Distribution and Conservation Status of the Mountain Wetlands in the Romanian Carpathians
Abstract
:1. Introduction
2. Material and Methods
2.1. The Area of Study
2.2. Field Methods
2.3. Mapping of the Area
2.4. Structure of Communities
3. Results
Field Results
4. Discussions
4.1. Distribution of Studied Communities
4.2. Conservation and Management
5. Concussions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bastian, O. The role of biodiversity in supporting ecosystem services in Natura 2000 sites. Ecol. Indic. 2013, 24, 12–22. [Google Scholar] [CrossRef]
- Worboys, G.; Francis, W.L.; Lockwood, M. (Eds.) Connectivity Conservation Management: A Global Guide (with Particular Reference to Mountain Connectivity Conservation); Earthscan: Oxford, UK, 2010. [Google Scholar]
- Bedford, B.L.; Godwin, K.S. Fens of the United States: Distribution, characteristics, and scientific connection versus legal isolation. Wetlands 2003, 23, 608–629. [Google Scholar] [CrossRef]
- Kottawa-Arachchi, J.D. Biodiversity in central highland wetlands, a world heritage site in Sri Lanka. In Wetland Science; Springer: New Delhi, India, 2017; pp. 67–85. [Google Scholar]
- Gibbs, J.P. Wetland loss and biodiversity conservation. Conserv. Biol. 2000, 14, 314–317. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, P.J.; Ntiamoa-Baidu, Y.; Simaika, J.P. The use of traditional and modern tools for monitoring wetlands biodiversity in Africa: Challenges and opportunities. Front. Environ. Sci. 2020, 8, 61. [Google Scholar] [CrossRef]
- Zedler, J.B.; Kercher, S. Causes and consequences of invasive plants in wetlands: Opportunities, opportunists, and outcomes. Crit. Rev. Plant Sci. 2004, 23, 431–452. [Google Scholar] [CrossRef]
- Poff, N.L.; Brinson, M.M.; Day, J.W. Aquatic Ecosystems and Global Climate Change; Pew Center on Global Climate Change: Arlington, VA, USA, 2002; Volume 44, pp. 1–36. [Google Scholar]
- Erwin, K.L. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetl. Ecol. Manag. 2009, 17, 71–84. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J.; Kwak, J.; Necesito, I.V.; Kim, J.; Kim, H.S. Development of water level prediction models using deep neural network in mountain wetlands. J. Wetl. Res. 2020, 22, 106–112. [Google Scholar]
- Morrison, A.; Westbrook, C.J.; Bedard-Haughn, A. Distribution of Canadian Rocky Mountain Wetlands Impacted by Beaver. Wetlands 2015, 35, 95–104. [Google Scholar] [CrossRef]
- de Vicente, I. Biogeochemistry of Mediterranean Wetlands: A Review about the Effects of Water-Level Fluctuations on Phosphorus Cycling and Greenhouse Gas Emissions. Water 2021, 13, 1510. [Google Scholar] [CrossRef]
- Daugherty, E.E.; McKee, G.A.; Bergstrom, R.; Burton, S.; Pallud, C.; Hubbard, R.M.; Kelly, E.F.; Rhoades, C.C.; Borch, T. Hydrogeomorphic controls on soil carbon composition in two classes of subalpine wetlands. Biogeochemistry 2019, 145, 161–175. [Google Scholar] [CrossRef]
- Dawson, T.P.; Berry, P.M.; Kampa, E. Climate change impacts on freshwater wetland habitats. J. Nat. Conserv. 2003, 11, 25–30. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Ryan, M.E.; Hamlet, A.F.; Palen, W.J.; Lawler, J.J.; Halabisky, M. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands. PLoS ONE 2015, 10, e0136385. [Google Scholar] [CrossRef] [PubMed]
- de-los-Ríos-Mérida, J.; Guerrero, F.; Arijo, S.; Muñoz, M.; Álvarez-Manzaneda, I.; García-Márquez, J.; Bautista, B.; Rendón-Martos, M.; Reul, A. Wastewater discharge through a stream into a Mediterranean Ramsar wetland: Evaluation and proposal of a nature-based treatment system. Sustainability 2021, 13, 3540. [Google Scholar] [CrossRef]
- Guerrero, F. Advances in Mountain and Mediterranean Wetlands Conservation. Water 2021, 13, 1953. [Google Scholar] [CrossRef]
