Proposal of an Initial Environmental Management and Land Use for Critical Cemeteries in Central Ecuador
Abstract
:1. Introduction
2. The Local Case of Ecuador
3. Study Area, Materials, and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Velasco Rivera, A.; Minota Zea, Y.M. Evaluación por contaminación en suelos aledaños a los cementerios Jardines del Recuerdo e Inmaculada. Cienc. E Ing. Neogranadina 2012, 22, 165. [Google Scholar] [CrossRef]
- Zychowski, J. Impact of cemeteries on groundwater chemistry: A review. Catena 2012, 93, 29–37. [Google Scholar] [CrossRef]
- Planteamientos y acciones en materia de higiene pública: Los cementerios de la ciudad de México a principios del siglo diecinueve. Rev. Cult. Y Reli. 2008, 2, 60–81. Available online: https://revistaculturayreligion.cl/index.php/revistaculturayreligion/article/view/182/1712 (accessed on 21 October 2021).
- Hugo, G. Future demographic change and its interactions with migration and climate change. Glob. Environ. Chang. 2011, 21 (Suppl. 1), S21–S33. [Google Scholar] [CrossRef]
- McDonald, R.I.; Marcotullio, P.J.; Güneralp, B. Urbanization and global trends in biodiversity and ecosystem services. In Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Springer Nature: Basingstoke, UK, 2013; pp. 31–52. ISBN 9789400770881. [Google Scholar]
- Allén, A. La interfase periurbana como escenario de cambio y acción hacia la sustentabilidad del desarrollo. Cuad. CENDES 2003, 20, 7–21. Available online: http://ve.scielo.org/scielo.php?pid=S1012-25082003000200002&script=sci_arttext (accessed on 4 November 2021).
- Canning, L.; Szmigin, I. Death and disposal: The universal, environmental dilemma. J. Mark. Manag. 2010, 26, 1129–1142. [Google Scholar] [CrossRef]
- Nguyen, T.; Nguyen, L. Groundwater pollution by longstanding cemetery and solutions for urban cemetery planning in Ho Chi Minh City—From reality to solutions. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 193, p. 02008. [Google Scholar] [CrossRef]
- Scalenghe, R.; Pantani, O.L. Connecting existing cemeteries saving good soils (for livings). Sustainability 2020, 12, 93. [Google Scholar] [CrossRef] [Green Version]
- da Cruz, N.J.T.; Lezana, Á.G.R.; Freire dos Santos, P.D.C.; Santana Pinto, I.M.B.; Zancan, C.; Silva de Souza, G.H. Environmental impacts caused by cemeteries and crematoria, new funeral technologies, and preferences of the Northeastern and Southern Brazilian population as for the funeral process. Environ. Sci. Pollut. Res. 2017, 24, 24121–24134. [Google Scholar] [CrossRef] [PubMed]
- Guayasamín Vergara, J.D. Establecimiento De Índices Empíricos Ambientales Para Manejo De Cadáveres Humanos: Entierro Y Cremación En Ecuador. Master’s Thesis, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador, 2021. [Google Scholar]
- Niţǎ, M.R.; Iojǎ, I.C.; Rozylowicz, L.; Onose, D.A.; Tudor, A.C. Land use consequences of the evolution of cemeteries in the Bucharest Metropolitan Area. J. Environ. Plan. Manag. 2014, 57, 1066–1082. [Google Scholar] [CrossRef]
- Nguyen, X.L.; Chou, T.Y.; Hoang, T.V.; Fang, Y.M.; Nguyen, Q.H. Research on Optimal Cemetery Location Selection using Approach of Fuzzy Set Theory and Analytic Hierarchy Process in Environment of Geographic Information System: A Case Study in Hung Ha District, pages 1–9 Thai Binh province, Vietnam. Int. J. Res. Innov. Earth Sci. 2019, 6, 20–28. [Google Scholar]
