 16, 33–42. [Google Scholar] [CrossRef]
- Moghadas, M.; Asadzadeh, A.; Vafeidis, A.; Fekete, A.; Kötter, T. A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. Int. J. Disaster Risk Reduct. 2019, 35, 101069. [Google Scholar] [CrossRef]
- Rezaei, M.R.; Rafieian, M.; Hosseini, S.M. Measurement, and evaluation of physical resilience of urban communities against earthquake (Case study: Tehran neighborhoods). Hum. Geogr. Res. 2015, 47, 609–623. [Google Scholar]
- Azadeh, A.; Salehi, V.; Kianpour, M. Performance evaluation of rail transportation systems by considering resilience engineering factors: Tehran railway electrification system. Transp. Lett. 2018, 10, 12–25. [Google Scholar] [CrossRef]
- Lak, A.; Hakimian, P.; Sharifi, A. An evaluative model for assessing pandemic resilience at the neighborhood level: The case of Tehran. Sustain. Cities Soc. 2021, 75, 103410. [Google Scholar] [CrossRef] [PubMed]
- Ostadtaghizadeh, A.; Ardalan, A.; Paton, D.; Jabbari, H.; Khankeh, H.R. Community disaster resilience: A systematic review on assessment models and tools. PLoS Curr. 2015, 7, 423–468. [Google Scholar] [CrossRef] [PubMed]
- Wardekker, J.A.; de Jong, A.; Knoop, J.M.; van der Sluijs, J.P.J.T.F.; Change, S. Operationalizing a resilience approach to adapting an urban delta to uncertain climate changes. Technol. Forecast. Soc. Chang 2010, 77, 987–998. [Google Scholar] [CrossRef] [Green Version]
- Ahern, J. From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landsc. Urban Plan. 2011, 100, 341–343. [Google Scholar] [CrossRef] [Green Version]
- Liao, K.H. A theory on urban resilience to floods—A basis for alternative planning practices. Ecol. Soc. 2012, 17, 48. [Google Scholar] [CrossRef]
- Dhar, T.K.; Khirfan, L. A multi-scale and multi-dimensional framework for enhancing the resilience of urban form to climate change. Urban Clim. 2017, 19, 72–91. [Google Scholar] [CrossRef]
- Wallace, D.; Wallace, R. Urban systems during disasters: Factors for resilience. Ecol. Soc. 2008, 13, 18. [Google Scholar] [CrossRef] [Green Version]
- Pelling, M.; Manuel-Navarrete, D. From resilience to transformation: The adaptive cycle in two Mexican urban centers. Ecol. Soc. 2011, 16, 11. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.; Dayal, A.; Rumbaitis Del Rio, C. From practice to theory: Emerging lessons from Asia for building urban climate change resilience. Environ. Urban. 2012, 24, 531–556. [Google Scholar] [CrossRef] [Green Version]
- Bilal, M.; Nichol, J.E.; Bleiweiss, M.P.; Dubois, D. A Simplified high resolution MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces. Remote Sens. Environ. 2013, 136, 135–145. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Skoković, D.; Mattar, C.; Cristóbal, J. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Stanvliet, R.; Parnell, S. The contribution of the UNESCO biosphere reserve concept to urban resilience. Manag. Environ. Qual. Int. J. 2006, 17, 437–449. [Google Scholar] [CrossRef]
- Pierce, J.C.; Budd, W.W.; Lovrich Jr, N.P. Resilience and sustainability in US urban areas. Environ. Politics 2011, 20, 566–584. [Google Scholar] [CrossRef]
- Toubin, M.; Laganier, R.; Diab, Y.; Serre, D. Improving the conditions for urban resilience through collaborative learning of Parisian urban services. J. Urban Plan. Dev. 2015, 141, 05014021. [Google Scholar] [CrossRef]
- Boix, R.; Rausell, P.; Abeledo, R. The Calatrava model: Reflections on resilience and urban plasticity. Eur. Plan. Stud. 2017, 25, 29–47. [Google Scholar] [CrossRef]
