Techno-Economic Assessment of the Supercritical Carbon Dioxide Enhanced Geothermal Systems
Abstract
1. Introduction
1.1. EGS Description
1.2. Comparison of CO2 and Water
1.3. The Application of sCO2 Cycles
1.4. Working Fluids in ORC-EGS
2. Materials and Methods
2.1. Case Study Selection
- Power generation only;
- Heat generation only;
- Combined heat and power generation.
Case | Abbreviation | Comment | |
1. | Direct supercritical CO2 cycle | D_sCO2 | Figure 3a |
2. | Indirect sCO2 cycle with ORC (binary cycle) | I_sCO2_ORC | Figure 3b |
3. | Direct supercritical CO2 cycle with cogeneration; | D_sCO2_DHSA | DHS located between turbine stages, Figure 4a |
D_sCO2_DHSB | DHS located after the production well, Figure 4b | ||
4. | Direct sCO2 cycle combined with ORC | D_sCO2_ORCA | Recovery heat exchanger located before the injection well, Figure 5a |
D_sCO2_ORCB | Recovery heat exchanger located after the production well, Figure 5b |
2.2. Analytical Model Description
2.3. Process Synthesis and Design
- Geothermal Well
- Pipeline
- Main compressor
2.4. Economic Assessment
3. Results
3.1. Energy Assessment
3.2. Economic Evaluation
4. Discussion
- Power generation
- Cogeneration
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | area (m2) | P | pressure (Pa) |
C | cost (EUR) | Q | heat (J) |
CAPEX | capital expenditures | R | discount rate |
CCS | carbon capture and storage | sCO2 | supercritical carbon dioxide |
CO2 | carbon dioxide | T | temperature (°C) |
d | depth (m) | W | power (W) |
DHS | district heating system | U | heat transfer coefficient (W/(m2K)) |
E | electricity (J) | Τ | time (s, hr) |
EGS | enhanced geothermal system | ||
f | factor | Subscripts | |
HDR | hot dry rock | ||
H2O | water | an | annual |
LCOE | levelized cost of electricity | el | electrical |
LCOH | levelized cost of heat | EQP | equipment |
mass flow rate (kg/s) | i | order parameter | |
n | project lifetime (yrs) | inj | injection |
OPEX | operational expenditures | max | maximum |
ORC | Organic Rankine Cycle | well | wellbore |
References
- European Commission. Commission Presents Renewable Energy Directive Revision. Available online: https://ec.europa.eu/info/news/commission-presents-renewable-energy-directive-revision-2021-jul-14_en (accessed on 20 July 2022).
- Factsheets on Geothermal Electricity. Available online: http://www.geoelec.eu/wp-content/uploads/2011/09/All-Factsheets+-folder.pdf (accessed on 28 July 2022).
- Lu, S.M. A Global Review of Enhanced Geothermal System (EGS). Renew. Sustain. Energy Rev. 2018, 81, 2902–2921. [Google Scholar] [CrossRef]
- Huttrer, G.W. Geothermal Power Generation in the World 2015–2020 Update Report. In Proceedings of the World Geothermal Congress 2020+1, Reykjavik, Iceland, 24–27 October 2021; Available online: https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/01017.pdf (accessed on 5 December 2022).
- Raos, S.; Hranić, J.; Rajšl, I.; Bär, K. An Extended Methodology for Multi-Criteria Decision-Making Process Focused on Enhanced Geothermal Systems. Energy Convers. Manag. 2022, 258, 115253. [Google Scholar] [CrossRef]
- European Commission. Technology Readiness Level: Guidance Principles for Renewable Energy Technologies. Final Report. 2017. Available online: https://op.europa.eu/en/publication-detail/-/publication/d5d8e9c8-e6d3-11e7-9749-01aa75ed71a1 (accessed on 24 October 2022).
- United States Department of Energy, Office of Energy Efficiency and Renewable Energy. Funding Opportunity Exchange. Integrated Enhanced Geothermal Systems (EGS) Research and Development. Available online: https://eere-exchange.energy.gov (accessed on 25 October 2022).
