Improving the Contribution of Forests to Carbon Neutrality under Different Policies—A Case Study from the Hamburg Metropolitan Area
Abstract
:1. Introduction
2. Materials and Methods
- 1.
- Mass optimization: strategy with highest possible timber production; stands are harvested at the time of the at the time of maximum average total increment harvested;
- 2.
- Value optimization: long-term focus on strong wood strategy aimed at harvesting strong timber with a corresponding strategy, characterized by longer rotation periods and increase in growth of the individual tree;
- 3.
- Storage optimization: (limited) utilization of wood with simultaneous high forest storage; extremely extended rotation periods in in connection with reduced wood utilization in favor of deadwood storage;
- 4.
- Non-utilization: no wood-economical utilization of the forest stands (no logging); accumulating wood (e.g., through simulated windthrow) remains completely in the deadwood store.
2.1. Forest Data
- BE (Beech) — Fagus spp. and all deciduous species with a long lifespan (Acer spp., Fraxinus excelsior, Castanea sativa, Tilia spp., Robinia pseudoacacia).
- OA (Oak) — With all Quercus species.
- PO (Poplar) — Populus spp., Salix spp., Betula spp., Ulmus spp. and all other deciduous species with a shorter lifespan.
- SP (Spruce) — Consisting of Picea abies, Abies grandis and all other Abies spp.
- PI (Pine) — consisting of all Pinus and Larix species.
- DG (Douglas) — Consisting P. menziesii, Abies grandis, and Thuja spp.
2.2. Management Scenarios
- 1.
- The Full conservation scenario, where no harvest takes place on any part of the forest;
- 2.
- The National biodiversity scenario, which follows the national recommendation where 5% of the forest area is excluded from harvesting activities;
- 3.
- The EU biodiversity scenario, where 10% of the forest is excluded from harvesting activities;
- 4.
- The Maximum biodiversity scenario, which assumes that a disproportionate amount conservation needs to take place in forests in order to achieve carbon sequestration goals;
- 5.
- The Old growth forest scenario, where only old growth stands (age > 120 years, age class 7 and 8) are excluded from harvesting activities;
- 6.
- The Full production scenario, where all forest area is open to harvesting activities.
2.3. Wood Product Allocation
3. Results
3.1. Age Class Distribution
3.2. Above-Ground Forest Carbon
3.3. HWPs and Substitution
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HWP | Harvested Wood Product |
GHG | Green House Gas |
NFI | National Forest Inventory |
References
- The European Comission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Stepping up Europe’s 2030 Climate Ambition Investing in a Climate-Neutral Future for the Benefit of Our People. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0562&from=EN (accessed on 30 July 2021).
- Geden, O.; Schenuit, F. Unconventional Mitigation: Carbon Dioxide Removal as a New Approach in EU Climate Policy. 2020. Available online: https://www.swp-berlin.org/publications/products/research_papers/2020RP08_ClimateMitigation.pdf (accessed on 11 December 2021).
- IPCC. Global Warming of 1.5 ° C: An IPCC Special Report on the Impacts of Global Warming of 1.5 ° C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- Goodale, C.L.; Apps, M.J.; Birdsey, R.A.; Field, C.B.; Heath, L.S.; Houghton, R.A.; Jenkins, J.C.; Kohlmaier, G.H.; Kurz, W.; Liu, S.; et al. Forest carbon sinks in the Northern Hemisphere. Ecol. Appl. 2002, 12, 891–899. [Google Scholar] [CrossRef]
- Bellassen, V.; Luyssaert, S. Carbon sequestration: Managing forests in uncertain times. Nat. News 2014, 506, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, R.K.; Solomon, A.; Brown, S.; Houghton, R.; Trexier, M.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Barbati, A.; Corona, P.; Marchetti, M. State of Europe’s Forests 2011. Status and trends in Sustainable Forest Management in Europe. In Forest Europe, ENECE, FAO, Annex 1: Pilot Application of the European Forest Types; Ministerial Conference on the Protection of Forests in Europe: Oslo, Norway, 2011; pp. 259–273. [Google Scholar]
- Forest Europe. State of Europe’s Forests 2020; Technical Report; Ministerial Conference on the Protection of Forests in Europe: Brussels, Belgium, 2020. [Google Scholar]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Hayama, Japan, 2006. [Google Scholar]
- UNFCCC. The Paris Agreement. 2015. Available online: https://unfccc.int/files/meetings/paris_nov_2015/application/pdf/paris_agreement_english_.pdf (accessed on 15 October 2021).
