Scrutiny of Hybrid Renewable Energy Systems for Control, Power Management, Optimization and Sizing: Challenges and Future Possibilities
Abstract
:1. Introduction
- To provide a detailed study of the various sizing methods and optimization approaches.
- To provide in-depth knowledge of the input and output data required for sizing software tools in HRES.
- To provide detailed scrutiny of the optimization techniques/software used in HES, such as PV_Wind_Other, PV_Other, and Wind_Other, especially in the last two years.
- To present the various control strategies and power management approaches in HRES.
- To compare different control strategies and to discuss the characteristics of power management approaches.
- To present open issues, challenges, confidential analysis, and future prospects of HRES in hybridization with different sources.
2. Sizing Methods
3. Hybrid Renewable Energy System Optimization Techniques
3.1. Types of Optimization Techniques
3.1.1. Classical Techniques
3.1.2. Artificial Techniques
Fuzzy Logic
Neural Network Algorithm
Meta-Heuristic Optimization
3.1.3. Hybrid Techniques
4. Comparison of Optimization Techniques
4.1. PV_Wind_Others Energy Sources
4.2. PV_Others Energy Sources
4.3. Wind_Others Energy Sources
5. Control and Power Management Approaches in HRES
5.1. Control Mechanisms of HRES
5.2. Management Strategy of HRES
6. Challenges and Future Possibilities
6.1. Barriers/Challenges in Adopting HRES
6.1.1. Policies, Institutions, and Regulations
6.1.2. Economic and Financial Challenges
6.1.3. Challenges Faced by the Designers
6.1.4. Technical/Technological Barriers
6.1.5. Environmental Barriers
6.1.6. Legal Barriers
6.1.7. Challenges in Socio-Culture
6.2. Future Prospects of HRESs
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kartal, M.T. The Role of Consumption of Energy, Fossil Sources, Nuclear Energy, and Renewable Energy on Environmental Degradation in Top-Five Carbon Producing Countries. Renew. Energy 2022, 184, 871–880. [Google Scholar] [CrossRef]
- Wang, W.; Fan, L.W.; Zhou, P. Evolution of Global Fossil Fuel Trade Dependencies. Energy 2022, 238, 121924. [Google Scholar] [CrossRef]
- Cai, W.; Li, X.; Maleki, A.; Pourfayaz, F.; Rosen, M.A.; Alhuyi Nazari, M.; Bui, D.T. Optimal Sizing and Location Based on Economic Parameters for an Off-Grid Application of a Hybrid System with Photovoltaic, Battery and Diesel Technology. Energy 2020, 201, 117480. [Google Scholar] [CrossRef]
- Sharma, P.; Reddy Salkuti, S.; Kim, S.-C. Advancements in Energy Storage Technologies for Smart Grid Development. Int. J. Electr. Comput. Eng. 2022, 12, 3421. [Google Scholar] [CrossRef]
- Singh, S.; Singh, M.; Kaushik, S.C. Feasibility Study of an Islanded Microgrid in Rural Area Consisting of PV, Wind, Biomass and Battery Energy Storage System. Energy Convers. Manag. 2016, 128, 178–190. [Google Scholar] [CrossRef]
- Senjyu, T.; Hayashi, D.; Yona, A.; Urasaki, N.; Funabashi, T. Optimal Configuration of Power Generating Systems in Isolated Island with Renewable Energy. Renew. Energy 2007, 32, 1917–1933. [Google Scholar] [CrossRef]
- Enslin, J.H.R. Renewable Energy as an Economic Energy Source for Remote Areas. Renew. Energy 1991, 1, 243–248. [Google Scholar] [CrossRef]
- Krewitt, W. Integration of Renewable Energy into Future Energy Systems. In IPCC Scoping Meeting on Renewable Energy Sources; Cambridge University Press: Cambridge, UK, 2008; Chapter 8. [Google Scholar]
- Come Zebra, E.I.; van der Windt, H.J.; Nhumaio, G.; Faaij, A.P.C. A Review of Hybrid Renewable Energy Systems in Mini-Grids for off-Grid Electrification in Developing Countries. Renew. Sustain. Energy Rev. 2021, 144, 111036. [Google Scholar] [CrossRef]
- Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.; Muttaqi, K.M.; Moghavvemi, S. Effective Utilization of Excess Energy in Standalone Hybrid Renewable Energy Systems for Improving Comfort Ability and Reducing Cost of Energy: A Review and Analysis. Renew. Sustain. Energy Rev. 2015, 42, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, P.; Kalam, A.; Zayegh, A. Solar–Wind Hybrid Renewable Energy System: Current Status of Research on Configurations, Control, and Sizing Methodologies. In Hybrid-Renewable Energy Systems in Microgrids; Elsevier: Amsterdam, The Netherlands, 2018; pp. 219–248. [Google Scholar]
- International Renewable Energy Agency. Renewable Capacity Highlights; IRENA: Abu Dhabi, United Arab Emirates, 2021. [Google Scholar]
- Srivastava, S.D.; Banerjee, R.; Tech, M.; Asce, A.M.; Ie, M.; Professor, A. Hybrid Renewable Energy Systems & Their Suitability in Rural Regions. IOSR J. Mech. Civ. Eng. Ver. I 2015, 12, 117–120. [Google Scholar] [CrossRef]
- Mohammed, Y.S.; Mustafa, M.W.; Bashir, N. Hybrid Renewable Energy Systems for Off-Grid Electric Power: Review of Substantial Issues. Renew. Sustain. Energy Rev. 2014, 35, 527–539. [Google Scholar] [CrossRef]
- Belatrache, D.; Saifi, N.; Harrouz, A.; Bentouba, S. Modelling and Numerical Investigation of the Thermal Properties Effect on the Soil Temperature in Adrar Region. Alger. J. Renew. Energy Sustain. Dev. 2020, 2, 165–174. [Google Scholar] [CrossRef]
- Abdelaal, A.K.; Mohamed, E.F.; El-Fergany, A.A. Optimal Scheduling of Hybrid Sustainable Energy Microgrid: A Case Study for a Resort in Sokhna, Egypt. Sustainability 2022, 14, 12948. [Google Scholar] [CrossRef]
- Hatziargyriou, N.; Jenkins, N.; Strbac, G.; Pecas Lopes, J.A.; Ruela, J.; Engler, A.; Oyarzabal, J.; Kariniotakis, G.; Amorim, A. Microgrids–Large Scale Integration of Microgeneration to Low Voltage Grids. In Proceedings of the 41st International Conference on Large High Voltage Electric Systems 2006, CIGRE 2006, Paris, France, 27 August–1 September 2006. [Google Scholar]
- Soultanis, N.L.; Papathanasiou, S.A.; Hatziargyriou, N.D. A Stability Algorithm for the Dynamic Analysis of Inverter Dominated Unbalanced LV Microgrids. IEEE Trans. Power Syst. 2007, 22, 294–304. [Google Scholar] [CrossRef]
- Gupta, A.; Saini, R.P.; Sharma, M.P. Steady-State Modelling of Hybrid Energy System for off Grid Electrification of Cluster of Villages. Renew. Energy 2010, 35, 520–535. [Google Scholar] [CrossRef]
- Kanase-Patil, A.B.; Saini, R.P.; Sharma, M.P. Sizing of Integrated Renewable Energy System Based on Load Profiles and Reliability Index for the State of Uttarakhand in India. Renew. Energy 2011, 36, 2809–2821. [Google Scholar] [CrossRef]
- Ahn, S.-H.; Lee, K.-T.; Bhandari, B.; Lee, G.-Y.; Lee, C.S.-Y.; Song, C.-K. Formation Strategy of Renewable Energy Sources for High Mountain Off-Grid System Considering Sustainability. J. Korean Soc. Precis. Eng. 2012, 29, 958–963. [Google Scholar] [CrossRef] [Green Version]
- Yekini Suberu, M.; Wazir Mustafa, M.; Bashir, N. Energy Storage Systems for Renewable Energy Power Sector Integration and Mitigation of Intermittency. Renew. Sustain. Energy Rev. 2014, 35, 499–514. [Google Scholar] [CrossRef]
- Angelis-Dimakis, A.; Biberacher, M.; Dominguez, J.; Fiorese, G.; Gadocha, S.; Gnansounou, E.; Guariso, G.; Kartalidis, A.; Panichelli, L.; Pinedo, I.; et al. Methods and Tools to Evaluate the Availability of Renewable Energy Sources. Renew. Sustain. Energy Rev. 2011, 15, 1182–1200. [Google Scholar] [CrossRef]
- Mishra, S.; Saini, G.; Saha, S.; Chauhan, A.; Kumar, A.; Maity, S. A Survey on Multi-Criterion Decision Parameters, Integration Layout, Storage Technologies, Sizing Methodologies and Control Strategies for Integrated Renewable Energy System. Sustain. Energy Technol. Assess. 2022, 52, 102246. [Google Scholar] [CrossRef]
- Gopinathan, N.; Shanmugam, P.K. Energy Anxiety in Decentralized Electricity Markets: A Critical Review on EV Models. Energies 2022, 15, 5230. [Google Scholar] [CrossRef]
- Bernal-Agustín, J.L.; Dufo-López, R. Simulation and Optimization of Stand-Alone Hybrid Renewable Energy Systems. Renew. Sustain. Energy Rev. 2009, 13, 2111–2118. [Google Scholar] [CrossRef]