- Suárez-Orozco, C.; Motti-Stefanidi, F.; Marks, A.; Katsiaficas, D. An integrative risk and resilience model for understanding the adaptation of immigrant-origin children and youth. Am. Psychol. 2018, 73, 781. [Google Scholar] [CrossRef]
- Vallance, S.A. Urban resilience: Bouncing back, coping, thriving. In Proceedings of the Australian and New Zealand Disaster and Emergency Management Conference, Brisbane, Australia, 16–18 April 2012. [Google Scholar]
- Friend, R.; Moench, M. What is the purpose of urban climate resilience? Implications for addressing poverty and vulnerability. Urban Clim. 2013, 6, 98–113. [Google Scholar] [CrossRef]
- Galderisi, A. Urban Resilience: A framework for empowering cities in face of heterogeneous risk factors. A|Z ITU J. Fac. Archit. 2014, 11, 36–58. [Google Scholar]
- Ziervogel, G.; Pelling, M.; Cartwright, A.; Chu, E.; Deshpande, T.; Harris, L.; Zweig, P. Inserting rights and justice into urban resilience: A focus on everyday risk. Environ. Urban. 2017, 29, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Friend, R.; Jarvie, J.; Reed, S.O.; Sutarto, R.; Thinphanga, P.; Toan, V.C. Mainstreaming urban climate resilience into policy and planning; reflections from Asia. Urban Clim. 2014, 7, 6–19. [Google Scholar] [CrossRef]
- Lynn, M.R.; Layman, E.L.; Englebardt, S.P. Nursing administration research priorities: A national Delphi study. JONA J. Nurs. Adm. 1998, 28, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.C.; Sandford, B.A. The Delphi technique: Making sense of consensus. Pract. Assess. Res. Eval. 2007, 12, 10. [Google Scholar]
- Wudhikarn, R. Improving the intellectual capital management approach using the hybrid decision method. J. Intellect. Cap. 2018, 19, 670–691. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kumar, V. A framework for prioritization of intellectual capital indicators in R&D. J. Intellect. Cap. 2009, 10, 277–293. [Google Scholar]
- Iden, J.; Tessem, B.; Päivärinta, T. Problems in the interplay of development and IT operations in system development projects: A Delphi study of Norwegian IT experts. Inf. Softw. Technol. 2011, 53, 394–406. [Google Scholar] [CrossRef]
- Lindeman, C.A. Delphi survey of priorities in clinical nursing research. Nurs. Res. 1975, 24, 434–441. [Google Scholar] [CrossRef]
- Markmann, C.; Spickermann, A.; von der Gracht, H.A.; Brem, A. Improving the question formulation in Delphi-like surveys: Analysis of the effects of abstract language and amount of information on response behavior. Futures Foresight Sci. 2021, 3, e56. [Google Scholar] [CrossRef]
- Taleb Pour, A.; Bastaminezhad, M. Iran’s development model design by using Delphi method. J. Econ. Dev. Sociol. 2020, 9, 253–283. (In Persian) [Google Scholar]
- Deng, X.; Hu, Y.; Deng, Y.; Mahadevan, S. Supplier selection using AHP methodology extended by D numbers. Expert Syst. Appl. 2014, 41, 156–167. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making—The analytic hierarchy and network processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 2004, 13, 1–35. [Google Scholar] [CrossRef]
- Al-Harbi, K.M.A.S. Application of the AHP in project management. Int. J. Proj. Manag. 2001, 19, 19–27. [Google Scholar] [CrossRef]
- Saaty, T.L. Group decision making and the AHP. In The Analytic Hierarchy Process; Springer: Berlin/Heidelberg, Germany, 1989; pp. 59–67. [Google Scholar]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L.; Shang, J.S. An innovative orders-of-magnitude approach to AHP-based mutli-criteria decision making: Prioritizing divergent intangible humane acts. Eur. J. Oper. Res. 2011, 214, 703–715. [Google Scholar] [CrossRef]
