Improving the Contribution of Forests to Carbon Neutrality under Different Policies—A Case Study from the Hamburg Metropolitan Area
Abstract
:1. Introduction
2. Materials and Methods
- 1.
- Mass optimization: strategy with highest possible timber production; stands are harvested at the time of the at the time of maximum average total increment harvested;
- 2.
- Value optimization: long-term focus on strong wood strategy aimed at harvesting strong timber with a corresponding strategy, characterized by longer rotation periods and increase in growth of the individual tree;
- 3.
- Storage optimization: (limited) utilization of wood with simultaneous high forest storage; extremely extended rotation periods in in connection with reduced wood utilization in favor of deadwood storage;
- 4.
- Non-utilization: no wood-economical utilization of the forest stands (no logging); accumulating wood (e.g., through simulated windthrow) remains completely in the deadwood store.
2.1. Forest Data
- BE (Beech) — Fagus spp. and all deciduous species with a long lifespan (Acer spp., Fraxinus excelsior, Castanea sativa, Tilia spp., Robinia pseudoacacia).
- OA (Oak) — With all Quercus species.
- PO (Poplar) — Populus spp., Salix spp., Betula spp., Ulmus spp. and all other deciduous species with a shorter lifespan.
- SP (Spruce) — Consisting of Picea abies, Abies grandis and all other Abies spp.
- PI (Pine) — consisting of all Pinus and Larix species.
- DG (Douglas) — Consisting P. menziesii, Abies grandis, and Thuja spp.
2.2. Management Scenarios
- 1.
- The Full conservation scenario, where no harvest takes place on any part of the forest;
- 2.
- The National biodiversity scenario, which follows the national recommendation where 5% of the forest area is excluded from harvesting activities;
- 3.
- The EU biodiversity scenario, where 10% of the forest is excluded from harvesting activities;
- 4.
- The Maximum biodiversity scenario, which assumes that a disproportionate amount conservation needs to take place in forests in order to achieve carbon sequestration goals;
- 5.
- The Old growth forest scenario, where only old growth stands (age > 120 years, age class 7 and 8) are excluded from harvesting activities;
- 6.
- The Full production scenario, where all forest area is open to harvesting activities.
2.3. Wood Product Allocation
3. Results
3.1. Age Class Distribution
3.2. Above-Ground Forest Carbon
3.3. HWPs and Substitution
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HWP | Harvested Wood Product |
| GHG | Green House Gas |
| NFI | National Forest Inventory |
References
- The European Comission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Stepping up Europe’s 2030 Climate Ambition Investing in a Climate-Neutral Future for the Benefit of Our People. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0562&from=EN (accessed on 30 July 2021).
- Geden, O.; Schenuit, F. Unconventional Mitigation: Carbon Dioxide Removal as a New Approach in EU Climate Policy. 2020. Available online: https://www.swp-berlin.org/publications/products/research_papers/2020RP08_ClimateMitigation.pdf (accessed on 11 December 2021).
- IPCC. Global Warming of 1.5 ° C: An IPCC Special Report on the Impacts of Global Warming of 1.5 ° C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- Goodale, C.L.; Apps, M.J.; Birdsey, R.A.; Field, C.B.; Heath, L.S.; Houghton, R.A.; Jenkins, J.C.; Kohlmaier, G.H.; Kurz, W.; Liu, S.; et al. Forest carbon sinks in the Northern Hemisphere. Ecol. Appl. 2002, 12, 891–899. [Google Scholar] [CrossRef]
- Bellassen, V.; Luyssaert, S. Carbon sequestration: Managing forests in uncertain times. Nat. News 2014, 506, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, R.K.; Solomon, A.; Brown, S.; Houghton, R.; Trexier, M.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Barbati, A.; Corona, P.; Marchetti, M. State of Europe’s Forests 2011. Status and trends in Sustainable Forest Management in Europe. In Forest Europe, ENECE, FAO, Annex 1: Pilot Application of the European Forest Types; Ministerial Conference on the Protection of Forests in Europe: Oslo, Norway, 2011; pp. 259–273. [Google Scholar]
- Forest Europe. State of Europe’s Forests 2020; Technical Report; Ministerial Conference on the Protection of Forests in Europe: Brussels, Belgium, 2020. [Google Scholar]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Hayama, Japan, 2006. [Google Scholar]
- UNFCCC. The Paris Agreement. 2015. Available online: https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_english_.pdf (accessed on 15 October 2021).