- Baden, B.M.; Coursey, D.L. The locality of waste sites within the city of Chicago: A demographic, social, and economic analysis. Resour. Energy Econ. 2002, 24, 53–93. [Google Scholar] [CrossRef]
- Neckel, A.; Korcelski, C.; Kujawa, H.A.; Schaefer da Silva, I.; Prezoto, F.; Walker Amorin, A.L.; Maculan, L.S.; Gonçalves, A.C.; Bodah, E.T.; Bodah, B.W.; et al. Hazardous elements in the soil of urban cemeteries; constructive solutions aimed at sustainability. Chemosphere 2021, 262, 128248. [Google Scholar] [CrossRef] [PubMed]
- Tudor, C.A.; Iojǎ, I.C.; Hersperger, A.; Pǎtru-Stupariu, I. Is the residential land use incompatible with cemeteries location? Assessing the attitudes of urban residents. Carpathian J. Earth Environ. Sci. 2013, 8, 153–162. [Google Scholar]
- Schneider, A.; Mertes, C.M.; Tatem, A.J.; Tan, B.; Sulla-Menashe, D.; Graves, S.J.; Patel, N.N.; Horton, J.A.; Gaughan, A.E.; Rollo, J.T.; et al. A new urban landscape in East-Southeast Asia, 2000–2010. Environ. Res. Lett. 2015, 10, 034002. [Google Scholar] [CrossRef]
- Fistola, R. The unsustainable city. Urban entropy and social capital: The needing of a new urban planning. Procedia Eng. 2011, 21, 976–984. [Google Scholar] [CrossRef] [Green Version]
- Peluso, F.; Vives, L.; Varni, M.; Cazenave, G.; González Castelain, J.; Usunoff, E. Evaluación preventiva espacial del riesgo sanitario por la instalación de un cementerio parque. GeoFocus. Rev. Int. De Cienc. Y Tecnol. De La Inf. Geográfica 2006, 6, 1–14. [Google Scholar]
- Larkin, M.T. An Analysis of Land Use Planning Policies for Cemeteries in Ontario. Master’s Thesis, Ryerson University, Toronto, ON, Canada, 2011. [Google Scholar]
- Liang, X.; Liu, X.; Li, D.; Zhao, H.; Chen, G. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. Int. J. Geogr. Inf. Sci. 2018, 32, 2294–2316. [Google Scholar] [CrossRef]
- Fernández, M.L.; Asís, O.; Turturro, C. Los cementerios territorios de memoria urbana e identidad. J. Chem. Inf. Model. 2013, 53, 1689–1699. [Google Scholar]
- Fiedler, S.; Graw, M. Decomposition of buried corpses, with special reference to the formation of adipocere. Naturwissenschaften 2003, 90, 291–300. [Google Scholar] [CrossRef]
- Rodriguez, W.C.; Bass, W.M. Decomposition of Buried Bodies and Methods That May Aid in Their Location. J. Forensic Sci. 1985, 30, 11017J. [Google Scholar] [CrossRef]
- Casper, J.L.; William Balfour, G. A Handbook of the Practice of Forensic Medicine, Based upon Personal Experience; Balfour, G.W., Translator; New Sydenham Society: London, UK, 1989; Volume 1, pp. 36–45. ISBN 1376611694. [Google Scholar]
- Carter, D.O.; Yellowlees, D.; Tibbett, M. Moisture can be the dominant environmental parameter governing cadaver decomposition in soil. Forensic Sci. Int. 2010, 200, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Mego Julca, G. Descomposición Cadavérica y Determinación del Intervalo Post-Mortem. Skopein 2016, 12, 5. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=5559749&info=resumen&idioma=SPA12,5 (accessed on 25 October 2021).