- Tsyganok, V.V.; Kadenko, S.V.; Andriichuk, O.V. Significance of expert competence consideration in group decision making using AHP. Int. J. Prod. Res. 2012, 50, 4785–4792. [Google Scholar] [CrossRef]
- Maleki, M.; Rahmati, M.; Sadidi, J.; Babaee, E. Landslide risk zonation using AHP method and GIS in Malaverd catchment, Kermanshah, Iran. In Proceedings of the International Conference on Geospatial Information Research (GI Research 2014), Tehran, Iran, 15–17 November 2014; pp. 15–17. [Google Scholar]
- Han, Y.; Wang, Z.; Lu, X.; Hu, B. Application of AHP to road selection. ISPRS Int. J. Geo-Inf. 2020, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Coffey, L.; Claudio, D. In defense of group fuzzy AHP: A comparison of group fuzzy AHP and group AHP with confidence intervals. Expert Syst. Appl. 2021, 178, 114970. [Google Scholar] [CrossRef]
- Li, R.; Richmond, P.; Roehner, B.M. Effect of population density on epidemics. A: Statistical Mechanics and its Applications. Physica 2018, 510, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Klee, P. The Core of GIScience: A Process-Based Approach; ITC: Enschede, The Netherlands, 2011. [Google Scholar]
- Węglarczyk, S. Kernel Density Estimation and its Application. In ITM Web of Conferences, Proceedings of the XLVIII Seminar of Applied Mathematics 2018, Boguszow-Gorce, Poland, 9–11 September 2018; EDP Sciences: Les Ulis, France, 2018; Volume 23, p. 37. [Google Scholar]
- Maalouf, W.E.; Mincheva, M.N.; Campbell, B.K.; Hardy, I.C. Effects of assisted reproductive technologies on human sex ratio at birth. Fertil. Steril. 2014, 101, 1321–1325. [Google Scholar] [CrossRef]
- Klarqvist, B. A space syntax glossary. Nord. J. Archit. Res. 2015, 6, 11–12. [Google Scholar]
- Badiu, D.L.; Iojă, C.I.; Pătroescu, M.; Breuste, J.; Artmann, M.; Niță, M.R.; Onose, D.A. Is urban green space per capita a valuable target to achieve cities’ sustainability goals? Romania as a case study. Ecol. Indic. 2016, 70, 53–66. [Google Scholar] [CrossRef]
- Noyes, J.; Hannes, K.; Booth, A.; Harris, J.; Harden, A.; Popay, J.; Pantoja, T. Qualitative Research and Cochrane Reviews; Wiley-Blackwell Publishers: Hoboken, NJ, USA, 2015. [Google Scholar]
- Poot, J.; Pawar, S. Is demography destiny? Urban population change and economic vitality of future cities. J. Urban Manag. 2013, 2, 5–23. [Google Scholar] [CrossRef]
- Xu, H.; Chen, Y.; Dan, S.; Qiu, W. Spatial and temporal analysis of urban heat Island effects in Chengdu City by remote sensing. In Proceedings of the 2011 19th International Conference on Geoinformatics IEEE, Shanghai, China, 24–26 June 2011; pp. 1–5. [Google Scholar]
- Rahmani, S.; Fahimi, F.; Haeri, S. Comparison and assessment of AHP and WLC methods for locating Bojnord’s Solid Wast (Sample City: Bojnurd). J. North Khorasan Univ. Med. Sci. 2015, 6, 769–778. [Google Scholar] [CrossRef] [Green Version]
- Aydi, A.; Abichou, T.; Nasr, I.H.; Louati, M.; Zairi, M. Assessment of land suitability for olive mill wastewater disposal site selection by integrating fuzzy logic, AHP, and WLC in a GIS. Environ. Monit. Assess. 2016, 188, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zarin, R.; Azmat, M.; Naqvi, S.R.; Saddique, Q.; Ullah, S. Landfill site selection by integrating fuzzy logic, AHP, and WLC method based on multi-criteria decision analysis. Environ. Sci. Pollut. Res. 2021, 28, 19726–19741. [Google Scholar] [CrossRef] [PubMed]