- Zhang, W.; Maleki, A.; Rosen, M.A.; Liu, J. Sizing a Stand-Alone Solar-Wind-Hydrogen Energy System Using Weather Forecasting and a Hybrid Search Optimization Algorithm. Energy Convers. Manag. 2019, 180, 609–621. [Google Scholar] [CrossRef]
- Ma, W.; Xue, X.; Liu, G. Techno-Economic Evaluation for Hybrid Renewable Energy System: Application and Merits. Energy 2018, 159, 385–409. [Google Scholar] [CrossRef]
- Baneshi, M.; Hadianfard, F. Techno-Economic Feasibility of Hybrid Diesel/PV/Wind/Battery Electricity Generation Systems for Non-Residential Large Electricity Consumers under Southern Iran Climate Conditions. Energy Convers. Manag. 2016, 127, 233–244. [Google Scholar] [CrossRef]
- Tawfik, T.M.M.; Badr, M.A.A.; El-Kady, E.Y.; Abdellatif, O.E.E. Optimization and Energy Management of Hybrid Standalone Energy System: A Case Study. Renew. Energy Focus 2018, 25, 48–56. [Google Scholar] [CrossRef]
- Ammari, C.; Belatrache, D.; Touhami, B.; Makhloufi, S. Sizing, Optimization, Control and Energy Management of Hybrid Renewable Energy System—A Review. Energy Built Environ. 2021, 3, 399–411. [Google Scholar] [CrossRef]
- Mills, A.; Al-Hallaj, S. Simulation of Hydrogen-Based Hybrid Systems Using Hybrid2. Int. J. Hydrogen Energy 2004, 29, 991–999. [Google Scholar] [CrossRef]
- Khatib, T.; Ibrahim, I.A.; Mohamed, A. A Review on Sizing Methodologies of Photovoltaic Array and Storage Battery in a Standalone Photovoltaic System. Energy Convers. Manag. 2016, 120, 430–448. [Google Scholar] [CrossRef]
- Kumar, P.; Deokar, S. Designing and Simulation Tools of Renewable Energy Systems: Review Literature. In Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2018; Volume 563, pp. 315–324. [Google Scholar]
- Anoune, K.; Laknizi, A.; Bouya, M.; Astito, A.; Ben Abdellah, A. Sizing a PV-Wind Based Hybrid System Using Deterministic Approach. Energy Convers. Manag. 2018, 169, 137–148. [Google Scholar] [CrossRef]
- Tezer, T.; Yaman, R.; Yaman, G. Evaluation of Approaches Used for Optimization of Stand-Alone Hybrid Renewable Energy Systems. Renew. Sustain. Energy Rev. 2017, 73, 840–853. [Google Scholar] [CrossRef]
- Eriksson, E.L.V.; Gray, E.M. Optimization and Integration of Hybrid Renewable Energy Hydrogen Fuel Cell Energy Systems–A Critical Review. Appl. Energy 2017, 202, 348–364. [Google Scholar] [CrossRef]
- Siddaiah, R.; Saini, R.P. A Review on Planning, Configurations, Modeling and Optimization Techniques of Hybrid Renewable Energy Systems for off Grid Applications. Renew. Sustain. Energy Rev. 2016, 58, 376–396. [Google Scholar] [CrossRef]
- Ghofrani, M.; Hosseini, N.N. Optimizing Hybrid Renewable Energy Systems: A Review. In Sustainable Energy–Technological Issues, Applications and Case Studies; IntechOpen: London, UK, 2016. [Google Scholar]
- Farag, A.; Al-Baiyat, S.; Cheng, T.C. Economic Load Dispatch Multiobjective Optimization Procedures Using Linear Programming Techniques. IEEE Trans. Power Syst. 1995, 10, 731–738. [Google Scholar] [CrossRef]
- Chakir, A.; Abid, M.; Tabaa, M.; Hachimi, H. Demand-Side Management Strategy in a Smart Home Using Electric Vehicle and Hybrid Renewable Energy System. Energy Rep. 2022, 8, 383–393. [Google Scholar] [CrossRef]
- Holtwerth, A.; Xhonneux, A.; Muller, D. Data-Driven Generation of Mixed-Integer Linear Programming Formulations for Model Predictive Control of Hybrid Energy Storage Systems Using Detailed Nonlinear Simulation Models. In Proceedings of the 2022 Open Source Modelling and Simulation of Energy Systems (OSMSES), Aachen, Germany, 4–5 April 2022; pp. 1–6. [Google Scholar]
- Huneke, F.; Henkel, J.; Benavides González, J.A.; Erdmann, G. Optimisation of Hybrid Off-Grid Energy Systems by Linear Programming. Energy. Sustain. Soc. 2012, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Memon, S.A.; Mehta, D.R.; Patel, V.A.; Upadhyay, D.S.; Patel, R.N. Hybrid Energy Storage System for Improved Response Time and Long-Term Energy Storage. Mater. Today Proc. 2022, 67, 238–244. [Google Scholar] [CrossRef]
- Vaccari, M.; Mancuso, G.M.; Riccardi, J.; Cantù, M.; Pannocchia, G. A Sequential Linear Programming Algorithm for Economic Optimization of Hybrid Renewable Energy Systems. J. Process. Control. 2019, 74, 189–201. [Google Scholar] [CrossRef]
- Liang, Z.; Liang, Y.; Luo, X.; Chen, J.; Yang, Z.; Wang, C.; Chen, Y. Superstructure-Based Mixed-Integer Nonlinear Programming Framework for Hybrid Heat Sources Driven Organic Rankine Cycle Optimization. Appl. Energy 2022, 307, 118277. [Google Scholar] [CrossRef]
- Liu, F.; Mo, Q.; Yang, Y.; Li, P.; Wang, S.; Xu, Y. A Nonlinear Model-Based Dynamic Optimal Scheduling of a Grid-Connected Integrated Energy System. Energy 2022, 243, 123115. [Google Scholar] [CrossRef]
- Bahlawan, H.; Morini, M.; Pinelli, M.; Spina, P.R.; Venturini, M. Optimization of Energy and Economic Scheduling of a Hybrid Energy Plant by Using a Dynamic Programming Approach. Appl. Therm. Eng. 2021, 187, 116577. [Google Scholar] [CrossRef]
- Zou, B.; Peng, J.; Li, S.; Li, Y.; Yan, J.; Yang, H. Comparative Study of the Dynamic Programming-Based and Rule-Based Operation Strategies for Grid-Connected PV-Battery Systems of Office Buildings. Appl. Energy 2022, 305, 117875. [Google Scholar] [CrossRef]
- Zhao, Z.-H. Improved Fuzzy Logic Control-Based Energy Management Strategy for Hybrid Power System of FC/PV/Battery/SC on Tourist Ship. Int. J. Hydrogen Energy 2022, 47, 9719–9734. [Google Scholar] [CrossRef]
- Kumar, N.K.; Gopi, R.S.; Kuppusamy, R.; Nikolovski, S.; Teekaraman, Y.; Vairavasundaram, I.; Venkateswarulu, S. Fuzzy Logic-Based Load Frequency Control in an Island Hybrid Power System Model Using Artificial Bee Colony Optimization. Energies 2022, 15, 2199. [Google Scholar] [CrossRef]
- Mahmoudi, S.M.; Maleki, A.; Rezaei Ochbelagh, D. A Novel Method Based on Fuzzy Logic to Evaluate the Storage and Backup Systems in Determining the Optimal Size of a Hybrid Renewable Energy System. J. Energy Storage 2022, 49, 104015. [Google Scholar] [CrossRef]
- Yuan, H.-B.; Zou, W.-J.; Jung, S.; Kim, Y.-B. Optimized Rule-Based Energy Management for a Polymer Electrolyte Membrane Fuel Cell/Battery Hybrid Power System Using a Genetic Algorithm. Int. J. Hydrogen Energy 2022, 47, 7932–7948. [Google Scholar] [CrossRef]
- Amirtharaj, S.; Premalatha, L.; Gopinath, D. Optimal Utilization of Renewable Energy Sources in MG Connected System with Integrated Converters: An AGONN Approach. Analog. Integr. Circuits Signal Process. 2019, 101, 513–532. [Google Scholar] [CrossRef]
- Chang, K.-H.; Lin, G. Optimal Design of Hybrid Renewable Energy Systems Using Simulation Optimization. Simul. Model. Pract. Theory 2015, 52, 40–51. [Google Scholar] [CrossRef]
- Khatib, T.; Mohamed, A.; Sopian, K. Optimization of a PV/Wind Micro-Grid for Rural Housing Electrification Using a Hybrid Iterative/Genetic Algorithm: Case Study of Kuala Terengganu, Malaysia. Energy Build. 2012, 47, 321–331. [Google Scholar] [CrossRef]
- Abbes, D.; Martinez, A.; Champenois, G. Life Cycle Cost, Embodied Energy and Loss of Power Supply Probability for the Optimal Design of Hybrid Power Systems. Math. Comput. Simul. 2014, 98, 46–62. [Google Scholar] [CrossRef]
- Rajkumar, R.K.; Ramachandaramurthy, V.K.; Yong, B.L.; Chia, D.B. Techno-Economical Optimization of Hybrid Pv/Wind/Battery System Using Neuro-Fuzzy. Energy 2011, 36, 5148–5153. [Google Scholar] [CrossRef]
- Lujano-Rojas, J.M.; Dufo-López, R.; Bernal-Agustín, J.L. Probabilistic Modelling and Analysis of Stand-Alone Hybrid Power Systems. Energy 2013, 63, 19–27. [Google Scholar] [CrossRef]
- Maleki, A.; Pourfayaz, F. Optimal Sizing of Autonomous Hybrid Photovoltaic/Wind/Battery Power System with LPSP Technology by Using Evolutionary Algorithms. Sol. Energy 2015, 115, 471–483. [Google Scholar] [CrossRef]
- Ukoba, M.O.; Diemuodeke, O.E.; Alghassab, M.; Njoku, H.I.; Imran, M.; Khan, Z.A. Composite Multi-Criteria Decision Analysis for Optimization of Hybrid Renewable Energy Systems for Geopolitical Zones in Nigeria. Sustainability 2020, 12, 5732. [Google Scholar] [CrossRef]