- Finlayson, C.M.; Davidson, N.C.; Spiers, A.G.; Stevenson, N.J. Global wetland inventory–current status and future priorities. Mar. Freshw. Res. 1999, 50, 717–727. [Google Scholar] [CrossRef]
- Davidson, N.C.; Fluet-Chouinard, E.; Finlayson, C.M. Global extent and distribution of wetlands: Trends and issues. Mar. Freshw. Res. 2018, 69, 620–627. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, L.M.; Finlayson, C.M.; Nagabhatla, N. Remote sensing and GIS for wetland inventory, mapping and change analysis. J. Environ. Manag. 2009, 90, 2144–2153. [Google Scholar] [CrossRef]
- Keddy, P.A. Assembly and response rules: Two goals for predictive community ecology. J. Veg. Sci. 1992, 3, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Sueltenfuss, J.P.; Cooper, D.J. Hydrologic similarity to reference wetlands does not lead to similar plant communities in restored wetlands. Restor. Ecol. 2019, 27, 1137–1144. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Liu, L.; Liu, F.; Zhang, H. Recent changes in wetlands on the Tibetan Plateau: A review. J. Geogr. Sci. 2015, 25, 879–896. [Google Scholar] [CrossRef] [Green Version]
- Im, R.; Kim, T.; Baek, C.; Lee, C.; Kim, S.; Lee, J.; Kim, J.Y.; Joo, G. The influence of surrounding land cover on wetland habitat conditions: A case study of inland wetlands in South Korea. PeerJ 2020, 8, e9101. [Google Scholar] [CrossRef] [PubMed]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, V.; Hermoso, V.; Hamilton, S.K.; Ward, D.; Fluet-Chouinard, E.; Lehner, B.; Linke, S. A global assessment of inland wetland conservation status. Bioscience 2017, 67, 523–533. [Google Scholar] [CrossRef] [Green Version]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934–994. [Google Scholar] [CrossRef] [Green Version]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Čížková, H.; Květ, J.; Comin, F.A.; Laiho, R.; Pokorný, J.; Pithart, D. Actual state of European wetlands and their possible future in the context of global climate change. Aquat. Sci. 2013, 75, 3–26. [Google Scholar] [CrossRef] [Green Version]
- Kingsford, R.T.; Basset, A.; Jackson, L. Wetlands: Conservation’s poor cousins. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 892–916. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Niu, Z.; Chen, Y.; Li, L.; Zhang, H. Global wetlands: Potential distribution, wetland loss, and status. Sci. Total Environ. 2017, 586, 319–327. [Google Scholar] [CrossRef]
- Costanza, R.; Anderson, S.J.; Sutton, P.; Mulder, K.; Mulder, O.; Kubiszewski, I.; Wang, X.; Liu, X.; Pérez-Maqueo, O.; Martinez, M.L.; et al. The global value of coastal wetlands for storm protection. Glob. Environ. Chang. 2021, 70, 102328. [Google Scholar] [CrossRef]
- Zedler, J.B.; Kercher, S. Wetland resources: Status, trends, ecosystem services, and restorability. Annu. Rev. Environ. Resour. 2005, 30, 39–74. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.A. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Hoekstra, A.Y.; Bunn, S.E.; Conway, D.; Gupta, J. Fresh water goes global. Science 2015, 349, 478–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekulová, L.; Hájek, M.; Hájková, P.; Mikulášková, E.; Rozbrojova, Z. Alpine wetlands in the West Carpathians: Vegetation survey and vegetation-environment relationships. Preslia 2011, 83, 1–24. [Google Scholar]
- Coldea, G.; Filipaş, L.; Stoica, I.A. Contributions to Romanian vegetation studies (IV). Contrib. Bot. 2008, 43, 45–52. [Google Scholar]
- Barabas, N.; Nicolae, C.; Sanda, V. Analiza structurei cenotice si conditiilor stationale ale vegetatiei acvatice si palustre din Romania. [Analysis of the cenotic structure and seasonal conditions of aquatic and marsh vegetation in Romania]. Stud. şi Comunicări Compl. Muz. Şt. Nat. Ion Borcea 2005, 20, 53–59. (In Romanian) [Google Scholar]