- Schroeder, H.; Klotzbach, H.; Oesterhelweg, L.; Püschel, K. Larder beetles (Coleoptera, Dermestidae) as an accelerating factor for decomposition of a human corpse. Forensic Sci. Int. 2002, 127, 231–236. [Google Scholar] [CrossRef]
- Neckel, A.; Costa, C.; Mario, D.N.; Sabadin, C.E.S.; Bodah, E.T. Environmental damage and public health threat caused by cemeteries: A proposal of ideal cemeteries for the growing urban sprawl. Urbe 2017, 9, 216–230. [Google Scholar] [CrossRef]
- Scottish Environment Protection Agency Land Use Planning System SEPA Guidance Note Guidance on Assessing the Impacts of Cemeteries on Groundwater Uncontrolled Document When Printed Out. 2015. Available online: http://map.sepa.org.uk/floodmap/map.htm (accessed on 9 April 2021).
- Aroha, M.; Michele, W. Cemetery Setback Distance To Prevent Surface Water Contamination. Natl. Collab. Cent. Environ. Health 2017, 2–7. Available online: https://ncceh.ca/sites/default/files/Cemetery_setback_distances_surface_water_contamination-Oct_2017.pdf (accessed on 25 October 2021).
- Zychowski, J.; Bryndal, T. Impact of cemeteries on groundwater contamination by bacteria and viruses—A review. J. Water Health 2015, 13, 285–301. [Google Scholar] [CrossRef]
- Turner, B.L.; Haygarth, P.M. Phosphorus Forms and Concentrations in Leachate under Four Grassland Soil Types. Soil Sci. Soc. Am. J. 2000, 64, 1090–1099. [Google Scholar] [CrossRef]
- Neckel, A.; Korcelski, C.; Silva, L.F.O.; Kujawa, H.A.; Bodah, B.W.; Figueiredo, A.M.R.; Maculan, L.S.; Gonçalves, A.C.; Bodah, E.T.; Moro, L.D. Metals in the soil of urban cemeteries in Carazinho (South Brazil) in view of the increase in deaths from COVID-19: Projects for cemeteries to mitigate environmental impacts. Environ. Dev. Sustain. 2021, 1–24. [Google Scholar] [CrossRef]
- Eche, J.J.E. Evaluación de impacto ambiental de un cementerio tipo parque ecológico. Rev. Del Inst. De Investig. De La Fac. De Ing. Geológica Min. Met. Y Geográfica 2012, 4, 53–58. [Google Scholar] [CrossRef]
- Sumino, K.; Hayakawa, K.; Shibata, T.; Kitamura, S. Heavy metals in normal japanese tissues. Arch. Environ. Health 1975, 30, 487–494. [Google Scholar] [CrossRef]
- Organización Panamericana de la Salud. La Gestión De Cadáveres En Situaciones De Desastres, 6th ed.; Morgan, O., Tidball-Binz, M., Alphen, D.V., Eds.; Organización Panamericana de la Salud: Washington, DC, USA, 2017; ISBN 9275326304I. [Google Scholar]
- Rodrigues, L.; Pacheco, A. Groundwater contamination from cemeteries cases of study. In Proceedings of the Environmental 2010: Situation and Perspectives for the European Union, Porto, Portugal, 6–10 May 2003; Available online: http://www.waylandwells.info/wp-content/uploads/2012/07/Groundwater-Contamination-from-Cemeteries-Case-Studies-2010.pdf (accessed on 13 October 2021).
- Aruomero, A.S.; Afolabi, O. Comparative assessment of trace metals in soils associated with casket burials: Towards implementing green burials. EJSS 2014, 3, 65. [Google Scholar] [CrossRef] [Green Version]
- Jonker, C.; Olivier, J. Mineral Contamination from Cemetery Soils: Case Study of Zandfontein Cemetery, South Africa. Int. J. Environ. Res. Public Health 2012, 9, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Harker, A. Landscapes of the dead: An argument for conservation burial. Berkeley Plan. J. 2012, 25, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Velasquez Viza, O.A. Evaluación Del Impacto Ambiental De Los Residuos Sólidos Generados En El Cementerio Del Distrito De Paucarcolla. Master’s Thesis, Universidad Nacional del Altiplano, Puno, Peru, 2019. [Google Scholar]
- Garcia, P.J.; Alarcón, A.; Bayer, A.; Buss, P.; Guerra, G.; Ribeiro, H.; Rojas, K.; Saenz, R.; de Snyder, N.S.; Solimano, G.; et al. COVID-19 Response in Latin America. Am. J. Trop. Med. Hyg. 2020, 103, 1765–1772. [Google Scholar] [CrossRef] [PubMed]
- Huamaní, N.; Orosco, J. Análisis Comparativo Y Proyección Por Millón De Habitantes De. Ciecia Y Tecnol. 2021, 37, 37–44. [Google Scholar]
- Ministerio De Salud Pública Ministra De Salud Confirma Muerte De Paciente Por COVID-19. Ministerio De Salud Pública Del Ecuador. 2020. Available online: https://www.salud.gob.ec/ministra-de-salud-confirma-muerte-de-paciente-por-covid-19/ (accessed on 17 October 2021).