- Sharma, P.; Chinnappa Naidu, R. Optimization Techniques for Grid-Connected PV with Retired EV Batteries in Centralized Charging Station with Challenges and Future Possibilities: A Review. Ain Shams Eng. J. 2022, 101985. [Google Scholar] [CrossRef]
- Zahedi, R.; Moeini-Aghtaie, M. Operational Strategy Optimization of a Hybrid Green Power System Based on Fuzzy Logic Controller with Considering for Optimal Sizing and Analysis of Different Priorities for Energy Storage. Sustain. Energy, Grids Networks 2022, 32, 100809. [Google Scholar] [CrossRef]
- Naderipour, A.; Kamyab, H.; Klemeš, J.J.; Ebrahimi, R.; Chelliapan, S.; Nowdeh, S.A.; Abdullah, A.; Hedayati Marzbali, M. Optimal Design of Hybrid Grid-Connected Photovoltaic/Wind/Battery Sustainable Energy System Improving Reliability, Cost and Emission. Energy 2022, 257, 124679. [Google Scholar] [CrossRef]
- Naderipour, A.; Ramtin, A.R.; Abdullah, A.; Marzbali, M.H.; Nowdeh, S.A.; Kamyab, H. Hybrid Energy System Optimization with Battery Storage for Remote Area Application Considering Loss of Energy Probability and Economic Analysis. Energy 2022, 239, 122303. [Google Scholar] [CrossRef]
- Faritha Banu, J.; Atul Mahajan, R.; Sakthi, U.; Kumar Nassa, V.; Lakshmi, D.; Nadanakumar, V. Artificial Intelligence with Attention Based BiLSTM for Energy Storage System in Hybrid Renewable Energy Sources. Sustain. Energy Technol. Assess. 2022, 52, 102334. [Google Scholar] [CrossRef]
- Chaichan, W.; Waewsak, J.; Nikhom, R.; Kongruang, C.; Chiwamongkhonkarn, S.; Gagnon, Y. Optimization of Stand-Alone and Grid-Connected Hybrid Solar/Wind/Fuel Cell Power Generation for Green Islands: Application to Koh Samui, Southern Thailand. Energy Rep. 2022, 8, 480–493. [Google Scholar] [CrossRef]
- Krishnakumar, R.; Ravichandran, C.S. Reliability and Cost Minimization of Renewable Power System with Tunicate Swarm Optimization Approach Based on the Design of PV/Wind/FC System. Renew. Energy Focus 2022, 42, 266–276. [Google Scholar] [CrossRef]
- Kumar, K.K.P.; Soren, N.; Latif, A.; Das, D.C.; Hussain, S.M.S.; Al-Durra, A.; Ustun, T.S. Day-Ahead DSM-Integrated Hybrid-Power-Management-Incorporated CEED of Solar Thermal/Wind/Wave/BESS System Using HFPSO. Sustainability 2022, 14, 1169. [Google Scholar] [CrossRef]
- Han, Y.; Liao, Y.; Ma, X.; Guo, X.; Li, C.; Liu, X. Modeling and Optimization of a Novel Oxy-Fuel/Solar/Wind/Battery Power Generation System. Appl. Therm. Eng. 2022, 214, 118862. [Google Scholar] [CrossRef]
- Liu, T.; Yang, Z.; Duan, Y.; Hu, S. Techno-Economic Assessment of Hydrogen Integrated into Electrical/Thermal Energy Storage in PV+ Wind System Devoting to High Reliability. Energy Convers. Manag. 2022, 268, 116067. [Google Scholar] [CrossRef]
- Riayatsyah, T.M.I.; Geumpana, T.A.; Fattah, I.M.R.; Rizal, S.; Mahlia, T.M.I. Techno-Economic Analysis and Optimisation of Campus Grid-Connected Hybrid Renewable Energy System Using HOMER Grid. Sustainability 2022, 14, 7735. [Google Scholar] [CrossRef]
- Singh, P.; Pandit, M.; Srivastava, L. Techno-Socio-Economic-Environmental Estimation of Hybrid Renewable Energy System Using Two-Phase Swarm-Evolutionary Algorithm. Sustain. Energy Technol. Assess. 2022, 53, 102483. [Google Scholar] [CrossRef]
- Vakili, S.; Schönborn, A.; Ölçer, A.I. Techno-Economic Feasibility of Photovoltaic, Wind and Hybrid Electrification Systems for Stand-Alone and Grid-Connected Shipyard Electrification in Italy. J. Clean. Prod. 2022, 366, 132945. [Google Scholar] [CrossRef]
- Bhimaraju, A.; Mahesh, A.; Joshi, S.N. Techno-Economic Optimization of Grid-Connected Solar-Wind-Pumped Storage Hybrid Energy System Using Improved Search Space Reduction Algorithm. J. Energy Storage 2022, 52, 104778. [Google Scholar] [CrossRef]
- Udeh, G.T.; Michailos, S.; Ingham, D.; Hughes, K.J.; Ma, L.; Pourkashanian, M. A Modified Rule-Based Energy Management Scheme for Optimal Operation of a Hybrid PV-Wind-Stirling Engine Integrated Multi-Carrier Energy System. Appl. Energy 2022, 312, 118763. [Google Scholar] [CrossRef]
- Castro, M.T.; Pascasio, J.D.A.; Ocon, J.D. Data on the Techno-Economic and Financial Analyses of Hybrid Renewable Energy Systems in 634 Philippine off-Grid Islands. Data Brief 2022, 44, 108485. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, F.; Lu, X.; Lou, Y.; Ma, Y.; Eghbalian, N. Multi-Objective Economic Environmental Energy Management Microgrid Using Hybrid Energy Storage Implementing and Developed Manta Ray Foraging Optimization Algorithm. Electr. Power Syst. Res. 2022, 211, 108181. [Google Scholar] [CrossRef]
- Kazemi, K.; Ebrahimi, M.; Lahonian, M.; Babamiri, A. Micro-Scale Heat and Electricity Generation by a Hybrid Solar Colmoelectric, and Wind Turbinelector-Chimney, Ther. Sustain. Energy Technol. Assess. 2022, 53, 102394. [Google Scholar] [CrossRef]
- Badar, M.; Ahmad, I.; Rehman, S.; Nazir, S.; Waqas, A. Hierarchical Control of Hybrid Direct Current Microgrid with Variable Structure Based Sliding Mode Control and Fuzzy Energy Management System. J. Franklin Inst. 2022, 359, 6856–6892. [Google Scholar] [CrossRef]
- Chennaif, M.; Maaouane, M.; Zahboune, H.; Elhafyani, M.; Zouggar, S. Tri-Objective Techno-Economic Sizing Optimization of Off-Grid and On-Grid Renewable Energy Systems Using Electric System Cascade Extended Analysis and System Advisor Model. Appl. Energy 2022, 305, 117844. [Google Scholar] [CrossRef]
- Rahmani, N.; Mostefai, M. Multi-Objective MPSO/GA Optimization of an Autonomous PV-Wind Hybrid Energy System. Eng. Technol. Appl. Sci. Res. 2022, 12, 8817–8824. [Google Scholar] [CrossRef]
- Si, Y.; Wang, R.; Zhang, S.; Zhou, W.; Lin, A.; Zeng, G. Configuration Optimization and Energy Management of Hybrid Energy System for Marine Using Quantum Computing. Energy 2022, 253, 124131. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Z.; Duan, Y. Capacity Optimization and Feasibility Assessment of Solar-Wind Hybrid Renewable Energy Systems in China. J. Clean. Prod. 2022, 368, 133139. [Google Scholar] [CrossRef]
- Huang, J.; Hou, J.; Wang, Y.; Zheng, H.; Jin, J.; Meng, Q. Energy Management Optimization of Integrated Energy System with Electric Hydrogen Hybrid Energy Storage. J. Phys. Conf. Ser. 2022, 2260, 012036. [Google Scholar] [CrossRef]
- El Boujdaini, L.; Mezrhab, A.; Moussaoui, M.A.; Jurado, F.; Vera, D. Sizing of a Stand-Alone PV–Wind–Battery–Diesel Hybrid Energy System and Optimal Combination Using a Particle Swarm Optimization Algorithm. Electr. Eng. 2022, 104, 3339–3359. [Google Scholar] [CrossRef]
- Paliwal, P. Securing Reliability Constrained Technology Combination for Isolated Micro-Grid Using Multi-Agent Based Optimization. Iran. J. Electr. Electron. Eng. 2022, 18, 2180. [Google Scholar] [CrossRef]
- Rojas, J.P.; García, G.R.; Castillo, D.V. Economic and Environmental Multiobjective Optimization of a Hybrid Power Generation System Using Solar and Wind Energy Source. Int. J. Energy Econ. Policy 2022, 12, 494–499. [Google Scholar] [CrossRef]
- Niveditha, N.; Rajan Singaravel, M.M. Optimal Sizing of Hybrid PV–Wind–Battery Storage System for Net Zero Energy Buildings to Reduce Grid Burden. Appl. Energy 2022, 324, 119713. [Google Scholar] [CrossRef]
- Ali, M.; Kotb, H.; Kareem AboRas, M.; Nabil Abbasy, H. Frequency Regulation of Hybrid Multi-Area Power System Using Wild Horse Optimizer Based New Combined Fuzzy Fractional-Order PI and TID Controllers. Alex. Eng. J. 2022, 61, 12187–12210. [Google Scholar] [CrossRef]
- Rocha, L.C.S.; Rotella Junior, P.; Aquila, G.; Maheri, A. Multiobjective Optimization of Hybrid Wind-Photovoltaic Plants with Battery Energy Storage System: Current Situation and Possible Regulatory Changes. J. Energy Storage 2022, 51, 104467. [Google Scholar] [CrossRef]
- Tay, G.; Acakpovi, A.; Adjei, P.; Aggrey, G.K.; Sowah, R.; Kofi, D.; Afonope, M.; Sulley, M. Optimal Sizing and Techno-Economic Analysis of a Hybrid Solar PV/Wind/Diesel Generator System. IOP Conf. Ser. Earth Environ. Sci. 2022, 1042, 012014. [Google Scholar] [CrossRef]