- Hämmerling, M.; Kocięcka, J.; Zaborowski, S. AHP as a Useful Tool in the Assessment of the Technical Condition of Hydro technical Constructions. Sustainability 2021, 13, 1304. [Google Scholar] [CrossRef]
- Biagi, B.; Ladu, M.G.; Meleddu, M. Urban quality of life and capabilities: An experimental study. Ecol. Econ. 2018, 150, 137–152. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Khalighi, N. Investigating spatial distribution of regional quality of life (RQoL) in Iran between 1996 and 2011. Soc. Indic. Res. 2016, 127, 1217–1248. [Google Scholar] [CrossRef]
- Maleki, M.; Van Genderen, J.L.; Tavakkoli-Sabour, S.M.; Saleh, S.S.; Babaee, E. Land use/cover change in Dinevar rural area of West Iran during 2000–2018 and its prediction for 2024 and 2030. Geogr. Tech. 2020, 15, 93–105. [Google Scholar] [CrossRef]
- Naghadehi, S.Z.; Asadi, M.; Maleki, M.; Tavakkoli-Sabour, S.M.; Van Genderen, J.L.; Saleh, S.S. Prediction of Urban Area Expansion with Implementation of MLC, SAM and SVMs’ Classifiers Incorporating Artificial Neural Network Using Landsat Data. ISPRS Int. J. Geo-Inf. 2021, 10, 513. [Google Scholar] [CrossRef]
- Groff, E.R.; Johnson, S.D.; Thornton, A. State of the art in agent-based modeling of urban crime: An overview. J. Quant. Criminol. 2019, 35, 155–193. [Google Scholar] [CrossRef]
- Jelokhani-Niaraki, M.; Mofrad, R.B.; Dero, Q.Y.; Hajiloo, F.; Sadeghi-Niaraki, A. A volunteered geographic information system for monitoring and managing urban crimes: A case study of Tehran, Iran. Police Pract. Res. 2020, 21, 547–561. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Zhao, X.; Qiu, L.; Wei, K.; Zhang, Z.; Deng, Y.; Liu, G. Experimental investigation on performance and economy characteristics of a diesel engine with variable nozzle turbocharger and its application in urban bus. Energy Convers. Manag. 2019, 193, 149–161. [Google Scholar]
- Hong, J.W.; Hong, J.; Kwon, E.E.; Yoon, D. Temporal dynamics of urban heat island correlated with the socio-economic development over the past half-century in Seoul, Korea. Environ. Pollut. 2019, 254, 112934. [Google Scholar] [CrossRef] [PubMed]
- Jorquera, H.; Montoya, L.D.; Rojas, N.Y. Urban air pollution. In Urban Climates in Latin America; Springer: Cham, Switzerland, 2019; pp. 137–165. [Google Scholar]
- Maleki, M.; Ahmadi, Z.; Dosti, R. Kermanshah land surface temperature changes in during 1393–1397 periods. Geogr. Hum. Relatsh. 2019, 2, 309–319. [Google Scholar]
- Someh, M.F.; Basiri, M.; Azim, A.Z. The role of green roofs in urban sustainability. Eur. Sci. J. 2014, 2, 1857–7881. [Google Scholar]
- Sadeghi, R.; Zanjari, N. The inequality of development in the 22 districts of Tehran metropolis. Soc. Welf. Q. 2017, 17, 149–184. (In Persian) [Google Scholar]
Dimensions | Criteria | Reference |
---|---|---|
Physical | Housing Age, type of construction materials, land use, space syntax, width of streets | [5,15,72,73,74,75] |
Environmental | Green space per capita, land surface temperature, distance from fault | [5,76,77,78,79,80] |
Economic | Housing prices, Income level | [5,81,82,83,84] |
Organizational | Distance to the fire station, access to medical centers, density of educational spaces | [3,85,86,87,88] |
Social | Population density, age composition, sex composition, residents’ education level, household density | [14,83,84,86,89] |
Expertise | Degree | Number (Persons) |
---|---|---|
Urban Design | PhD/Master | (2)/(6) |