- Ministerio de Salud Pública del Ecuador. Reglamento Para Regular El Funcionamiento De Los Establecimientos Que Prestan Servicios Funerarios Y De Manejo De Cadáveres Y Restos Humanos; Estado de Ecuador: Quito, Ecuador, 2013; pp. 1–15. [Google Scholar]
- Ministerio de Salud Pública. Acuerdo Ministerial No. 192: Reglamento Para Establecimientos De Servicios Funerarios Y Manejo De Cadaveres; Estado de Ecuador: Quito, Ecuador, 2018; p. 13. [Google Scholar]
- Arcos Yánez, E.S. Identificación De Zonas Ambientalmente No Adecuadas Para La Ubicación De Camposantos En Los Cantones Mejía, Quito y Rumiñahui; Universidad de las Fuerzas Armdas “ESPE”: Sangolquí, Ecuador, 2020. [Google Scholar]
- Instituto Nacional De Estadísticas Y Censos Registro Estadístico De Defunciones Generales 2019. 2020. Available online: www.ecuadorencifras.gob.ec (accessed on 17 October 2021).
- Instituto Nacional de Estadísticas y Censos Boletín Técnico Registro Estadístico de Defunciones Generales 2020. 2021. Available online: https://www.ecuadorencifras.gob.ec/institucional/ (accessed on 17 October 2021).
- Toulkeridis, T.; Seqqat, R.; Arias, M.T.; Salazar-Martinez, R.; Ortiz-Prado, E.; Chunga, S.; Vizuete, K.; Heredia-R, M.; Debut, A. Volcanic ash as a precursor for SARS-CoV-2 infection among susceptible populations in Ecuador: A satellite Imaging and excess mortality-based analysis. Disaster Med. Public Health Prep. 2021, 1–13. [Google Scholar] [CrossRef]
- Quitocómovamos Información Sobre Demografía Quito Como Vamos 2020 Demografía Crecimiento Poblacional Y Expansión Rural Densidad Poblacional Población Por Sexo Y Edad. Available online: https://quitocomovamos.org/wp-content/uploads/2021/05/1.DEMOGRAFÍA.pdf (accessed on 28 December 2021).
- Durães, N.; Novo, L.A.B.; Candeias, C.; Da Silva, E.F. Distribution, transport and fate of pollutants. In Soil Pollution: From Monitoring to Remediation; Academic Press: Cambridge, MA, USA, 2017; pp. 29–57. ISBN 9780128498736. [Google Scholar]
- Cantarero, L.; Méndez, D. Evaluación De Pavimentos De Adoquín En Vías Rurales De Nicaragua; Universidad Nacional De Ingenieria Recinto Universitario Pedro Arauz: Managua, Nicaragua, 2003. [Google Scholar]
- Norma Oficial Mexicana. NOM-021-SEMARNAT-2000 que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. D. Ofical La Fed. 2002, 85. Available online: https://www.scienceopen.com/document?vid=52610ad1-f53c-437b-9190-fc5025bafd93 (accessed on 28 December 2021).