- Adetoro, S.A.; Ndubuka Nwohu, M.; Olatomiwa, L. Techno-Economic Analysis of Hybrid Energy System Connected to an Unreliable Grid: A Case Study of a Rural Community in Nigeria. In Proceedings of the 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), Lagos, Nigeria, 5–7 April 2022; pp. 1–5. [Google Scholar]
- Mhandu, S.R.; Mary Longe, O. Techno-Economic Analysis of Hybrid PV-Wind-Diesel-Battery Standalone and Grid-Connected Microgrid for Rural Electrification in Zimbabwe. In Proceedings of the 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), Lagos, Nigeria, 5–7 April 2022; pp. 1–5. [Google Scholar]
- Tabak, A.; Kayabasi, E.; Guneser, M.T.; Ozkaymak, M. Grey Wolf Optimization for Optimum Sizing and Controlling of a PV/WT/BM Hybrid Energy System Considering TNPC, LPSP, and LCOE Concepts. Energy Sources Part A Recover. Util. Environ. Eff. 2022, 44, 1508–1528. [Google Scholar] [CrossRef]
- Yimen, N.; Monkam, L.; Tcheukam-Toko, D.; Musa, B.; Abang, R.; Fombe, L.F.; Abbasoglu, S.; Dagbasi, M. Optimal Design and Sensitivity Analysis of Distributed Biomass-based Hybrid Renewable Energy Systems for Rural Electrification: Case Study of Different Photovoltaic/Wind/Battery-integrated Options in Babadam, Northern Cameroon. IET Renew. Power Gener. 2021, 16, 2939–2956. [Google Scholar] [CrossRef]
- Ashagire, A.A.; Adjallah, K.H.; Bekele, G. Optimal Sizing of Hybrid Energy Sources by Using Genetic Algorithm and Particle Swarm Optimization Algorithms Considering Life Cycle Cost. In Proceedings of the 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Mauritius, 7–8 October 2021; pp. 1–6. [Google Scholar]
- Nuvvula, R.S.S.; Elangovan, D.; Teegala, K.S.; Madurai Elavarasan, R.; Islam, M.R.; Inapakurthi, R. Optimal Sizing of Battery-Integrated Hybrid Renewable Energy Sources with Ramp Rate Limitations on a Grid Using ALA-QPSO. Energies 2021, 14, 5368. [Google Scholar] [CrossRef]
- Ara, S.R.; Paul, S.; Rather, Z.H. Two-Level Planning Approach to Analyze Techno-Economic Feasibility of Hybrid Offshore Wind-Solar Pv Power Plants. Sustain. Energy Technol. Assess. 2021, 47, 101509. [Google Scholar] [CrossRef]
- Pavankumar, Y.; Kollu, R.; Debnath, S. Multi-objective Optimization of Photovoltaic/Wind/Biomass/Battery-based Grid-integrated Hybrid Renewable Energy System. IET Renew. Power Gener. 2021, 15, 1528–1541. [Google Scholar] [CrossRef]
- Sifakis, N.; Konidakis, S.; Tsoutsos, T. Hybrid Renewable Energy System Optimum Design and Smart Dispatch for Nearly Zero Energy Ports. J. Clean. Prod. 2021, 310, 127397. [Google Scholar] [CrossRef]
- Khemissi, L.; Khiari, B.; Sellami, A. A Novel Optimal Planning Methodology of an Autonomous Photovoltaic/Wind/Battery Hybrid Power System by Minimizing Economic, Energetic and Environmental Objectives. Int. J. Green Energy 2021, 18, 1064–1080. [Google Scholar] [CrossRef]
- Kharrich, M.; Kamel, S.; Abdeen, M.; Mohammed, O.H.; Akherraz, M.; Khurshaid, T.; Rhee, S.-B. Developed Approach Based on Equilibrium Optimizer for Optimal Design of Hybrid PV/Wind/Diesel/Battery Microgrid in Dakhla, Morocco. IEEE Access 2021, 9, 13655–13670. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Z.; Duan, Y. Optimal Capacity and Operation Strategy of a Solar-Wind Hybrid Renewable Energy System. Energy Convers. Manag. 2021, 244, 114519. [Google Scholar] [CrossRef]
- Demolli, H.; Dokuz, A.S.; Ecemis, A.; Gokcek, M. Location-based Optimal Sizing of Hybrid Renewable Energy Systems Using Deterministic and Heuristic Algorithms. Int. J. Energy Res. 2021, 45, 16155–16175. [Google Scholar] [CrossRef]
- Al-Buraiki, A.S.; Al-Sharafi, A. Technoeconomic Analysis and Optimization of Hybrid Solar/Wind/Battery Systems for a Standalone House Integrated with Electric Vehicle in Saudi Arabia. Energy Convers. Manag. 2021, 250, 114899. [Google Scholar] [CrossRef]
- Samy, M.M.; Mosaad, M.I.; Barakat, S. Optimal Economic Study of Hybrid PV-Wind-Fuel Cell System Integrated to Unreliable Electric Utility Using Hybrid Search Optimization Technique. Int. J. Hydrogen Energy 2021, 46, 11217–11231. [Google Scholar] [CrossRef]
- Kharrich, M.; Kamel, S.; Ellaia, R.; Akherraz, M.; Alghamdi, A.S.; Abdel-Akher, M.; Eid, A.; Mosaad, M.I. Economic and Ecological Design of Hybrid Renewable Energy Systems Based on a Developed IWO/BSA Algorithm. Electronics 2021, 10, 687. [Google Scholar] [CrossRef]
- Singh, S.; Chauhan, P.; Jap Singh, N. Feasibility of Grid-Connected Solar-Wind Hybrid System with Electric Vehicle Charging Station. J. Mod. Power Syst. Clean Energy 2021, 9, 295–306. [Google Scholar] [CrossRef]
- Mudgal, V.; Singh, P.; Khanna, S.; Pandey, C.; Becerra, V.; Mallick, T.K.; Reddy, K.S. Optimization of a Novel Hybrid Wind Bio Battery Solar Photovoltaic System Integrated with Phase Change Material. Energies 2021, 14, 6373. [Google Scholar] [CrossRef]
- Tariq, R.; Cetina-Quiñones, A.J.; Cardoso-Fernández, V.; Daniela-Abigail, H.-L.; Soberanis, M.A.E.; Bassam, A.; De Lille, M.V. Artificial Intelligence Assisted Technoeconomic Optimization Scenarios of Hybrid Energy Systems for Water Management of an Isolated Community. Sustain. Energy Technol. Assess. 2021, 48, 101561. [Google Scholar] [CrossRef]
- Odoi-Yorke, F.; Abaase, S.; Zebilila, M.; Atepor, L. Feasibility Analysis of Solar PV/Biogas Hybrid Energy System for Rural Electrification in Ghana. Cogent Eng. 2022, 9, 2034376. [Google Scholar] [CrossRef]
- Adeyemo, A.A.; Amusan, O.T. Modelling and Multi-Objective Optimization of Hybrid Energy Storage Solution for Photovoltaic Powered off-Grid Net Zero Energy Building. J. Energy Storage 2022, 55, 105273. [Google Scholar] [CrossRef]
- Liu, H.; Wu, B.; Maleki, A. Effects of Dispatch Strategies on Optimum Sizing of Solar-Diesel-Battery Energy Storage-RO Desalination Hybrid Scheme by Efficient Heuristic Algorithm. J. Energy Storage 2022, 54, 104862. [Google Scholar] [CrossRef]
- Kumar, R.; Channi, H.K. A PV-Biomass off-Grid Hybrid Renewable Energy System (HRES) for Rural Electrification: Design, Optimization and Techno-Economic-Environmental Analysis. J. Clean. Prod. 2022, 349, 131347. [Google Scholar] [CrossRef]
- El-Sattar, H.A.; Kamel, S.; Sultan, H.M.; Zawbaa, H.M.; Jurado, F. Optimal Design of Photovoltaic, Biomass, Fuel Cell, Hydrogen Tank Units and Electrolyzer Hybrid System for a Remote Area in Egypt. Energy Rep. 2022, 8, 9506–9527. [Google Scholar] [CrossRef]
- Kumar, P.; Pal, N.; Sharma, H. Optimization and Techno-Economic Analysis of a Solar Photo-Voltaic/Biomass/Diesel/Battery Hybrid off-Grid Power Generation System for Rural Remote Electri Fi Cation in Eastern India. Energy 2022, 247, 123560. [Google Scholar] [CrossRef]
- Gupta, J.; Nijhawan, P.; Ganguli, S. Optimal Sizing of Different Configuration of Photovoltaic, Fuel Cell, and Biomass—Based Hybrid Energy System. Environ. Sci. Pollut. Res. 2022, 29, 17425–17440. [Google Scholar] [CrossRef]
- Das, M.; Mandal, R. The Effect of Photovoltaic Energy Penetration on a Photovoltaic-Biomass-Lithium-Ion off-Grid System and System Optimization for the Agro-Climatic Zones of West Bengal. Sustain. Energy Technol. Assess. 2022, 53, 102593. [Google Scholar] [CrossRef]
- Giridhar, M.S.; Rani, K.R.; Rani, P.S.; Janamala, V. Mayfly Algorithm for Optimal Integration of Hybrid Photovoltaic/Battery Energy Storage/D-STATCOM System for Islanding Operation. Int. J. Intell. Eng. Syst. 2022, 15, 225–232. [Google Scholar] [CrossRef]
- Maleki, A. Optimization Based on Modified Swarm Intelligence Techniques for a Stand-Alone Hybrid Photovoltaic/Diesel/Battery System. Sustain. Energy Technol. Assess. 2022, 51, 101856. [Google Scholar] [CrossRef]
- El-Sattar, H.A.; Kamel, S.; Hassan, M.H.; Jurado, F. Optimal Sizing of an Off-Grid Hybrid Photovoltaic/Biomass Gasifier/Battery System Using a Quantum Model of Runge Kutta Algorithm. Energy Convers. Manag. 2022, 258, 115539. [Google Scholar] [CrossRef]