- Alexandrov, G.A. Carbon stock growth in a forest stand: The power of age. Carbon Balance Manag. 2007, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H. Forest dynamics, growth, and yield. In Forest Dynamics, Growth and Yield; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–39. [Google Scholar]
- Besnard, S.; Carvalhais, N.; Arain, M.A.; Black, A.; De Bruin, S.; Buchmann, N.; Cescatti, A.; Chen, J.; Clevers, J.G.; Desai, A.R.; et al. Quantifying the effect of forest age in annual net forest carbon balance. Environ. Res. Lett. 2018, 13, 124018. [Google Scholar] [CrossRef] [Green Version]
- Gundersen, P.; Thybring, E.E.; Nord-Larsen, T.; Vesterdal, L.; Nadelhoffer, K.J.; Johannsen, V.K. Old-growth forest carbon sinks overestimated. Nature 2021, 591, E21–E23. [Google Scholar] [CrossRef]
- Johnston, C.M.; Radeloff, V.C. Global mitigation potential of carbon stored in harvested wood products. Proc. Natl. Acad. Sci. USA 2019, 116, 14526–14531. [Google Scholar] [CrossRef] [Green Version]
- Gustavsson, L.; Sathre, R. Variability in energy and carbon dioxide balances of wood and concrete building materials. Build. Environ. 2006, 41, 940–951. [Google Scholar] [CrossRef]
- Scharai-Rad, M.; Welling, J. Environmental and energy balances of wood products and substitutes. In Environmental and Energy Balances of Wood Products and Substitutes; FAO: Rome, Italy, 2002. [Google Scholar]
- Sathre, R.; O’Connor, J. Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ. Sci. Policy 2010, 13, 104–114. [Google Scholar] [CrossRef]
- Wolf, C.; Klein, D.; Richter, K.; Weber-Blaschke, G. Mitigating environmental impacts through the energetic use of wood: Regional displacement factors generated by means of substituting non-wood heating systems. Sci. Total. Environ. 2016, 569, 395–403. [Google Scholar] [CrossRef]
- Bundesministerium für Ernährung und Landwirtschaft. In Klima Schützen. Werte Schaffen. Ressourcen Effizient Nutzen; Technical Report; Bundesministerium für Ernährung und Landwirtschaft: Berlin, Germany, 2021.
- Scarlat, N.; Dallemand, J.; Taylor, N.; Banja, M.; Sanchez Lopez, J.; Avraamides, M. Brief on Biomass for Energy in the European Union; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- European Commission, A. Clean Planet for all: A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy. In COM (2018) 773-Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee, the Committee of the Regions and the European Investment Bank; The European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Köhl, M.; Ehrhart, H.P.; Knauf, M.; Neupane, P.R. A viable indicator approach for assessing sustainable forest management in terms of carbon emissions and removals. Ecol. Indic. 2020, 111, 106057. [Google Scholar] [CrossRef]
- Ontl, T.A.; Janowiak, M.K.; Swanston, C.W.; Daley, J.; Handler, S.; Cornett, M.; Hagenbuch, S.; Handrick, C.; McCarthy, L.; Patch, N. Forest management for carbon sequestration and climate adaptation. J. For. 2020, 118, 86–101. [Google Scholar] [CrossRef] [Green Version]
- Bottalico, F.; Pesola, L.; Vizzarri, M.; Antonello, L.; Barbati, A.; Chirici, G.; Corona, P.; Cullotta, S.; Garfì, V.; Giannico, V.; et al. Modeling the influence of alternative forest management scenarios on wood production and carbon storage: A case study in the Mediterranean region. Environ. Res. 2016, 144, 72–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keleş, S.; Başkent, E. Modelling and analyzing timber production and carbon sequestration values of forest ecosystems: A case study. Pol. J. Environ. Stud. 2007, 16, 473–479. [Google Scholar]
- Neilson, E.; MacLean, D.; Arp, P.; Meng, F.R.; Bourque, C.P.; Bhatti, J. Modeling carbon sequestration with CO2Fix and a timber supply model for use in forest management planning. Can. J. Soil Sci. 2006, 86, 219–233. [Google Scholar] [CrossRef]