- Chignell, S.M.; Luizza, M.W.; Skach, S.; Young, N.E.; Evangelista, P.H. An integrative modeling approach to mapping wetlands and riparian areas in a heterogeneous Rocky Mountain watershed. Remote Sens. Ecol. Conserv. 2018, 4, 150–165. [Google Scholar] [CrossRef] [Green Version]
- Elsen, P.R.; Monahan, W.B.; Merenlender, A.M. Global patterns of protection of elevational gradients in mountain ranges. Proc. Natl. Acad. Sci. USA 2018, 115, 6004–6009. [Google Scholar] [CrossRef] [Green Version]
- Quenta-Herrera, E.; Crespo-Pérez, V.; Mark, B.G.; Gonzales, A.L.; Kulonen, A. Mountain freshwater ecosystems and protected areas in the tropical Andes: Insights and gaps for climate change adaptation. Environ. Conserv. 2022, 49, 17–26. [Google Scholar] [CrossRef]
- Kliment, J.; Kochjarová, J.U.; Hrivnák, R.I.; Šoltés, R.U. Spring communities of the Veľká Fatra Mts (Western Carpathians) and their relationship to central European spring vegetation. Pol. Bot. J. 2008, 53, 29–55. [Google Scholar]
- Costea, M. Geomorphological Features of the Southern Part of Şureanu Mountains (Southren Carpathians)—A Comprehensive Review of Researches. Acta Musei Brukenthal 2017, 12, 529–546. [Google Scholar]
- Jacko, S.; Labant, S.; Bátorová, K.; Farkašovský, R.; Ščerbáková, B. Structural contraints of neotectonic activity in the eastern part of the Western Carpathians orogenic wedge. Quat. Int. 2021, 585, 27–43. [Google Scholar] [CrossRef]
- Costea, M. Morpho-Hydrographical and Modeling Features of the Aries River Basin (Transylvania, Romania). Transylv. Rev. Syst. Ecol. Res. 2009, 7, 1–10. [Google Scholar]
- Cheval, S.; Birsan, M.V.; Dumitrescu, A. Climate variability in the Carpathian Mountains Regionover 1961–2010. Glob. Planet Chang. 2014, 118, 85–96. [Google Scholar] [CrossRef]
- Braun-Blanquet, J. Pflanzensoziologie: Grundzüge der Vegetationskunde, 3rd ed.; Springer: Berlin, Germany, 1964. [Google Scholar] [CrossRef]
- Westhoff, V.; van der Maarel, E. The Braun-Blanquet approach. In Ordination and Classification of Communities; Whittaker, R.H., Ed.; Junk: The Hague, The Netherlands, 1973; pp. 617–737. [Google Scholar]
- Mucina, L.; Bültmann, H.; Dierßen, K.; Theurillat, J.P.; Raus, T.; Čarni, A.; Šumberová, K.; Willner, W.; Dengler, J.; García, R.G.; et al. Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl. Veg. Sci. 2016, 19, 3–264. [Google Scholar] [CrossRef]
- Euro+MedPlantBase—The Information Resource for Euro-Mediterranean Planfs of the Bryophytes of Britain ant Diversity. 2012. Available online: http://ww2.bgbm.org/EuroPlusMed/ (accessed on 27 March 2022).
- The Plant List Version 1.1. 2013. Available online: http://www.theplantlist.org/ (accessed on 11 July 2022).
- Hill, M.O.; Preston, C.D.; Smith, A.J.E. Atlas of the Bryophytes of Britain and Ireland—Volume 2: Mosses (Except Diplolepideae); Brill: Leiden, The Netherlands, 1992; p. 353. [Google Scholar]
- Biță-Nicolae, C.; Sanda, V. Cormophlora of Romania. Spontaneous and Cultivated Cormophytes in Romania; Lambert Academic Publishing: Chisinau, Moldova, 2011. [Google Scholar]
- Lehrer, A.Z.; Lehrer, M.M. Cartografierea Faunei şi Florei Rômaniei: (Coordonate Arealografice); Ceres: Bucharest, Romania, 1990. [Google Scholar]
- Manchuk, J.G.; Deutsch, C.V. Conversion of Latitude and Longitude to UTM Coordinates; Paper 410, CCG Annual Report 11; Ceres: Bucharest, Romania, 2009. [Google Scholar]
- Ştefănuţ, S. The Hornwort and Liverwort Atlas of Romania; Edit. Ars Docendi—Universitatea din Bucureşti: Bucureşti, Romania, 2008; p. 510. ISBN 978-973-558-387-3. [Google Scholar]
- Van Eck, N.; Waltman, L. VOSviewer (Version 1.6.5). Available online: https://www.vosviewer.com (accessed on 30 March 2022).