- Wang, X.; Hua, Q.; Liu, P.; Sun, L. Stochastic Dynamic Programming Based Optimal Energy Scheduling for a Hybrid Fuel Cell/PV/Battery System under Uncertainty. Process Saf. Environ. Prot. 2022, 165, 380–386. [Google Scholar] [CrossRef]
- Maleki, A.; Eskandar Filabi, Z.; Nazari, M.A. Techno-Economic Analysis and Optimization of an Off-Grid Hybrid Photovoltaic–Diesel–Battery System: Effect of Solar Tracker. Sustainability 2022, 14, 7296. [Google Scholar] [CrossRef]
- Kim, J.-W.; Ahn, H.; Seo, H.C.; Lee, S.C. Optimization of Solar/Fuel Cell Hybrid Energy System Using the Combinatorial Dynamic Encoding Algorithm for Searches (CDEAS). Energies 2022, 15, 2779. [Google Scholar] [CrossRef]
- Yuan, X.; Heikari, L.; Hirvonen, J.; Liang, Y.; Virtanen, M.; Kosonen, R.; Pan, Y. System Modelling and Optimization of a Low Temperature Local Hybrid Energy System Based on Solar Energy for a Residential District. Energy Convers. Manag. 2022, 267, 115918. [Google Scholar] [CrossRef]
- Sok, M.; Tao, H. Design Optimization Method and Performance Analysis of 90MW Grid-Connected Solar PV System in Cambodia. J. Phys. Conf. Ser. 2022, 2213, 012027. [Google Scholar] [CrossRef]
- Bhayo, B.A.; Al-Kayiem, H.H.; Gilani, S.I.U.; Khan, N.; Kumar, D. Energy Management Strategy of Hybrid Solar-Hydro System with Various Probabilities of Power Supply Loss. Sol. Energy 2022, 233, 230–245. [Google Scholar] [CrossRef]
- Aditya, I.A.; Simaremare, A. Techno-Economic Assessment of a Hybrid Solar PV/Syngas/Battery Power System for off-Grid Application: Long Pahangai-Indonesia Case Study. J. Phys. Conf. Ser. 2022, 2193, 012001. [Google Scholar] [CrossRef]
- Dash, R.; Bharat, M.; Jena, R.; Swain, S.C. Cost Optimization of Pumped Hydro Storage and PV Plant for Hybrid Mode of Operation Using FPA. In Proceedings of the 2022 3rd International Conference for Emerging Technology (INCET), Belgaum, India, 27–29 May 2022; pp. 1–5. [Google Scholar]
- Yu, D.; Wu, J.; Wang, W.; Gu, B. Optimal Performance of Hybrid Energy System in the Presence of Electrical and Heat Storage Systems under Uncertainties Using Stochastic P-Robust Optimization Technique. Sustain. Cities Soc. 2022, 83, 103935. [Google Scholar] [CrossRef]
- Mohseni, M.; Moosavian, S.F.; Hajinezhad, A. Feasibility Evaluation of an Off-grid Solar-biomass System for Remote Area Electrification Considering Various Economic Factors. Energy Sci. Eng. 2022, 10, 3091–3107. [Google Scholar] [CrossRef]
- Suresh, V.; Jasinski, M.; Leonowicz, Z.; Kaczorowska, D.; Jithendranath, J.; Reddy, K.H. Political-Optimizer-Based Energy-Management System for Microgrids. Electronics 2021, 10, 3119. [Google Scholar] [CrossRef]
- Zheng, Y.; Shen, H.; Li, J. A Techno-Economic Sizing Method for PV/Battery/Grid Hybrid Solar Systems for Residential Buildings. J. Mech. Sci. Technol. 2021, 35, 5245–5254. [Google Scholar] [CrossRef]
- Xu, Y.-P.; Ouyang, P.; Xing, S.-M.; Qi, L.-Y.; Khayatnezhad, M.; Jafari, H. Optimal Structure Design of a PV/FC HRES Using Amended Water Strider Algorithm. Energy Rep. 2021, 7, 2057–2067. [Google Scholar] [CrossRef]
- Thalib, H.; Maarif, S.; Adhi Setiawan, E. Optimization of Solar PV System for Fishery Cold Storage Based on Ownership Model and Regulation Barrier in Indonesia. J. Phys. Conf. Ser. 2021, 2022, 012035. [Google Scholar] [CrossRef]
- Dhar, P.; Chakraborty, N. Optimal Techno-Economic Analysis of a Renewable Based Hybrid Microgrid Incorporating Gravity Energy Storage System in Indian Perspective Using Whale Optimization Algorithm. Int. Trans. Electr. Energy Syst. 2021, 31, e13025. [Google Scholar] [CrossRef]
- Ramadan, H.S.; Iqbal, M.; Becherif, M.; Haes Alhelou, H. Efficient Control and Multi-criteria Energy Scheduling of Renewable-based Utility Grid via Pareto-metaheuristic Optimizers. IET Renew. Power Gener. 2022, 16, 1246–1266. [Google Scholar] [CrossRef]
- Aziz, A.S.; Tajuddin, M.F.N.; Hussain, M.K.; Adzman, M.R.; Ghazali, N.H.; Ramli, M.A.M.; Khalil Zidane, T.E. A New Optimization Strategy for Wind/Diesel/Battery Hybrid Energy System. Energy 2022, 239, 122458. [Google Scholar] [CrossRef]
- Okampo, E.J.; Nwulu, N.; Bokoro, P.N. Economic and Reliability Assessment of Hybrid PRO-RO Desalination Systems Using Brine for Salinity Gradient Energy Production. Sustainability 2022, 14, 3328. [Google Scholar] [CrossRef]
- Li, H.; Zhang, R.; Mahmud, M.A.; Hredzak, B. A Novel Coordinated Optimization Strategy for High Utilization of Renewable Energy Sources and Reduction of Coal Costs and Emissions in Hybrid Hydro-Thermal-Wind Power Systems. Appl. Energy 2022, 320, 119019. [Google Scholar] [CrossRef]
- Yi, T.; Ye, H.; Li, Q.; Zhang, C.; Ren, W.; Tao, Z. Energy Storage Capacity Optimization of Wind-Energy Storage Hybrid Power Plant Based on Dynamic Control Strategy. J. Energy Storage 2022, 55, 105372. [Google Scholar] [CrossRef]
- Petracca, E.; Faraggiana, E.; Ghigo, A.; Sirigu, M.; Bracco, G.; Mattiazzo, G. Design and Techno-Economic Analysis of a Novel Hybrid Offshore Wind and Wave Energy System. Energies 2022, 15, 2739. [Google Scholar] [CrossRef]
- Alshammari, M.E.; Ramli, M.A.M.; Mehedi, I.M. Hybrid Chaotic Maps-Based Artificial Bee Colony for Solving Wind Energy-Integrated Power Dispatch Problem. Energies 2022, 15, 4578. [Google Scholar] [CrossRef]
- Dabar, O.A.; Awaleh, M.O.; Waberi, M.M.; Adan, A.-B.I. Wind Resource Assessment and Techno-Economic Analysis of Wind Energy and Green Hydrogen Production in the Republic of Djibouti. Energy Rep. 2022, 8, 8996–9016. [Google Scholar] [CrossRef]
- Bamisile, O.; Dongsheng, C.; Li, J.; Mukhtar, M.; Wang, X.; Duo, J.; Cao, R.; Huang, Q. An Innovative Approach for Geothermal-Wind Hybrid Comprehensive Energy System and Hydrogen Production Modeling/Process Analysis. Int. J. Hydrogen Energy 2022, 47, 13261–13288. [Google Scholar] [CrossRef]
- Petrović, A.; Đurišić, Ž. Genetic Algorithm Based Optimized Model for the Selection of Wind Turbine for Any Site-Specific Wind Conditions. Energy 2021, 236, 121476. [Google Scholar] [CrossRef]
- Niyomtham, L.; Waewsak, J.; Kongruang, C.; Chiwamongkhonkarn, S.; Chancham, C.; Gagnon, Y. Wind Power Generation and Appropriate Feed-in-Tariff under Limited Wind Resource in Central Thailand. Energy Rep. 2022, 8, 6220–6233. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, Y.; Huang, L.; Zhang, K. Reborn and Upgrading: Optimum Repowering Planning for Offshore Wind Farms. Energy Rep. 2022, 8, 5204–5214. [Google Scholar] [CrossRef]
- Belaid, S.; Rekioua, D.; Oubelaid, A.; Ziane, D.; Rekioua, T. Proposed Hybrid Power Optimization for Wind Turbine/Battery System. Period. Polytech. Electr. Eng. Comput. Sci. 2022, 66, 60–71. [Google Scholar] [CrossRef]
- Hoang, T.-K.; Queval, L.; Vido, L.; Nguyen, D.-Q. Levelized Cost of Energy Comparison Between Permanent Magnet and Superconducting Wind Generators for Various Nominal Power. IEEE Trans. Appl. Supercond. 2022, 32, 7. [Google Scholar] [CrossRef]
- Santhakumar, S.; Smart, G.; Noonan, M.; Meerman, H.; Faaij, A. Technological Progress Observed for Fixed-Bottom Offshore Wind in the EU and UK. Technol. Forecast. Soc. Chang. 2022, 182, 121856. [Google Scholar] [CrossRef]
- Chen, S.; Arabkoohsar, A.; Chen, G.; Nielsen, M.P. Optimization of a Hybrid Energy System with District Heating and Cooling Considering Off-Design Characteristics of Components, an Effort on Optimal Compressed Air Energy Storage Integration. Energies 2022, 15, 4634. [Google Scholar] [CrossRef]
- Paliwal, P. Reliability-Based Optimal Sizing for an Isolated Wind–Battery Hybrid Power System Using Butterfly PSO. In Advances in Energy Technology; Bansal, R.C., Agarwal, A., Jadoun, V.K., Eds.; Springer: Singapore, 2022; pp. 163–172. [Google Scholar]
- Liang, Y.; Ma, Y.; Wang, H.; Mesbahi, A.; Jeong, B.; Zhou, P. Levelised Cost of Energy Analysis for Offshore Wind Farms–A Case Study of the New York State Development. Ocean Eng. 2021, 239, 109923. [Google Scholar] [CrossRef]
- Li, Z.; Chen, H.; Xu, B.; Ge, H. Hybrid Wind Turbine Towers Optimization with a Parallel Updated Particle Swarm Algorithm. Appl. Sci. 2021, 11, 8683. [Google Scholar] [CrossRef]