- Bösch, M.; Elsasser, P.; Rock, J.; Rüter, S.; Weimar, H.; Dieter, M. Costs and carbon sequestration potential of alternative forest management measures in Germany. For. Policy Econ. 2017, 78, 88–97. [Google Scholar] [CrossRef]
- Profft, I.; Mund, M.; Weber, G.E.; Weller, E.; Schulze, E.D. Forest management and carbon sequestration in wood products. Eur. J. For. Res. 2009, 128, 399–413. [Google Scholar] [CrossRef] [Green Version]
- Masera, O.R.; Garza-Caligaris, J.; Kanninen, M.; Karjalainen, T.; Liski, J.; Nabuurs, G.; Pussinen, A.; de Jong, B.H.; Mohren, G. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: The CO2FIX V. 2 approach. Ecol. Model. 2003, 164, 177–199. [Google Scholar] [CrossRef]
- Cintas, O.; Berndes, G.; Hansson, J.; Poudel, B.C.; Bergh, J.; Börjesson, P.; Egnell, G.; Lundmark, T.; Nordin, A. The potential role of forest management in Swedish scenarios towards climate neutrality by mid century. For. Ecol. Manag. 2017, 383, 73–84. [Google Scholar] [CrossRef]
- Eriksson, E.; Gillespie, A.R.; Gustavsson, L.; Langvall, O.; Olsson, M.; Sathre, R.; Stendahl, J. Integrated carbon analysis of forest management practices and wood substitution. Can. J. For. Res. 2007, 37, 671–681. [Google Scholar] [CrossRef]
- Knauf, M.; Köhl, M.; Mues, V.; Olschofsky, K.; Frühwald, A. Modeling the CO 2-effects of forest management and wood usage on a regional basis. Carbon Balance Manag. 2015, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riedel, T.; Hennig, P.; Kroiher, F.; Polley, H.; Schmitz, F.; Schwitzgebel, F. Die Dritte Bundeswaldinventur (BWI 2012). Inventur- und Auswertemethoden; Bundesministerium für Ernährung und Landwirtschaft: Berlin, Germany, Ed.; Johann Heinrich von Thünen Institute: Eberswalde, Germany, 2017; p. 124. [Google Scholar]
- Friedrich, S.; Knauf, M. Holzbilanzen als Informationsquelle zur Holzverwendung auf Bundeslandebene am Beispiel der bayerischen Holzmarktbilanz. Forstarchiv 2016, 87, 79–85. [Google Scholar]
- Stammer, D.; Engels, A.; Marotzke, J.; Gresse, E.; Hedemann, C.; Petzold, J. Hamburg Climate Futures Outlook 2021: Assessing the Plausibility of Deep Decarbonization by 2050; University of Hamburg: Hamburg, Germany, 2021. [Google Scholar]
- IEA. Is Carbon Capture Too Expensive?—Analysis. 2021. Available online: https://www.iea.org/commentaries/is-carbon-capture-too-expensive (accessed on 28 January 2022).
- Köhl, M.; Linser, S.; Prins, K.; Talarczyk, A. The EU climate package “Fit for 55”—A double-edged sword for Europeans and their forests and timber industry. For. Policy Econ. 2021, 132, 102596. [Google Scholar] [CrossRef]
- Thiffault, E.; Hannam, K.D.; Paré, D.; Titus, B.D.; Hazlett, P.W.; Maynard, D.G.; Brais, S. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—A review. Environ. Rev. 2011, 19, 278–309. [Google Scholar] [CrossRef]
- de Jong, J.; Akselsson, C.; Egnell, G.; Löfgren, S.; Olsson, B.A. Realizing the energy potential of forest biomass in Sweden–How much is environmentally sustainable? For. Ecol. Manag. 2017, 383, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Kremer, F.; Vand der Stegen, J.; Gomez-Zamalloa, M.; Szedlak, T. Natura 2000 and Forests. Part I-II; Technical Report, European Commission; Publications Office of the European Union: Luxembourg, 2015. [Google Scholar]
- Humphrey, J. Benefits to biodiversity from developing old-growth conditions in British upland spruce plantations: A review and recommendations. Forestry 2005, 78, 33–53. [Google Scholar] [CrossRef]
- Nagel, T.A.; Zenner, E.K.; Brang, P. Research in old-growth forests and forest reserves: Implications for integrated forest management. In Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity; European Forest Institute: Freiburg, Germany, 2013; pp. 44–50. [Google Scholar]