- Romanescu, G.; Stoleriu, C.; Zaharia, C. Territorial Repartition and Ecological Importance of Wetlands in Moldova (Romania). J. Environ. Sci. Eng. 2011, 5, 1435–1444. [Google Scholar]
- Cantonati, M.; Bilous, O.; Angeli, N.; van Wensen, L.; Lange-Bertalot, H. Three New Diatom Species from Spring Habitats in the Northern Apennines (Emilia-Romagna, Italy). Diversity 2021, 13, 549. [Google Scholar] [CrossRef]
- Thompson, Y.; Sandefur, B.C.; Miller, J.O.; Karathanasis, A.D. Hydrologic and edaphic characteristics of three mountain wetlands in southeastern Kentucky, USA. Wetlands 2007, 27, 174–188. [Google Scholar] [CrossRef]
- Lim, J.C.; Ahn, K.H.; Jo, G.J.; Chu, Y.S.; Yoon, J.D.; Lee, C.S.; Choi, B.K. Vegetation diversity and management strategy of mountain wetlands in Cheonchuksan (Mt.) in Uljin. J. Wetl. Res. 2020, 22, 264–274. [Google Scholar]
- Tomaselli, M.; Spitale, D.; Petraglia, A. Phytosociological and ecological study of springs in Trentino (south-eastern Alps, Italy). J. Limnol. 2011, 70, 23. [Google Scholar] [CrossRef]
- Spitale, D.; Petraglia, A.; Tomaselli, M. Structural equation modelling detects unexpected differences between bryophyte and vascular plant richness along multiple environmental gradients. J. Biogeogr. 2009, 36, 745–755. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Y.; Liu, F.; Liu, X.; Wang, Q. Diversity Patterns of Wetland Angiosperms in the Qinghai-Tibet Plateau, China. Diversity 2022, 14, 777. [Google Scholar] [CrossRef]
- Ma, M.; Zhu, Y.; Wei, Y.; Zhao, N. Soil nutrient and vegetation diversity patterns of alpine wetlands on the Qinghai-Tibetan Plateau. Sustainability 2021, 13, 6221. [Google Scholar] [CrossRef]
- Cantonati, M.; Füreder, L.; Gerecke, R.; Jüttner, I.; Cox, E.J. Crenic habitats, hotspots for freshwater biodiversity conservation: Toward an understanding of their ecology. Freshw. Sci. 2012, 31, 463–480. [Google Scholar] [CrossRef]
- Hájková, P.; Hájek, M.; Apostolova, I. Diversity of wetland vegetation in the Bulgarian high mountains, main gradients and context-dependence of the pH role. Plant Ecol. 2006, 184, 111–130. [Google Scholar] [CrossRef]
- Zechmeister, H.; Mucina, L. Vegetation of European springs: High-rank syntaxa of the Montio-Cardaminetea. J. Veg. Sci. 1994, 5, 385–402. [Google Scholar] [CrossRef]
- Lyons, M.D.; Kelly, D.L. Plant community ecology of petrifying springs (Cratoneurion)—A priority habitat. Phytocoenologia 2017, 47, 13–32. [Google Scholar] [CrossRef]
- Davies, C.E.; Moss, D.; Hill, M.O. EUNIS Habitat Classification Revised 2004. Report to: European Environment Agency-European Topic Centre on Nature Protection and Biodiversity; European Environment Agency: Copenhagen, Denmark, 2004; pp. 127–143. [Google Scholar]
- Bunn, S.E. Grand challenge for the future of freshwater ecosystems. Front. Environ. Sci. 2016, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Janssen, J.A.M.; Rodwell, J.S.; Criado, M.G.; Gubbay, S.; Haynes, T.; Nieto, A.; Sanders, N.; Landucci, F.; Loidi, J.; Ssymank, A.; et al. European Red List of Habitats; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Guarino, R.; Pasta, S.; Bazan, G.; Crisafulli, A.; Caldarella, O.; del Galdo, G.P.G.; Gristina, A.S.; Ilardi, V.; La Mantia, A.; Marcenò, C.; et al. Relevant habitats neglected by the Directive 92/43 EEC: The contribution of Vegetation Science for their reappraisal in Sicily. Plant Sociol. 2021, 58, 49–63. [Google Scholar] [CrossRef]