- Seedahmed, M.M.A.; Ramli, M.A.M.; Bouchekara, H.R.E.H.; Shahriar, M.S.; Milyani, A.H.; Rawa, M. A Techno-Economic Analysis of a Hybrid Energy System for the Electrification of a Remote Cluster in Western Saudi Arabia. Alexandria Eng. J. 2022, 61, 5183–5202. [Google Scholar] [CrossRef]
- Singh, S.; Singh, M.; Kaushik, S.C. A Review on Optimization Techniques for Sizing of Solar-Wind Hybrid Energy Systems. Int. J. Green Energy 2016, 13, 1564–1578. [Google Scholar] [CrossRef]
- Vivas, F.J.; De las Heras, A.; Segura, F.; Andújar, J.M. A Review of Energy Management Strategies for Renewable Hybrid Energy Systems with Hydrogen Backup. Renew. Sustain. Energy Rev. 2018, 82, 126–155. [Google Scholar] [CrossRef]
- Ahmed, M.; Meegahapola, L.; Vahidnia, A.; Datta, M. Stability and Control Aspects of Microgrid Architectures–A Comprehensive Review. IEEE Access 2020, 8, 144730–144766. [Google Scholar] [CrossRef]
- Sitharthan, R.; Karthikeyan, M.; Sundar, D.S.; Rajasekaran, S. Adaptive Hybrid Intelligent MPPT Controller to Approximate Effectual Wind Speed and Optimal Rotor Speed of Variable Speed Wind Turbine. ISA Trans. 2020, 96, 479–489. [Google Scholar] [CrossRef]
- Gil-González, W.; Montoya, O.D.; Garces, A. Direct Power Control for VSC-HVDC Systems: An Application of the Global Tracking Passivity-Based PI Approach. Int. J. Electr. Power Energy Syst. 2019, 110, 588–597. [Google Scholar] [CrossRef]
- Colombo, L.; Corradini, M.L.; Ippoliti, G.; Orlando, G. Pitch Angle Control of a Wind Turbine Operating above the Rated Wind Speed: A Sliding Mode Control Approach. ISA Trans. 2020, 96, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Mirza, A.F.; Ling, Q.; Javed, M.Y.; Mansoor, M. Novel MPPT Techniques for Photovoltaic Systems under Uniform Irradiance and Partial Shading. Sol. Energy 2019, 184, 628–648. [Google Scholar] [CrossRef]
- Wang, K.; Qi, X.; Liu, H. A Comparison of Day-Ahead Photovoltaic Power Forecasting Models Based on Deep Learning Neural Network. Appl. Energy 2019, 251, 113315. [Google Scholar] [CrossRef]
- BADOUD, A.E. MPPT Controller for PV Array under Partially Shaded Condition. Alger. J. Renew. Energy Sustain. Dev. 2019, 1, 99–111. [Google Scholar] [CrossRef]
- Haseltalab, A.; Botto, M.A.; Negenborn, R.R. Model Predictive DC Voltage Control for All-Electric Ships. Control. Eng. Pract. 2019, 90, 133–147. [Google Scholar] [CrossRef]
- Jeong, Y.-S.; Baek, E.-R.; Jeon, B.-G.; Chang, S.-J.; Park, D.-U. Seismic Performance of Emergency Diesel Generator for High Frequency Motions. Nucl. Eng. Technol. 2019, 51, 1470–1476. [Google Scholar] [CrossRef]
- Mehrjerdi, H.; Hemmati, R.; Farrokhi, E. Nonlinear Stochastic Modeling for Optimal Dispatch of Distributed Energy Resources in Active Distribution Grids Including Reactive Power. Simul. Model. Pract. Theory 2019, 94, 1–13. [Google Scholar] [CrossRef]
- Panasetsky, D.; Sidorov, D.; Li, Y.; Ouyang, L.; Xiong, J.; He, L. Centralized Emergency Control for Multi-Terminal VSC-Based Shipboard Power Systems. Int. J. Electr. Power Energy Syst. 2019, 104, 205–214. [Google Scholar] [CrossRef]
- Hashemi, M.; Zarif, M.H. A Novel Two-Stage Distributed Structure for Reactive Power Control. Eng. Sci. Technol. Int. J. 2020, 23, 168–188. [Google Scholar] [CrossRef]
- Jaladi, K.K.; Sandhu, K.S. Real-Time Simulator Based Hybrid Control of DFIG-WES. ISA Trans. 2019, 93, 325–340. [Google Scholar] [CrossRef]
- Rashid, K.; Safdarnejad, S.M.; Powell, K.M. Dynamic Simulation, Control, and Performance Evaluation of a Synergistic Solar and Natural Gas Hybrid Power Plant. Energy Convers. Manag. 2019, 179, 270–285. [Google Scholar] [CrossRef]
- Wakui, T.; Sawada, K.; Yokoyama, R.; Aki, H. Predictive Management for Energy Supply Networks Using Photovoltaics, Heat Pumps, and Battery by Two-Stage Stochastic Programming and Rule-Based Control. Energy 2019, 179, 1302–1319. [Google Scholar] [CrossRef]
- Ghiasi, M. Detailed Study, Multi-Objective Optimization, and Design of an AC-DC Smart Microgrid with Hybrid Renewable Energy Resources. Energy 2019, 169, 496–507. [Google Scholar] [CrossRef]
- Abedini, M.; Mahmodi, E.; Mousavi, M.; Chaharmahali, I. A Novel Fuzzy PI Controller for Improving Autonomous Network by Considering Uncertainty. Sustain. Energy, Grids Networks 2019, 18, 100200. [Google Scholar] [CrossRef]
- Fathy, A.; Kassem, A.M. Antlion Optimizer-ANFIS Load Frequency Control for Multi-Interconnected Plants Comprising Photovoltaic and Wind Turbine. ISA Trans. 2019, 87, 282–296. [Google Scholar] [CrossRef] [PubMed]
- Lingamuthu, R.; Mariappan, R. Power Flow Control of Grid Connected Hybrid Renewable Energy System Using Hybrid Controller with Pumped Storage. Int. J. Hydrogen Energy 2019, 44, 3790–3802. [Google Scholar] [CrossRef]
- Mahesh, A.; Sandhu, K.S. Hybrid Wind/Photovoltaic Energy System Developments: Critical Review and Findings. Renew. Sustain. Energy Rev. 2015, 52, 1135–1147. [Google Scholar] [CrossRef]
- Al Busaidi, A.S.; Kazem, H.A.; Al-Badi, A.H.; Farooq Khan, M. A Review of Optimum Sizing of Hybrid PV–Wind Renewable Energy Systems in Oman. Renew. Sustain. Energy Rev. 2016, 53, 185–193. [Google Scholar] [CrossRef]
- Shufian, A.; Mohammad, N. Modeling and Analysis of Cost-Effective Energy Management for Integrated Microgrids. Clean. Eng. Technol. 2022, 8, 100508. [Google Scholar] [CrossRef]
- Rabe, M.; Bilan, Y.; Widera, K.; Vasa, L. Application of the Linear Programming Method in the Construction of a Mathematical Model of Optimization Distributed Energy. Energies 2022, 15, 1872. [Google Scholar] [CrossRef]
- Sigalo, M.B.; Pillai, A.C.; Das, S.; Abusara, M. An Energy Management System for the Control of Battery Storage in a Grid-Connected Microgrid Using Mixed Integer Linear Programming. Energies 2021, 14, 6212. [Google Scholar] [CrossRef]
- Ajiboye, A.A.; Popoola, S.I.; Atayero, A.A. Hybrid Renewable Energy Systems: Opportunities and Challenges in Sub-Saharan Africa. Proc. Int. Conf. Ind. Eng. Oper. Manag. 2018, 2018, 1110–1116. [Google Scholar]
- Negi, S.; Mathew, L. Hybrid Renewable Energy System: A Review. Int. J. Electron. Electr. Eng. 2014, 7, 535–542. [Google Scholar]
- Markard, J.; Truffer, B. Innovation Processes in Large Technical Systems: Market Liberalization as a Driver for Radical Change? Res. Policy 2006, 35, 609–625. [Google Scholar] [CrossRef]
- Wyman, O. Auctions as a Potential Mechanism to Accelerate Green Mini-Grids in Africa; Oliver Wyman: New York, NY, USA, 2017. [Google Scholar]
- Tenenbaum, B.; Greacen, C.; Vaghela, D. Mini-Grids and Arrival of the Main Grid; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Milis, K.; Peremans, H.; Van Passel, S. The Impact of Policy on Microgrid Economics: A Review. Renew. Sustain. Energy Rev. 2018, 81, 3111–3119. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Ganguly, S. Opportunities, Barriers and Issues with Renewable Energy Development–A Discussion. Renew. Sustain. Energy Rev. 2017, 69, 1170–1181. [Google Scholar] [CrossRef]
- Mustapa, S.I.; Peng, L.Y.; Hashim, A.H. Issues and Challenges of Renewable Energy Development: A Malaysian Experience. In Proceedings of the International Conference on Energy and Sustainable Development: Issues and Strategies (ESD 2010), Chiang Mai, Thailand, 2–4 June 2010; pp. 1–6. [Google Scholar]
- Baurzhan, S.; Jenkins, G.P. Off-Grid Solar PV: Is It an Affordable or Appropriate Solution for Rural Electrification in Sub-Saharan African Countries? Renew. Sustain. Energy Rev. 2016, 60, 1405–1418. [Google Scholar] [CrossRef]
- Ansari, M.F.; Kharb, R.K.; Luthra, S.; Shimmi, S.L.; Chatterji, S. Analysis of Barriers to Implement Solar Power Installations in India Using Interpretive Structural Modeling Technique. Renew. Sustain. Energy Rev. 2013, 27, 163–174. [Google Scholar] [CrossRef]
- Luthra, S.; Kumar, S.; Garg, D.; Haleem, A. Barriers to Renewable/Sustainable Energy Technologies Adoption: Indian Perspective. Renew. Sustain. Energy Rev. 2015, 41, 762–776. [Google Scholar] [CrossRef]