| Districts | Forest Area (ha) | Sample Point Amount | Area Weight |
|---|---|---|---|
| Ludwigslust | 133,891 | 736 | 1.819 |
| Nordwestmecklenburg | 28,458 | 232 | 1.227 |
| Uelzen | 48,698 | 130 | 3.746 |
| Stade | 9078 | 44 | 2.063 |
| Heidekreis | 60,495 | 256 | 2.363 |
| Roteburg (Wümme) | 34,384 | 191 | 1.800 |
| Lüneburg | 42,887 | 94 | 4.562 |
| Lüchow-Danennberg | 45,261 | 137 | 3.304 |
| Harburg | 4807 | 5 | 9.614 |
| Stormarn | 10,495 | 108 | 0.972 |
| Steinburg | 9880 | 80 | 1.235 |
| Segeberg | 23,323 | 202 | 1.155 |
| Pinneberg | 5855 | 48 | 1.220 |
| Ostholstein | 14,158 | 131 | 1.081 |
| Hertzogtum Lauenburg | 32,406 | 321 | 1.081 |
| Dithmarschen | 5306 | 40 | 1.327 |
| Lübeck | 3092 | 25 | 1.237 |
| Value | BE | OA | PO | SP | PI | DG |
|---|---|---|---|---|---|---|
| Mean | 10.7 | 8.8 | 6.7 | 15.7 | 9.9 | 17.2 |
| Min | 10.2 | 5.5 | 6.4 | 15.2 | 8.5 | 15.8 |
| Max | 10.2 | 9.4 | 7.1 | 16.9 | 11.0 | 19.6 |
| Scenario | Mass Optimization | Value Maximization | Maximum Storage | Non-Utilization |
|---|---|---|---|---|
| Full production | 33.3% | 33.3% | 33.3% | 0% |
| National biodiversity | 31.6% | 31.6% | 31.6% | 5% |
| EU biodiversity | 30% | 30% | 30% | 10% |
| Maximum biodiversity protection | 20% | 20% | 20% | 40% |
| Full conservation | 0% | 0% | 0% | 100% |
| Old growth forest conservation | 28.7% * | 28.7% * | 28.7% * | 13.8% * |
| Wood Use vs. Substitute Products | SF (tC/tC) |
|---|---|
| Roudwood (poles, fences, buildings) vs. steel, concrete aluminum | 2.40 |
| Softwood lumber, sawn, wet for packaging concrete shuttering vs. plastics | 1.80 |
| Softwood lumber, planned and dried for building Purposes vs. concrete, steel, bricks | 1.40 |
| Softwood-based glued timber products (glue-lam, CLT) vs. steel, concrete, bricks | 1.30 |
| Plywood, also overlaid vs. aluminum profiles, glass fiber plastic | 1.62 |
| Wood based panels such as particleboard, MDF, OSB (for walls, ceilings, roofs) vs. gypsum board, plaster, concrete, brick-type walls | 1.10 |
| DIY products such as lumber, panels, profile boards vs. mineral based products, plastic based panels, aluminum sheets | 1.35 |
| Wooden flooring (one layer, multi-layers), laminate flooring vs. ceramic tiles, plastic flooring, wall-to-wall carpet | 1.62 |
| Doors (interior, exterior)—only framing/construction vs. steel, aluminum, PVC | 1.62 |
| Wooden window frames vs. PVC, aluminum | 1.62 |
| Wooden furniture (solid wood) vs. glass, plastic, metal | 1.62 |
| Wooden furniture (panel based) vs. glass, plastic, metal | 1.42 |
| Wooden kitchen furniture vs. glass plastic, metal | 1.62 |
| Other wooden furniture (example: upholstery) vs. glass, plastics, metal | 1.62 |
| Wooden based packaging vs. plastic, metal | 1.32 |
| Wooden transportation products vs. plastic, metal | 1.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martes, L.; Köhl, M. Improving the Contribution of Forests to Carbon Neutrality under Different Policies—A Case Study from the Hamburg Metropolitan Area. Sustainability 2022, 14, 2088. https://doi.org/10.3390/su14042088
Martes L, Köhl M. Improving the Contribution of Forests to Carbon Neutrality under Different Policies—A Case Study from the Hamburg Metropolitan Area. Sustainability. 2022; 14(4):2088. https://doi.org/10.3390/su14042088
Chicago/Turabian StyleMartes, Leam, and Michael Köhl. 2022. "Improving the Contribution of Forests to Carbon Neutrality under Different Policies—A Case Study from the Hamburg Metropolitan Area" Sustainability 14, no. 4: 2088. https://doi.org/10.3390/su14042088
APA StyleMartes, L., & Köhl, M. (2022). Improving the Contribution of Forests to Carbon Neutrality under Different Policies—A Case Study from the Hamburg Metropolitan Area. Sustainability, 14(4), 2088. https://doi.org/10.3390/su14042088