- ISO 11265:1994(E); Soil Quality—Determination of the Specific Electrical Conductivity. Technical Committee ISO: Geneva, Switzerland, 1996. Available online: https://www.iso.org/obp/ui/#iso:std:iso:11265:ed-1:v1:en (accessed on 4 October 2021).
- Brandi, J.; Wilson-Wilde, L. Standard Methods. In Encyclopedia of Forensic Sciences, 23rd ed.; Baird, R., Eaton, A., Rice, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 522–527. ISBN 9780123821652. [Google Scholar]
- TMECC Method 05.07. Organic and Biological Properties 05.06 Odor. Quality. 2001. Available online: http://www.colinst.com (accessed on 4 October 2021).
- Sadzawka, A.; María, A.; Carrasco, R.; Grez, R. Métodos De Análisis De Compost Revisión 2005; Centro Regional de Investigación La Platina SERIE ACTAS INIA-No 30: Satiago, Chile, 2005. [Google Scholar]
- Ministerio de Salud Pública del Ecuador. Texto Unificado de Legislación Ambiental Secundaria; Libro VI: Calidad Ambiental; Estado de Ecuador: Quito, Ecuador, 2014; pp. 1–477. [Google Scholar]
- American Public Health Association; American Water Works Association; Water Pollution Control Federation. Métodos Normalizados Para El Análisis De Aguas Potables Y Residuales; Franson, M.A., Ed.; Ediciones Díaz de Santos: Mexico City, Mexico, 2013; Volume 53, ISBN 9788578110796. [Google Scholar]
- Canadian Council of Ministers of the Environment Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health—Canadian Environmental Quality Guidelines. 1999. Available online: http://www.ccme.ca/publications/ceqg_rcqe.html?category_id=125 (accessed on 14 January 2022).
- Municipio Del Distrito Metropolitano De Quito Plan De Uso Y Gestión Del Suelo 2020–2030. 2020. Available online: http://www.quitoinforma.gob.ec/2021/08/18/listo-el-plan-de-uso-y-gestion-de-suelo-para-quito/ (accessed on 23 October 2021).
- Municipio Del Distrito Metropolitano De Quito Informe De Regulación Metropolitana. Available online: https://pam.quito.gob.ec/mdmq_web_irm/irm/buscarPredio.jsf (accessed on 19 November 2021).
- Tulsma norma de calidad ambiental del recurso suelo y criterios de remediación para suelos contaminados. Tabla 3—Criterios de Remediación Restauración (Uso Agrícola). In REFORMA TEXTO UNIFICADO Legis. Secund. MEDIO Ambient. Libr. VI, Anexo 2, Decreto Ejec. 3516; Estado de Ecuador: Quito, Ecuador, 2015. [Google Scholar]
- Municipio del Distrito Metropolitano de Quito Norma Técnica de la Ordenanza Metropolitana N° 404—Resolución N° 002-2014-SA 2014; Estado de Ecuador: Quito, Ecuador, 2014; pp. 1–76.
- Kempen, B.; Brus, D.J.; Stoorvogel, J.J. Three-dimensional mapping of soil organic matter content using soil type-specific depth functions. Geoderma 2011, 162, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Leinweber, P.; Eckhardt, K.U.; Sparks, D.L. The composition and stability of clay-associated organic matter along a soil profile. Soil Syst. 2018, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Sierra, C. El pH del Suelo. D. El Mercur. 2017, 1–10. Available online: https://hgic.clemson.edu/factsheet/cambiando-el-ph-del-suelo/ (accessed on 14 September 2021).
- Castellanos, J.Z. Guía para la interpretación del análisis de suelo y agua. Intagri 2010, 20. Available online: https://www.intagri.com/public_files/Interpretacion-de-Analisis-de-Suelos-y-Aguas.pdf (accessed on 14 September 2021).