- Gładysz, P.; Sowiżdżał, A.; Miecznik, M.; Hacaga, M.; Pająk, L. Techno-Economic Assessment of a Combined Heat and Power Plant Integrated with Carbon Dioxide Removal Technology: A Case Study for Central Poland. Energies 2020, 13, 2841. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Tang, H. Stimulation Mechanism and Design of Enhanced Geothermal Systems: A Comprehensive Review. Renewable and Sustainable Energy Rev. 2022, 155, 111914. [Google Scholar] [CrossRef]
- Haris, M.; Hou, M.Z.; Feng, W.; Mehmood, F.; bin Saleem, A. A Regenerative Enhanced Geothermal System for Heat and Electricity Production as Well as Energy Storage. Renew. Energy 2022, 197, 342–358. [Google Scholar] [CrossRef]
- Zheng, S.; Li, S.; Zhang, D. Fluid and Heat Flow in Enhanced Geothermal Systems Considering Fracture Geometrical and Topological Complexities: An Extended Embedded Discrete Fracture Model. Renew. Energy 2021, 179, 163–178. [Google Scholar] [CrossRef]
- Olasolo, P.; Juárez, M.C.; Morales, M.P.; Damico, S.; Liarte, I.A. Enhanced Geothermal Systems (EGS): A Review. Renew. Sustain. Energy Rev. 2016, 56, 133–144. [Google Scholar] [CrossRef]
- Department of Energy. Enhanced Geothermal System (EGS) Fact Sheet. Available online: https://www.energy.gov/eere/geothermal/downloads/enhanced-geothermal-system-egs-fact-sheet (accessed on 20 October 2022).
- Li, T.; Liu, Q.; Gao, X.; Meng, N.; Kong, X. Thermodynamic, Economic, and Environmental Performance Comparison of Typical Geothermal Power Generation Systems Driven by Hot Dry Rock. Energy Rep. 2022, 8, 2762–2777. [Google Scholar] [CrossRef]
- Brown, D.W. A hot day rock geothermal energy concept utilizing super-critical CO2 instead of water. In Proceedings of the Twenty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 24–26 January 2000; Available online: https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2000/Brown.pdf (accessed on 29 June 2022).
- Atrens, A.D.; Gurgenci, H.; Rudolph, V. Electricity Generation Using a Carbon-Dioxide Thermosiphon. Geothermics 2010, 39, 161–169. [Google Scholar] [CrossRef]
- Schifflechner, C.; Dawo, F.; Eyerer, S.; Wieland, C.; Spliethoff, H. Thermodynamic Comparison of Direct Supercritical CO2 and Indirect Brine-ORC Concepts for Geothermal Combined Heat and Power Generation. Renew. Energy 2020, 161, 1292–1302. [Google Scholar] [CrossRef]
- White, M.T.; Bianchi, G.; Chai, L.; Tassou, S.A.; Sayma, A.I. Review of Supercritical CO2 Technologies and Systems for Power Generation. Appl. Therm. Eng. 2021, 185, 116447. [Google Scholar] [CrossRef]
- Saleh, B.; Koglbauer, G.; Wendland, M.; Fischer, J. Working Fluids for Low-Temperature Organic Rankine Cycles. Energy 2007, 32, 1210–1221. [Google Scholar] [CrossRef]
- Heberle, F.; Brüggemann, D. Exergy Based Fluid Selection for a Geothermal Organic Rankine Cycle for Combined Heat and Power Generation. Appl. Therm. Eng. 2010, 30, 1326–1332. [Google Scholar] [CrossRef]
- Quoilin, S.; van den Broek, M.; Declaye, S.; Dewallef, P.; Lemort, V. Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems. Renew. Sustain. Energy Rev. 2013, 22, 168–186. [Google Scholar] [CrossRef]
- Ungar, P.; Özcan, Z.; Manfrida, G.; Ekici, Ö.; Talluri, L. Off-Design Modelling of ORC Turbines for Geothermal Application. Proc. E3S Web Conf. 2021, 312, 11015. [Google Scholar]