Urban Planning | PhD/Master | (3)/(5) |
Crisis Management | PhD/Master | (2)/(4) |
Sociology | PhD/Master | (3)/(4) |
Civil Engineer | PhD/Master | (2)/(4) |
Traffic Expert | PhD/Master | (1)/(2) |
Natural Geography | PhD/Master | (2)/(2) |
Total | 42 |
Preferences (Oral Assessment) | Numerical Rating |
---|---|
Maximum priority | 9 |
Very high priority | 7 |
High Priority | 5 |
Medium priority | 3 |
Less priority | 1 |
Preferences between these intervals | 2,4,6,8 |
N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.52 | 0.88 | 1.1 | 1.24 | 1.34 | 1.4 | 1.44 | 1.48 | 1.51 | 1.53 | 1.55 | 1.57 | 1.58 |
Criterion | Explanation | Extraction Method | Effectiveness | Ref. |
---|---|---|---|---|
Land surface temperature | In order to extract land surface temperature, Thermal Infrared Sensor (TIRS) | Δɛ | − | [80] |
Household density | Number of households per hectare | − | [109] | |
Population density | The number of inhabitants per hectare | − | [109] | |
Age of buildings | Average age of buildings prepared by Tehran Municipality | − | ||
Distance to fault | Distance to fault which is calculated by using Euclidean distance | + | [110] | |
Distance to fire stations | Distance fire stations that are calculated by using Euclidean distance | − | [110] | |
Housing price | Determined using field surveys and price comparisons in housing finder soft wares. | − | ||
Education center density | Kernel function estimate of density in schools | + | [111] | |
Distance to health center | Distance to health clinics which is calculated by using Euclidean distance | − | [110] | |
Land use | This data was prepared by Tehran Municipality | +/− | ||
Sex composition of population | The ratio of women to men | − | [112] | |
Street width | Distance of street center to the buildings (Euclidean distance) | + | [110] | |
Space syntax | Analyzing the relationships between spaces of urban areas and buildings | + | [113] | |
Per capita green space | Calculation of available green space as a ratio to the number of inhabitants | + | [114] | |
Income level | Information was obtained by sampling and field questioning | + | [115] | |
Level of education | This information was collected by the Statistics Organization of Iran | + | ||
Type of building materials | This information was collected by the Statistics Organization of Iran | +/− | ||
Age composition of population | Ratio of population under 14 and above 65 to total population | − | [116] |
Class | Domain Related to Each Class |
---|---|
First class | V ≤ Vmean − 1.5std |
Second class | Vmean-1.5std < V < Vmean − std |
Third class | Vmean-std < V ≤ Vmean + std |
Fourth class | Vmean + std < V ≤ Vmean + 1.5std |
Fifth class | V > Vmean + 1.5std |
Criteria Name | ||
---|---|---|
Building age(C1) | Space syntax(C6) | Green space per capita (C11) |
Population density(C2) | Distance to fire station(C7) | Household density (C12) |
Distance from fault(C3) | Building materials(C8) | Density of educational spaces (C13) |
Age Composition(C4) | Building prices (C9) | Land use (C14) |
Sex composition(C5) | Access to Medical Centers (C10) |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 1 | 3 | 2 | 7 | 8 | 2 | 3 | 1 | 6 | 4 | 9 | 4 | 5 | 6 |
C2 | 0.333 | 1 | 0.5 | 2 | 3 | 0.5 | 1 | 0.333 | 2 | 1 | 3 | 1 | 2 | 2 |
C3 | 0.5 | 2 | 1 | 4 | 4 | 1 | 2 | 0.5 | 3 | 2 | 5 | 2 | 3 | 3 |
C4 | 0.143 | 0.5 | 0.25 | 1 | 2 | 0.333 | 0.333 | 0.143 | 1 | 0.5 | 2 | 0.5 | 0.5 | 1 |
C5 | 0.125 | 0.33 | 0.25 | 0.5 | 1 | 0.25 | 0.333 | 0.125 | 1 | 0.5 | 1 | 0.5 | 0.5 | 1 |