- Alexandrov, G.A. Carbon stock growth in a forest stand: The power of age. Carbon Balance Manag. 2007, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H. Forest dynamics, growth, and yield. In Forest Dynamics, Growth and Yield; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–39. [Google Scholar]
- Besnard, S.; Carvalhais, N.; Arain, M.A.; Black, A.; De Bruin, S.; Buchmann, N.; Cescatti, A.; Chen, J.; Clevers, J.G.; Desai, A.R.; et al. Quantifying the effect of forest age in annual net forest carbon balance. Environ. Res. Lett. 2018, 13, 124018. [Google Scholar] [CrossRef] [Green Version]
- Gundersen, P.; Thybring, E.E.; Nord-Larsen, T.; Vesterdal, L.; Nadelhoffer, K.J.; Johannsen, V.K. Old-growth forest carbon sinks overestimated. Nature 2021, 591, E21–E23. [Google Scholar] [CrossRef]
- Johnston, C.M.; Radeloff, V.C. Global mitigation potential of carbon stored in harvested wood products. Proc. Natl. Acad. Sci. USA 2019, 116, 14526–14531. [Google Scholar] [CrossRef] [Green Version]
- Gustavsson, L.; Sathre, R. Variability in energy and carbon dioxide balances of wood and concrete building materials. Build. Environ. 2006, 41, 940–951. [Google Scholar] [CrossRef]
- Scharai-Rad, M.; Welling, J. Environmental and energy balances of wood products and substitutes. In Environmental and Energy Balances of Wood Products and Substitutes; FAO: Rome, Italy, 2002. [Google Scholar]
- Sathre, R.; O’Connor, J. Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ. Sci. Policy 2010, 13, 104–114. [Google Scholar] [CrossRef]
- Wolf, C.; Klein, D.; Richter, K.; Weber-Blaschke, G. Mitigating environmental impacts through the energetic use of wood: Regional displacement factors generated by means of substituting non-wood heating systems. Sci. Total. Environ. 2016, 569, 395–403. [Google Scholar] [CrossRef]
- Bundesministerium für Ernährung und Landwirtschaft. In Klima Schützen. Werte Schaffen. Ressourcen Effizient Nutzen; Technical Report; Bundesministerium für Ernährung und Landwirtschaft: Berlin, Germany, 2021.
- Scarlat, N.; Dallemand, J.; Taylor, N.; Banja, M.; Sanchez Lopez, J.; Avraamides, M. Brief on Biomass for Energy in the European Union; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- European Commission, A. Clean Planet for all: A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy. In COM (2018) 773-Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee, the Committee of the Regions and the European Investment Bank; The European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Köhl, M.; Ehrhart, H.P.; Knauf, M.; Neupane, P.R. A viable indicator approach for assessing sustainable forest management in terms of carbon emissions and removals. Ecol. Indic. 2020, 111, 106057. [Google Scholar] [CrossRef]
- Ontl, T.A.; Janowiak, M.K.; Swanston, C.W.; Daley, J.; Handler, S.; Cornett, M.; Hagenbuch, S.; Handrick, C.; McCarthy, L.; Patch, N. Forest management for carbon sequestration and climate adaptation. J. For. 2020, 118, 86–101. [Google Scholar] [CrossRef] [Green Version]
- Bottalico, F.; Pesola, L.; Vizzarri, M.; Antonello, L.; Barbati, A.; Chirici, G.; Corona, P.; Cullotta, S.; Garfì, V.; Giannico, V.; et al. Modeling the influence of alternative forest management scenarios on wood production and carbon storage: A case study in the Mediterranean region. Environ. Res. 2016, 144, 72–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keleş, S.; Başkent, E. Modelling and analyzing timber production and carbon sequestration values of forest ecosystems: A case study. Pol. J. Environ. Stud. 2007, 16, 473–479. [Google Scholar]