- Elliott, K. Framing conservation: ‘biodiversity’ and the values embedded in scientific language. Environ. Conserv. 2020, 47, 260–268. [Google Scholar] [CrossRef]
ID | Locality | UTM Code | Numbers of Relevés |
---|---|---|---|
1 | Piatra Craiului Mt | LL70 | 23 |
2 | Bistrita Aurie Valley | LN66 | 10 |
3 | Siriu Mt | ML43 | 10 |
4 | Postavaru Mt | LL83 | 25 |
5 | Fagaras Mt | LL48 | 17 |
6 | Sebesului Valley | GR07 | 17 |
7 | Tarcu Mt | FR01 | 17 |
8 | Iedutului Valley | FS16 | 1 |
9 | Sighiselului Valley | FS15 | 2 |
10 | Vladeasa Mt | FS86 | 5 |
11 | Iadului Valley | FS28 | 6 |
12 | Plopis Mt | FT21 | 8 |
13 | Cibinului Mt | GR26 | 9 |
14 | Draganului Valley | FS39 | 5 |
15 | Gurghiului Valley | LM38 | 7 |
16 | Defileul Muresului | ES90 | 14 |
17 | Zanoaga Mt | LL26 | 4 |
18 | Govora Mt | ER99 | 10 |
19 | Fagaras Mt | LL40 | 35 |
20 | Rodnei Mt | LN35 | 25 |
21 | Tarcu-Godeanu Mt | LL65 | 25 |
22 | Retezat Mt | FR34 | 5 |
23 | Cindrelului Mt | KL76 | 17 |
24 | Piatra Craiului Mt | LL71 | 25 |
25 | Rodnei Mt | LN36 | 18 |
26 | Tarcu-Godeanu Mt | LL67 | 5 |
27 | Vladeasa Mt | FS38 | 13 |
28 | Retezat Mt | FR36 | 10 |
29 | Cindrelului Mt | KL77 | 4 |
30 | Bucegi Mt | LL81 | 1 |
31 | Maramures Mt | LN17 | 5 |
32 | Plopis Mt | FT22 | 5 |
33 | Gurghiului Valley | LM40 | 5 |
34 | Siriu Mt | ML42 | 4 |
35 | Defileul Muresului | ES91 | 10 |
36 | Suceava County | MN09 | 4 |
37 | Neamt County | MM48 | 4 |
38 | Tarcu-Godeanu Mt | LL65 | 6 |
39 | Rodnei Mt | LN38 | 10 |
40 | Fagaras Mt | LL51 | 1 |
41 | Azuga Valley | LL83 | 1 |
42 | Bucegi Mt | LL81 | 10 |
43 | Nemira Mt | MM51 | 10 |
44 | Bihor Mt | FS34 | 5 |
45 | Piatra Craiului Mt | LL12 | 7 |
46 | Piatra Craiului Mt | LL12 | 3 |
47 | Fagaras Mt | LL41 | 8 |
48 | Fagaras Mt | LL41 | 15 |
49 | Rodnei Mt. | LN42 | 15 |
50 | Gurghiului Valley | LM19 | 7 |
51 | Gurghiului Valley | LM19 | 8 |
52 | Gurghiului Valley | LM38 | 13 |
53 | Cindrelului Mt | KN70 | 25 |
54 | Maramuresului Mt | FT80 | 10 |
ID | Locality | UTM Code | Numbers of Relevés |
---|---|---|---|
1 | Retezat Mt | FR55 | 8 |
2 | Rodnei Mt. | LN40ll | 11 |
3 | Piatra Rea valley | LN23 | 25 |
4 | Tarcu-Godeanu Mt. | LL79 | 10 |
5 | Bucegi Mt. | LL82 | 15 |
6 | Bucegi Mt. | LL82 | 50 |
7 | Rodnei Mt. | LN37 | 14 |
8 | Rachitisul Mare valley | LN77 | 16 |
9 | Maramuresului Mt. | FT95 | 7 |
Habitat | Order | Red List Habitat Type | Threat Status Europe | Threat Status EU | Annex I Habitat Type |
---|---|---|---|---|---|
Base-poor spring and spring brook | Cardamino-Montion | RLC2.1a | Near Threatened | Vulnerable | 7220 Petrifying springs with tufa formation (Cratoneurion) |
Calcareous spring and spring brook | Cratoneurion commutati | RLC2.1b | Vulnerable | Vulnerable | 7220 Petrifying springs with tufa formation (Cratoneurion) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bita-Nicolae, C. Distribution and Conservation Status of the Mountain Wetlands in the Romanian Carpathians. Sustainability 2022, 14, 16672. https://doi.org/10.3390/su142416672
Bita-Nicolae C. Distribution and Conservation Status of the Mountain Wetlands in the Romanian Carpathians. Sustainability. 2022; 14(24):16672. https://doi.org/10.3390/su142416672
Chicago/Turabian StyleBita-Nicolae, Claudia. 2022. "Distribution and Conservation Status of the Mountain Wetlands in the Romanian Carpathians" Sustainability 14, no. 24: 16672. https://doi.org/10.3390/su142416672