- Hynes, S.; Hanley, N. Preservation versus Development on Irish Rivers: Whitewater Kayaking and Hydro-Power in Ireland. Land Use Policy 2006, 23, 170–180. [Google Scholar] [CrossRef]
- Ghimire, L.P.; Kim, Y. An Analysis on Barriers to Renewable Energy Development in the Context of Nepal Using AHP. Renew. Energy 2018, 129, 446–456. [Google Scholar] [CrossRef]
S. No. | Name of the Software | Input Data | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Load Requirement | Details of Supplies | Details of Component | Constraints | System Control | Data of Emission | Economic Details | Financial Details | Product Database | Project Database | ||
1. | HOMER | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | - | - | - | - |
2. | iHOGA | - | ✓ | ✓ | ✓ | - | - | ✓ | - | - | - |
3. | Hybrid2 | ✓ | ✓ | ✓ | - | - | - | - | ✓ | - | - |
4. | RETScreen | - | ✓ | - | - | - | - | - | - | ✓ | ✓ |
5. | TRNSYS | - | ✓ | - | - | - | - | - | - | - | - |
6. | PV SOL | - | ✓ | ✓ | ✓ | - | - | - | ✓ | - | - |
7. | PVSyst | - | ✓ | - | ✓ | - | - | ✓ | - | - | ✓ |
8. | INSEL | - | ✓ | - | - | - | - | - | - | - | - |
9. | iGRHYSO | - | ✓ | - | - | - | - | ✓ | - | ✓ | - |
10. | Hybrid | ✓ | - | - | - | - | ✓ | - | - | - | - |
11. | RAPSIM | ✓ | ✓ | - | - | - | - | - | - | - | - |
12. | SOMES | ✓ | ✓ | - | - | - | - | - | - | - | - |
13. | SOLSTOR | - | - | ✓ | - | - | - | - | - | - | - |
14. | Hysim | ✓ | - | - | - | - | - | - | - | - | - |
15. | Hybsim | ✓ | ✓ | - | - | - | - | ✓ | - | - | - |
16. | IPSYS | ✓ | - | - | - | - | - | - | - | - | - |
17. | Hysys | ✓ | - | - | - | - | - | - | - | - | - |
18. | Solar GIS | - | ✓ | ✓ | - | - | - | - | - | - | - |
19. | Dymola/Modelica | ✓ | - | - | - | - | - | ✓ | ✓ | - | - |
20. | ARES | ✓ | - | - | - | - | - | - | - | - | - |
21. | SOLsim | - | ✓ | - | - | - | - | ✓ | - | - | - |
22. | Hybrid Designer | - | ✓ | - | - | - | - | - | - | - | - |
S. No. | Name of the Software | Output Data | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Optimal Sizing | Evaluation of Technological Aspects | Environmental Review | Financial Assessment | Multi-Objective Optimization | Life Span Discharge | Probabilistic Evaluation | Sensitive Assay with Risk Evaluation | Electrical as Well as Thermal Power System Dynamical Modeling Behavior | ||
1. | HOMER | ✓ | ✓ | ✓ | ✓ | - | - | - | - | - |
2. | iHOGA | ✓ | - | - | ✓ | ✓ | ✓ | ✓ | - | - |
3. | Hybrid2 | ✓ | ✓ | ✓ | ✓ | - | - | - | - | - |
4. | RETScreen | - | ✓ | ✓ | ✓ | - | - | - | ✓ | - |
5. | TRNSYS | - | - | - | - | - | - | - | - | ✓ |
6. | PV SOL | - | - | - | ✓ | - | - | - | - | - |
7. | PVSyst | ✓ | - | - | ✓ | - | - | - | - | ✓ |
8. | INSEL | - | - | ✓ | - | - | - | - | - | ✓ |
9. | iGRHYSO | - | ✓ | - | - | - | - | - | - | ✓ |
10. | Hybrid | - | ✓ | ✓ | - | - | - | - | - | - |
11. | RAPSIM | - | ✓ | - | - | - | - | - | - | - |
12. | SOMES | - | ✓ | - | ✓ | - | - | - | - | - |
13. | SOLSTOR | - | - | - | ✓ | - | - | - | - | - |
14. | Hysim | - | - | - | ✓ | - | - | - | - | - |
15. | Hybsim | - | - | - | ✓ | - | - | - | - | - |
16. | IPSYS | - | - | - | - | - | - | - | - | ✓ |
17. | Hysys | ✓ | - | - | - | - | - | - | - | - |
18. | Solar GIS | - | - | ✓ | ✓ | - | - | - | ✓ | - |
19. | Dymola/Modelica | - | - | - | ✓ | - | - | - | - | - |
20. | ARES | - | ✓ | - | - | - | - | - | - | - |
21. | SOLsim | - | ✓ | - | - | - | - | - | - | - |
22. | Hybrid Designer | - | ✓ | - | - | - | - | - | - | - |
Ref. | HRES (PV + Wind + Other) | Optimization Technique/Software | Objective Function | Optimization Constraints |
---|---|---|---|---|
[63] | WT_PV_BA_Electrolyzers_FC | PSO, GA | ACC | NPV, NWT, NBA, NEL, NFC, LPSP |
[64] | PV_Wind_BA | AEFA | CSLS | ENSP, NPV, NWT, NBA, SOC |
[65] | PV_WT_BA | IGOA | TNPC | LOEP, IR |
[66] | PV_WT_ESS | ICOA | COE | SOC, cost of power |
[67] | Solar_Wind_FC | HOMERqx | LCOE, GHG emission | Project lifespan, actual yearly discount rate, inflation rate, liters of diesel fuel cost |
[68] | PV_Wind_FC | TSA | LOLE, EENS, LOLP, ACLL, FOR | - |
[69] | Solar Thermal_Wind_Wave_BESS System | HF-PSO | Pollutant Emission | Equations of balanced power, maximum actual power production, and reactive power of the generator |
[70] | Oxy-fuel_PV_Wind_BA | MATLAB/Simulink, Aspen Plus | LCOE | Cut-in, rated, cut-out speed of wind, SOC |
[71] | PV_Wind_BA | NSGA-II | LCOE, LPSP | - |
[72] | PV_WTs_ BA | HOMER | COE, NPC, SV, IRR, ROI, Simple Payback, TAC, Emissions Reduction | - |
[73] | PV/(WT)_DG_lead-acid BA-based Energy Storage | Hybrid two-stage PSO-DE | LCOE, RF, LPSP, HDI, JC, EMC | Instantaneous output power, Power generated by wind, Generator electrical output, Load demand, Power losses, Dump energy |
[74] | PV_Wind_generators | HOMER | NPC, LCOE, IRR | - |
[75] | Solar_Wind_Pumped storage | SSR | LCOE | SCRF, system power reserve |
[76] | PV_WT_ BA storage_ split Stirling engines | NSGA-II | LCOE, LPSP, Dumped power | NPV, NWT, type of WTs, the capacity of the Stirling Engine (ST) + Organic Rankine Cycle (ORC) back-up, NBA and type of BA |
[77] | Solar PV_ WTs_ Lithium-ion (Li-ion) batteries_ DGs | Island System LCOEmin Algorithm (ISLA) | NPC | - |
[78] | WT_ FC_ PV_Plug-in Hybrid Electric Vehicles (PHEVs)_Liquid Air Energy Storage (LAES) combined with high-temperature Thermal Energy Storage (HTES) | DMRFO | OC, Emissions | System power balance, Power generation constraints |
[79] | Solar air collector_ solar chimney_thermoelectric generators_ Savonius WT | GA | Total electrical power | NPV |
[80] | Wind_PVs_ FC_ hybrid ESS including BA and supercapacitor | Fuzzy-based MPPT algorithm | Chattering observed in conventional Sliding Mode Control (SMC) | SOC |
[81] | PV_BA_Wind_CSP | Electric System Cascade Extended Analysis Method | LPSP, LCC, LCOE | - |
[82] | PV_Wind_BA | MPSO, GA | Total economic cost | SOC, LPSP |
[83] | PV_Wind_FC_DE_BA_hydrogen storage system | MO- Quantum PSO | LPSP, the annual investment cost of equipment, lifetime of HES | NWT, APV, NFC, NBA, stored energy of the energy storage unit |
[84] | Wind_PV_ Concentrated Solar Power (CSP) plant_ electric heater_BA | NSGA-II | LPSP, LCOE | - |
[85] | PV_WT_BA Storage | Roulette algorithm | Total operation and environmental costs | Power for the energy interface, ramp power for the energy interface |
[86] | PV_Wind_Diesel_BA | PSO | Component sizes, COE | NPV, NDG, NWT, NBA, LPSP |
[87] | PV_Wind_BA | MA-BFPSO | LCOE | SOC, Reliability Index LIR, Component Sizing, Power Balance and Power Flow through BSS |
[88] | Wind_PV | GA, TOPSIS | NPC | - |
[89] | PV_Wind_BA | NSGA-II | ACS, LPSP, TET | LPSP and cost with Net Zero Energy (NZE) balance |
[90] | PV_Wind Generation _distributed Electric Vehicles (EVs) | WHO | ISE | Scaling factors, Proportional gain, integral gain, Integral order of FOPI controller, Tilt gain, Fractional order of tilt integral gain, Derivative gain |
[91] | PV_Wind_BA | Solver, Minitab and Statistica | LCOE, diversified energy production density, NPV | - |
[92] | PV_Wind_DG | HOMER | LCOE, NPC, COE | - |
[93] | PV_Wind_DG_BA_Grid | HOMER | NPC, LCOE | - |
[94] | PV_Wind_DG | HOMER | NPC, LCOE | - |
[95] | PV_Wind_Biomass | GWO, GA, SA | LCOE, TNPC | APV, AWT, hourly power of BG, LPSP |
[96] | PV_Wind_BA | HOMER | COE | Capacity shortage constraints, operating reserve constraints |
[97] | PV_Wind_ BA | PSO, GA | LCC | - |
[98] | PV_Wind_BA | Adaptive-Local-Attractor-based Quantum-behaved PSO | LCOE, LCA, LPSP | Charging power and energy, Grid, minimum and maximum power and energy |
[99] | PV_Wind | PSO | LCOE | Cable rating, APV, and rotor diameter |
[100] | PV_Wind_Biomass_BA | MOACS | Annual LCC, LPSP | SOC, NWT, NPV, and NBG, grid power during the stated period, dump power |
[101] | PV_Wind_BA | HOMER | LCOE, CRF, NPC, IRR | - |
[102] | PV_Wind_BA | NSGA-II | LCOE, LPSP, Equivalent CO2 (CO2-eq) life cycle emission | Life Cycle Emission (LCE), the available energy in the BA, charging and discharging capacity of BA |