- Neilson, E.; MacLean, D.; Arp, P.; Meng, F.R.; Bourque, C.P.; Bhatti, J. Modeling carbon sequestration with CO2Fix and a timber supply model for use in forest management planning. Can. J. Soil Sci. 2006, 86, 219–233. [Google Scholar] [CrossRef]
- Bösch, M.; Elsasser, P.; Rock, J.; Rüter, S.; Weimar, H.; Dieter, M. Costs and carbon sequestration potential of alternative forest management measures in Germany. For. Policy Econ. 2017, 78, 88–97. [Google Scholar] [CrossRef]
- Profft, I.; Mund, M.; Weber, G.E.; Weller, E.; Schulze, E.D. Forest management and carbon sequestration in wood products. Eur. J. For. Res. 2009, 128, 399–413. [Google Scholar] [CrossRef] [Green Version]
- Masera, O.R.; Garza-Caligaris, J.; Kanninen, M.; Karjalainen, T.; Liski, J.; Nabuurs, G.; Pussinen, A.; de Jong, B.H.; Mohren, G. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: The CO2FIX V. 2 approach. Ecol. Model. 2003, 164, 177–199. [Google Scholar] [CrossRef]
- Cintas, O.; Berndes, G.; Hansson, J.; Poudel, B.C.; Bergh, J.; Börjesson, P.; Egnell, G.; Lundmark, T.; Nordin, A. The potential role of forest management in Swedish scenarios towards climate neutrality by mid century. For. Ecol. Manag. 2017, 383, 73–84. [Google Scholar] [CrossRef]
- Eriksson, E.; Gillespie, A.R.; Gustavsson, L.; Langvall, O.; Olsson, M.; Sathre, R.; Stendahl, J. Integrated carbon analysis of forest management practices and wood substitution. Can. J. For. Res. 2007, 37, 671–681. [Google Scholar] [CrossRef]
- Knauf, M.; Köhl, M.; Mues, V.; Olschofsky, K.; Frühwald, A. Modeling the CO 2-effects of forest management and wood usage on a regional basis. Carbon Balance Manag. 2015, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riedel, T.; Hennig, P.; Kroiher, F.; Polley, H.; Schmitz, F.; Schwitzgebel, F. Die Dritte Bundeswaldinventur (BWI 2012). Inventur- und Auswertemethoden; Bundesministerium für Ernährung und Landwirtschaft: Berlin, Germany, Ed.; Johann Heinrich von Thünen Institute: Eberswalde, Germany, 2017; p. 124. [Google Scholar]
- Friedrich, S.; Knauf, M. Holzbilanzen als Informationsquelle zur Holzverwendung auf Bundeslandebene am Beispiel der bayerischen Holzmarktbilanz. Forstarchiv 2016, 87, 79–85. [Google Scholar]
- Stammer, D.; Engels, A.; Marotzke, J.; Gresse, E.; Hedemann, C.; Petzold, J. Hamburg Climate Futures Outlook 2021: Assessing the Plausibility of Deep Decarbonization by 2050; University of Hamburg: Hamburg, Germany, 2021. [Google Scholar]
- IEA. Is Carbon Capture Too Expensive?—Analysis. 2021. Available online: https://www.iea.org/commentaries/is-carbon-capture-too-expensive (accessed on 28 January 2022).
- Köhl, M.; Linser, S.; Prins, K.; Talarczyk, A. The EU climate package “Fit for 55”—A double-edged sword for Europeans and their forests and timber industry. For. Policy Econ. 2021, 132, 102596. [Google Scholar] [CrossRef]
- Thiffault, E.; Hannam, K.D.; Paré, D.; Titus, B.D.; Hazlett, P.W.; Maynard, D.G.; Brais, S. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—A review. Environ. Rev. 2011, 19, 278–309. [Google Scholar] [CrossRef]
- de Jong, J.; Akselsson, C.; Egnell, G.; Löfgren, S.; Olsson, B.A. Realizing the energy potential of forest biomass in Sweden–How much is environmentally sustainable? For. Ecol. Manag. 2017, 383, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Kremer, F.; Vand der Stegen, J.; Gomez-Zamalloa, M.; Szedlak, T. Natura 2000 and Forests. Part I-II; Technical Report, European Commission; Publications Office of the European Union: Luxembourg, 2015. [Google Scholar]
- Humphrey, J. Benefits to biodiversity from developing old-growth conditions in British upland spruce plantations: A review and recommendations. Forestry 2005, 78, 33–53. [Google Scholar] [CrossRef]