- Sharma, R.K.; Gulati, S. Water Quality Issues and Solutions in India. In Comprehensive Water Quality and Purification; Elsevier Inc.: Amsterdam, The Netherlands, 2014; Volume 1, pp. 21–39. ISBN 9780123821836. [Google Scholar]
- Olías, M.; Nieto, J.M.; Sarmiento, A.M.; Cerón, J.C.; Cánovas, C.R. Seasonal water quality variations in a river affected by acid mine drainage: The Odiel River (South West Spain). Sci. Total Environ. 2004, 333, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Dietz, M.E.; Clausen, J.C. A field evaluation of rain garden flow and pollutant treatment. Water Air Soil Pollut. 2005, 167, 123–138. [Google Scholar] [CrossRef]
- Ostroumov, S.A. On some issues of maintaining water quality and self-purification. Water Resour. 2005, 32, 305–313. [Google Scholar] [CrossRef]
- Wei, G.L.; Yang, Z.F.; Cui, B.S.; Li, B.; Chen, H.; Bai, J.H.; Dong, S.K. Impact of dam construction on water quality and water self-purification capacity of the Lancang River, China. Water Resour. Manag. 2009, 23, 1763–1780. [Google Scholar] [CrossRef]
- Jones, D.L.; Williamson, K.L.; Owen, A.G. Phytoremediation of landfill leachate. Waste Manag. 2006, 26, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Seo, B.H.; Kim, H.S.; Kuppusamy, S.; Kim, K.H.; Kim, K.R. Enhanced nitrogen and phosphorus removal by woody plants with deep-planting technique for the potential environmental management of carcass burial sites. Sustainability 2017, 9, 155. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.H.; Kim, Y.N.; Shin, D.C.; Kim, K.R.; Kim, K.H. Management of animal carcass disposal sites using a biochar permeable reactive barrier and fast growth tree (populus euramericana): A field study in Korea. Sustainability 2017, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Autie, J.; Saanie, T.; Telppanen, P. Assessment of Alternative Disposal Concepts; U.S. Department of Energy Office of Scientific and Technical Information: Washington, DC, USA, 1996; Volume 30, ISBN 9516520111.
- Amaya, L.G.d.C.; Marcel, S.N.; Susana, L. Cierre, sellado y reinserción de antiguos vertederos. experiencias en iberoamérica. Rev. Int. Contam. Ambient. 2016, 32, 123–139. [Google Scholar] [CrossRef] [Green Version]
- Lara Galindo, E.; Zulaica, L.; Flores Domínguez, Á.D. Aportes Conceptuales Y Metodológicos Para La Definición Y Análisis Del Periurbano De La Ciudad De Puebla, México. Rev. Estud. Marítimos Y Soc. 2019, 14, 12–34. Available online: https://ri.conicet.gov.ar/handle/11336/121513 (accessed on 25 November 2021).
- Yarwood, R.; Sidaway, J.D.; Kelly, C.; Stillwell, S. Sustainable deathstyles? The geography of green burials in Britain. Geogr. J. 2015, 181, 172–184. [Google Scholar] [CrossRef]
- Hart, A. Circular economy: Closing the catalyst loop with metal reclamation from spent catalysts, industrial waste, waste shells and animal bones. Biomass Convers. Biorefinery 2021, 1–16. [Google Scholar] [CrossRef]
Cemetery: | Chillogallo | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Season: | Rainy n = 4 | Dry n = 6 | |||||||||