[103] | PV_Wind_Diesel_BA | EO | LCOE, NPC | APV, AWT, RF |
[104] | PV_Wind_CSP_BA_ | NSGA-II | LCOE, LPSP | Charging and discharging of BA. |
[105] | PV_Wind_BA | GA and ABC | LCOE, LPSP | - |
[106] | Solar_Wind_BA | HOMER | NPC, LCOE | SOC |
[107] | PV_Wind_FC | HFA/HS | LCOE | Load demand, hydrogen energy storage capacity, LPSP |
[108] | PV_Wind_Biomass_BA | Invasive Weed Optimization Backtracking Search Algorithm ((IWO/BSA)) | LCOE | APV, AWT, LPSP, Availability index, Autonomy daily of the BA |
[109] | PV_Wind_EV | PSO, ABC | LCOE, LPSP | SOC, charging rate, LPSP, NPV, NWT, grid purchase, sale capacities |
[110] | Hybrid Wind Bio BA_Solar PV System | - | COE, NPC | BA bank energy, speed of the wind, LPSP |
[111] | PV_WTs_DGs, BESS_Li-ion, Absorbent Glass Mat (AGM) technologies | HOMER, NSGA-II | RF, Cost of potable water, CO2 emissions | - |
Ref. | HRES (PV+ Other) | Optimization Technique/Software | Objective Function(s) | Optimization Constraints |
---|---|---|---|---|
[112] | Solar PV_Biogas_BA | HOMER | LCOE | Maximum annual capacity shortage, operation reserve (surplus operating capacity) |
[113] | PV_BA_hydrogen | NSGA-II | ACS, LPSP, PEWP | SOC, State of Health (SOH), Current hydrogen level, Charging or discharging power of the BESS, output power of FC, Input power of electrolyzer |
[114] | PV_energy storage_diesel_ reverse osmosis desalination | TS | TNAC, LPS, LPSP | Size of electric diesel power generator, NBA |
[115] | PV_Biomass_BA | HOMER | NPC, COE, OC, ICC, EG, RF | BA charging and discharging, energy balance |
[116] | PV_BG_ Electrolyzer units_Hydrogen Tank units (HT)_ FC | MOA | EC, LPSP, Excess energy | Excess energy |
[117] | PV_Biomass_Diesel_BA | HOMER | COE, NPC | Return of investment, IRR, payback period, and discounted payback |
[118] | PV_FC_Biomass | Hybrid Chaotic PSO and SMA (HC_PSO_SMA), HOMER | Overall system cost | Cost of the solar PV panel, BG, converter, electrolyzer, hydrogen tank, and FC |
[119] | PV_Biomass_Li-ion BA | HOMER | BA capacity, NPC, COE, CO2 emitted | - |
[120] | PV_BA Energy Storage _ D-STATCOM | MOA | Real power loss | Bus voltage, branch current, active and reactive power balance, radial configuration |
[121] | PV_Diesel_BA | PSO | TNAC | LLSP |
[122] | PV_BG_BA system | RKA | COE, LPSP | NPV, NBA, NDG |
[123] | PV_FC_BA | RBA, DP | Optimal energy management, cost of the system, long-term operation capacity of the system | SOC, output power of FC, and BA energy |
[124] | PV_Diesel_BA | HOMER | NPC, LCOE, CO2 reduction, RF enhancement, increase reliability | PV capacity, DG Capacity, NBA, inverter capacity, SOC |
[125] | PV_FC | Dynamic Encoding Algorithm | Overall cost function | Power exchange between the solar cell and the FC |
[126] | PV_Air-to-Water Heat Pumps (AW-HPs) Water-to-Water HPs (WW-HPs) buffer tank_Borehole Thermal Energy Storage (BTES) | GA | LCOE, and Heat Energy from District Heating, on-site energy production | APV |
[127] | Grid_PV | MATLAB, GA | LCOE | PV modules, strings, component tilt angle, actual length of the southern side of the installation site |
[128] | PV_BA_Hydro | PSO, GA | LCOE | - |
[129] | PV_Syngas_BA | HOMER | COE, TNPC | - |
[130] | PV generator_Pumped Storage System (PSS)_DG | FPA | COE | Power drawn by the electric pump and turbine generated output power |
[131] | PV_FC_ Boiler units_ BA storage | Stochastic p-Robust Optimization (SPRO) | Total cost | Relative regret |
[132] | PV_Biomass_ BA | HOMER pro | Total NPC | - |
[133] | PV_Hydro_FC_Li-ion | Political Optimizer (PO) | LCOE | Active and reactive power generated, Voltage magnitude |
[134] | PV_BA_Grid | PSO | LCOE | SOC |
[135] | PV_FC | Amended Water Strider Algorithm (AWSA) | LCOE, TAC | LPSP, NPV, Electrolyzer efficiency |
[136] | PV | HOMER Pro | LCOE | - |
[137] | PV_Biogas | Whale optimization algorithm | LCOE | - |
Ref. | HRES (Wind_Other) | Optimization Technique/Software | Objective Function(s) | Optimization Constraints |
---|---|---|---|---|
[138] | Wind integrated Hydrothermal System (WHTS) | WCA | FC Emission (FCE) | Load balance, hydraulic continuity, generation limits, reservoir storage capacity, physical ramping capabilities |
[139] | Wind_Diesel_BA | HOMER | NPC, COE, Salvage Cost (SC) | Power balance conditions |
[140] | Wind_Ocean | AIMMS | LCOE, ACS | Water produced, power demand by RO unit, Swept area of WT |
[141] | Wind_Hydro-thermal_power systems | PSO | Energy utilization, wind curtailment, coal costs, CO2 emissions | Power of the hydro unit, Total number of working hydro units, Number of hydro units used to replace thermal units |
[142] | Wind_ESS_Automatic Generation Control (AGC) | PSO | Overall revenue of the system | Charge and discharge power of ESS, SOC |
[143] | Wind_Wave Energy System | Orca3D Software | LCOE | - |
[144] | WT_Thermal units | HCABC | Total Production Cost, Emissions | Generation capacity, system loss, Ramp rate limits, and spinning reserve constraints |
[145] | Wind_Hydrogen | MCS | LCOE | - |
[146] | Geothermal_Wind | EnergPLAN simulation program with EES and Matlab | LCOE, COE, energy and exergy efficiency | - |
[147] | Wind | GA | LCOE, AEP | WT rated power, WT rotor diameter and WT hub height |
[148] | Wind | Wind Farmer software | LCOE, NPV, IRR | - |
[149] | Wind | GA | LCOE | NWT, WT cost, blade diameter, and capacity of the submarine cable |
[150] | WT_BA | MPPT algorithms | Load power demand, SOC | - |
[151] | Wind | MOPSO | LCOE | Radius of the rotor’s conductor, current densities in the field and stator windings |
[152] | Wind | - | LCOE | - |
[153] | WTs_internal combustion engine_ adiabatic compressed air ESS | Bi-level optimization strategy | Total cost | - |
[154] | Wind_BA | Butterfly PSO | LCOE | - |
[155] | Wind | HORIZON 2020 SHIPLYS | LCOE | - |
[156] | Wind | Parallel updated PSO | LCOE | Local Buckling, Overall Stability, Load-Carrying Capacity, Geometry Constraint, and Maximum Top Displacement |
[157] | Wind_DG_FC_BA_Electrolyzer | HOMER | GPC, LCOE | - |
Management Methods | Main Characteristics | ||
---|---|---|---|
Design Constraints | Main Features | Advantage and Drawback | |
Technical objective strategy | BA SOC, power balance, and storage system deterioration | BA short time, Flow chart algorithm, Algorithm to regulate power balance | Increased longevity and performance with a medium level of complexity, running and servicing costs are not optimized. |
Economic objective strategy | The cost function, BA SOC, and Power balance | Power reference plus precedence, an algorithm to reduce cost | A complicated algorithm, higher operation and maintenance costs, and an un-optimized lifespan. |
Techno-economic strategy objective | The cost function, BA SOC, and Power balance | Power reference plus precedence, an algorithm to reduce cost | A complicated algorithm, higher operation and maintenance costs, and an un-optimized lifespan. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathod, A.A.; Subramanian, B. Scrutiny of Hybrid Renewable Energy Systems for Control, Power Management, Optimization and Sizing: Challenges and Future Possibilities. Sustainability 2022, 14, 16814. https://doi.org/10.3390/su142416814
Rathod AA, Subramanian B. Scrutiny of Hybrid Renewable Energy Systems for Control, Power Management, Optimization and Sizing: Challenges and Future Possibilities. Sustainability. 2022; 14(24):16814. https://doi.org/10.3390/su142416814
Chicago/Turabian StyleRathod, Asmita Ajay, and Balaji Subramanian. 2022. "Scrutiny of Hybrid Renewable Energy Systems for Control, Power Management, Optimization and Sizing: Challenges and Future Possibilities" Sustainability 14, no. 24: 16814. https://doi.org/10.3390/su142416814
APA StyleRathod, A. A., & Subramanian, B. (2022). Scrutiny of Hybrid Renewable Energy Systems for Control, Power Management, Optimization and Sizing: Challenges and Future Possibilities. Sustainability, 14(24), 16814. https://doi.org/10.3390/su142416814