C6 | 0.5 | 1 | 1 | 3 | 4 | 1 | 2 | 0.5 | 3 | 2 | 5 | 2 | 2 | 3 |
C7 | 0.333 | 3 | 0.5 | 3 | 3 | 0.5 | 1 | 0.333 | 2 | 1 | 3 | 1 | 2 | 2 |
C8 | 1 | 3 | 2 | 6 | 8 | 2 | 3 | 1 | 5 | 4 | 7 | 4 | 4 | 6 |
C9 | 0.1666 | 0.5 | 0.333 | 1 | 1 | 0.333 | 0.5 | 0.2 | 1 | 0.5 | 2 | 0.5 | 1 | 1 |
C10 | 0.25 | 1 | 0.5 | 2 | 2 | 0.5 | 1 | 0.25 | 2 | 1 | 2 | 1 | 1 | 2 |
C11 | 0.11 | 0.333 | 0.2 | 0.5 | 1 | 0.2 | 0.333 | 0.143 | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 1 |
C12 | 0.25 | 1 | 0.5 | 2 | 2 | 0.5 | 1 | 0.25 | 2 | 1 | 2 | 1 | 1 | 2 |
C13 | 0.2 | 0.5 | 0.333 | 2 | 2 | 0.5 | 0.5 | 0.25 | 1 | 1 | 2 | 1 | 1 | 1 |
C14 | 0.166 | 0.5 | 0.333 | 1 | 1 | 0.333 | 0.5 | 0.166 | 1 | 0.5 | 1 | 0.5 | 1 | 1 |
C | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | C13 | C14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W | 0.19533 | 0.06116 | 0.105223 | 0.030013 | 0.023893 | 0.096223 | 0.071288 | 0.185057 | 0.032192 | 0.052647 | 0.022057 | 0.052647 | 0.041953 | 0.030129 |
Best | Worst | ||
---|---|---|---|
Rank | Neighborhoods | Rank | Neighborhoods |
1 | Iranshahr | 357 | Alaeen |
2 | Vali Asr Square | 358 | Agaahi |
3 | University of Tehran | 359 | Taqiyabad |
4 | Ghaem Magham-Sanai | 360 | Shoosh |
5 | Ismailabad | 361 | Rah-Ahan |
6 | Laleh Park | 362 | Saffaeh |
7 | Amjadieh-Khaghani | 363 | Abuzar |
8 | Ferdowsi | 364 | Southern Armenians |
9 | Imamate | 365 | Moghadam |
10 | Parastar | 366 | Anbar Naft |
11 | Choobtarash | 367 | Firoozabad |
12 | Behjat Abad | 368 | Golchin |
13 | Zanjan | 369 | Imamzadeh Yahya |
14 | Argentina | 370 | Mansoorieh |
15 | Eastern Tehranpars | 371 | Zahirabad |
16 | Western Tehranpars | 372 | Shahid Ghayouri |
17 | Tehran Pars | 373 | Dilman |
18 | Palestine | 374 | Jalili |
19 | Jahad square | 375 | Valiabad |
20 | Shoora | 376 | Sartakht |
Sub-Criteria | City Situation | Status of Non-Tolerant Neighborhoods | Sub-Criteria | City Situation | Status of Non-Tolerant Neighborhoods |
---|---|---|---|---|---|
C1 | 14.6% | 78.4% | C8 | 85% | 68% |
C2 | 249 | 291 | C9 | 9.96 | 18.67 |
C3 | 6250 | 4050 | C10 | 1250 | 970 |
C4 | 0.01 | 0.128 | C11 | 16.5 | 3.5 |
C5 | 85.8 | 85.94 | C12 | 75 | 84 |
C6 | 0.428 | 0.3 | C13 | 1.69 | 2.31 |
C7 | 4240 | 3460 | C14 | 39% | 51% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haghighi Fard, S.M.; Doratli, N. Evaluation of Resilience in Historic Urban Areas by Combining Multi-Criteria Decision-Making System and GIS, with Sustainability and Regeneration Approach: The Case Study of Tehran (IRAN). Sustainability 2022, 14, 2495. https://doi.org/10.3390/su14052495
Haghighi Fard SM, Doratli N. Evaluation of Resilience in Historic Urban Areas by Combining Multi-Criteria Decision-Making System and GIS, with Sustainability and Regeneration Approach: The Case Study of Tehran (IRAN). Sustainability. 2022; 14(5):2495. https://doi.org/10.3390/su14052495
Chicago/Turabian StyleHaghighi Fard, Seyed Mohammad, and Naciye Doratli. 2022. "Evaluation of Resilience in Historic Urban Areas by Combining Multi-Criteria Decision-Making System and GIS, with Sustainability and Regeneration Approach: The Case Study of Tehran (IRAN)" Sustainability 14, no. 5: 2495. https://doi.org/10.3390/su14052495
APA StyleHaghighi Fard, S. M., & Doratli, N. (2022). Evaluation of Resilience in Historic Urban Areas by Combining Multi-Criteria Decision-Making System and GIS, with Sustainability and Regeneration Approach: The Case Study of Tehran (IRAN). Sustainability, 14(5), 2495. https://doi.org/10.3390/su14052495