- Nagel, T.A.; Zenner, E.K.; Brang, P. Research in old-growth forests and forest reserves: Implications for integrated forest management. In Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity; European Forest Institute: Freiburg, Germany, 2013; pp. 44–50. [Google Scholar]
Districts | Forest Area (ha) | Sample Point Amount | Area Weight |
---|---|---|---|
Ludwigslust | 133,891 | 736 | 1.819 |
Nordwestmecklenburg | 28,458 | 232 | 1.227 |
Uelzen | 48,698 | 130 | 3.746 |
Stade | 9078 | 44 | 2.063 |
Heidekreis | 60,495 | 256 | 2.363 |
Roteburg (Wümme) | 34,384 | 191 | 1.800 |
Lüneburg | 42,887 | 94 | 4.562 |
Lüchow-Danennberg | 45,261 | 137 | 3.304 |
Harburg | 4807 | 5 | 9.614 |
Stormarn | 10,495 | 108 | 0.972 |
Steinburg | 9880 | 80 | 1.235 |
Segeberg | 23,323 | 202 | 1.155 |
Pinneberg | 5855 | 48 | 1.220 |
Ostholstein | 14,158 | 131 | 1.081 |
Hertzogtum Lauenburg | 32,406 | 321 | 1.081 |
Dithmarschen | 5306 | 40 | 1.327 |
Lübeck | 3092 | 25 | 1.237 |
Value | BE | OA | PO | SP | PI | DG |
---|---|---|---|---|---|---|
Mean | 10.7 | 8.8 | 6.7 | 15.7 | 9.9 | 17.2 |
Min | 10.2 | 5.5 | 6.4 | 15.2 | 8.5 | 15.8 |
Max | 10.2 | 9.4 | 7.1 | 16.9 | 11.0 | 19.6 |
Scenario | Mass Optimization | Value Maximization | Maximum Storage | Non-Utilization |
---|---|---|---|---|
Full production | 33.3% | 33.3% | 33.3% | 0% |
National biodiversity | 31.6% | 31.6% | 31.6% | 5% |
EU biodiversity | 30% | 30% | 30% | 10% |
Maximum biodiversity protection | 20% | 20% | 20% | 40% |
Full conservation | 0% | 0% | 0% | 100% |
Old growth forest conservation | 28.7% * | 28.7% * | 28.7% * | 13.8% * |
Wood Use vs. Substitute Products | SF (tC/tC) |
---|---|
Roudwood (poles, fences, buildings) vs. steel, concrete aluminum | 2.40 |
Softwood lumber, sawn, wet for packaging concrete shuttering vs. plastics | 1.80 |
Softwood lumber, planned and dried for building Purposes vs. concrete, steel, bricks | 1.40 |
Softwood-based glued timber products (glue-lam, CLT) vs. steel, concrete, bricks | 1.30 |
Plywood, also overlaid vs. aluminum profiles, glass fiber plastic | 1.62 |
Wood based panels such as particleboard, MDF, OSB (for walls, ceilings, roofs) vs. gypsum board, plaster, concrete, brick-type walls | 1.10 |
DIY products such as lumber, panels, profile boards vs. mineral based products, plastic based panels, aluminum sheets | 1.35 |
Wooden flooring (one layer, multi-layers), laminate flooring vs. ceramic tiles, plastic flooring, wall-to-wall carpet | 1.62 |
Doors (interior, exterior)—only framing/construction vs. steel, aluminum, PVC | 1.62 |
Wooden window frames vs. PVC, aluminum | 1.62 |
Wooden furniture (solid wood) vs. glass, plastic, metal | 1.62 |
Wooden furniture (panel based) vs. glass, plastic, metal | 1.42 |
Wooden kitchen furniture vs. glass plastic, metal | 1.62 |
Other wooden furniture (example: upholstery) vs. glass, plastics, metal | 1.62 |
Wooden based packaging vs. plastic, metal | 1.32 |
Wooden transportation products vs. plastic, metal | 1.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martes, L.; Köhl, M. Improving the Contribution of Forests to Carbon Neutrality under Different Policies—A Case Study from the Hamburg Metropolitan Area. Sustainability 2022, 14, 2088. https://doi.org/10.3390/su14042088
Martes L, Köhl M. Improving the Contribution of Forests to Carbon Neutrality under Different Policies—A Case Study from the Hamburg Metropolitan Area. Sustainability. 2022; 14(4):2088. https://doi.org/10.3390/su14042088
Chicago/Turabian StyleMartes, Leam, and Michael Köhl. 2022. "Improving the Contribution of Forests to Carbon Neutrality under Different Policies—A Case Study from the Hamburg Metropolitan Area" Sustainability 14, no. 4: 2088. https://doi.org/10.3390/su14042088