Location Respect to Cemetery: | Upstream | Downstream | Upstream | Downstream | |||||||
Parameter | pH (6–9) | 7.4 | 7.05 | 7.05 | 7.16 | 7.45 | 7.7 | 7.8 | 6.2 | 7.78 | 7.86 |
Cond. us/cm (280) | 399 | 170.6 | 962 | 183.2 | 252 | 253 | 268 | 249 | 289 | 302 | |
DO mg/L (5) | 4.75 | 6.75 | 4.34 | 7.04 | 6.97 | 6.88 | 6.8 | 6.45 | 6.43 | 6.44 | |
BOD5 mg/L (20) | 77 | 20 | 163 | 10 | 14 | 14 | 17 | 16 | 20 | 28 | |
COD mg/L (40) | 141 | 26 | 266 | 68 | 36 | 31 | 41 | 54 | 51 | 51 | |
Cemetery: | Nanegal | ||||||||||
Season: | Rainy n = 4 | Dry n = 6 | |||||||||
Location Respect to Cemetery: | Upstream | Downstream | Upstream | Downstream | |||||||
Parameter: | pH (6–9) | 6.86 | 6.5 | 7.01 | 6.48 | 7.15 | 7.28 | 7.33 | 7.27 | 7.42 | 7.42 |
Cond. us/cm (280) | 73.9 | 106.45 | 71.1 | 103.04 | 125.6 | 123.4 | 114 | 114.9 | 110.6 | 120.8 | |
DO mg/L (5) | 7.71 | 8.3 | 7.97 | 8.12 | 8.16 | 8.31 | 7.74 | 8.02 | 8.3 | 7.99 | |
BOD5 mg/L (20) | <5 | <5 | <5 | 7 | <5 | <5 | <5 | <5 | <5 | 7 | |
COD mg/L (40) | <8 | <8 | <8 | 57 | 14 | <8 | 18 | 19 | <8 | 51 | |
Cemetery | Cutuglagua | ||||||||||
Season: | Rainy n = 4 | Dry n = 6 | |||||||||
Location Respect to Cemetery | Upstream | Downstream | Upstream | Downstream | |||||||
Parameter: | pH (6–9) | 6.87 | 6.6 | 7.11 | 6.9 | 7.19 | 6.84 | 7.2 | 7.33 | 7.37 | 7.3 |
Cond. us/cm (280) | 273 | 228 | 283 | 223 | 246 | 250 | 255 | 247 | 260 | 257 | |
DO mg/L (5) | 4.78 | 5.74 | 5.81 | 6.5 | 4.61 | 4.61 | 4.72 | 5.74 | 5.77 | 5.86 | |
BOD5 mg/L (20) | 34 | 19 | 33 | 21 | 33 | 31 | 31 | 28 | 26 | 27 | |
COD mg/L (40) | 75 | 46 | 57 | 68 | 65 | 86 | 71 | 46 | 47 | 51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores Gómez, G.; Crisanto-Perrazo, T.; Toulkeridis, T.; Fierro-Naranjo, G.; Guevara-García, P.; Mayorga-Llerena, E.; Vizuete-Freire, D.; Salazar, E.; Sinde-Gonzalez, I. Proposal of an Initial Environmental Management and Land Use for Critical Cemeteries in Central Ecuador. Sustainability 2022, 14, 1577. https://doi.org/10.3390/su14031577
Flores Gómez G, Crisanto-Perrazo T, Toulkeridis T, Fierro-Naranjo G, Guevara-García P, Mayorga-Llerena E, Vizuete-Freire D, Salazar E, Sinde-Gonzalez I. Proposal of an Initial Environmental Management and Land Use for Critical Cemeteries in Central Ecuador. Sustainability. 2022; 14(3):1577. https://doi.org/10.3390/su14031577
Chicago/Turabian StyleFlores Gómez, Geomara, Tania Crisanto-Perrazo, Theofilos Toulkeridis, Greta Fierro-Naranjo, Paulina Guevara-García, Eduardo Mayorga-Llerena, Diego Vizuete-Freire, Esthela Salazar, and Izar Sinde-Gonzalez. 2022. "Proposal of an Initial Environmental Management and Land Use for Critical Cemeteries in Central Ecuador" Sustainability 14, no. 3: 1577. https://doi.org/10.3390/su14031577
APA StyleFlores Gómez, G., Crisanto-Perrazo, T., Toulkeridis, T., Fierro-Naranjo, G., Guevara-García, P., Mayorga-Llerena, E., Vizuete-Freire, D., Salazar, E., & Sinde-Gonzalez, I. (2022). Proposal of an Initial Environmental Management and Land Use for Critical Cemeteries in Central Ecuador. Sustainability, 14(3), 1577. https://doi.org/10.3390/su14031577