- Niknam, P.H.; Talluri, L.; Fiaschi, D.; Manfrida, G. Sensitivity Analysis and Dynamic Modelling of the Reinjection Process in a Binary Cycle Geothermal Power Plant of Larderello Area. Energy 2021, 214, 118869. [Google Scholar] [CrossRef]
- Gładysz, P.; Sowiżdżał, A.; Miecznik, M.; Pająk, L. Carbon Dioxide-Enhanced Geothermal Systems for Heat and Electricity Production: Energy and Economic Analyses for Central Poland. Energy Convers. Manag. 2020, 220, 113142. [Google Scholar] [CrossRef]
- Sarbu, I.; Mirza, M.; Muntean, D. Integration of Renewable Energy Sources into Low-Temperature District Heating Systems: A Review. Energies 2022, 15, 6523. [Google Scholar] [CrossRef]
- Zhao, Q. Conception and Optimization of Supercritical CO2 Brayton Cycles for Coal-Fired Power Plant Application. Ph.D. Thesis, Université de Lorraine, Lorraine, France, 2018. [Google Scholar]
- Weiland, N.T.; Lance, B.W.; Pidaparti, S.R. sCO2 Power Cycle Component Cost Correlations from DOE Data Spanning Multiple Scales and Applications. In Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition; Phoenix, AZ, USA, 17–21 June 2019. Available online: https://www.osti.gov/servlets/purl/1601743 (accessed on 24 July 2022).
- Zhar, R.; Allouhi, A.; Jamil, A.; Lahrech, K. A Comparative Study and Sensitivity Analysis of Different ORC Configurations for Waste Heat Recovery. Case Stud. Therm. Eng. 2021, 28, 101608. [Google Scholar] [CrossRef]
- Gładysz, P.; Saari, J.; Czarnowska, L. Thermo-Ecological Cost Analysis of Cogeneration and Polygeneration Energy Systems—Case Study for Thermal Conversion of Biomass. Renew. Energy 2020, 145, 1748–1760. [Google Scholar] [CrossRef]
Fluid Properties | CO2 | H2O |
---|---|---|
Chemical | Not an ionic dissolution product. No mineral dissolution/precipitation problems | An ionic dissolution product. Effective solvent for rock minerals, may cause serious problems of mineral dissolution/precipitation |
Fluid circulation | Higher compressibility and expansivity. Greater mass flow rates | Lower compressibility. Moderate expansivity. Lower mass flow rates |
Ease of flow in the geothermal reservoir | Lower viscosity and density | Higher viscosity and density |
Heat transmission | Lower specific heat capacity | Higher specific heat capacity |
Fluid losses | Favorable potential for geological sequestration of CO2 | A drawback for commercial operation |
Parameter | Value |
---|---|
Isentropic Efficiency | |
sCO2 Turbine | 90% |
sCO2 Compressor pipeline | 94% |
Relative pressure losses in heat exchangers | 0.5–1 bar |
Minimum temperature difference for heat exchangers | 10–25 °C |
Isentropic Efficiency | |
ORC Turbine | 78% |
ORC Pump | 70% |
Mechanical efficiency | |
Turbine-generator | 98% |
Compressors motors | 98% |
Pump motors | 98% |
Electrical efficiency of generator | 96% |
Water cooling systems | |
Pressure cooling | 2 bar |
Temperature water inlet | 12 °C |
ΔT water | 10 °C |
Parameter | Value |
---|---|
Cost year basis | 2021 |
Base currency | EUR |
Project lifetime, n | 25 |
Annual plant availability, τan | 7008 h |
Discount rate, r | 8% |
Annual operating expenditures, OPEX | 3% of CAPEX |
1404 EUR/m | |
1,460,415 EUR | |
Turbomachinery [26] Equation (5) | |
sCO2 turbine | a = 168 840; b = 0.8 |
sCO2 compressor | a = 134 400; b = 0.8 |
Heat exchangers [26] Equation (6) | |
chiller | a = 168; b = 1 |
recuperator | a = 420; b = 1 |
[26]: | |
piping | |
instrumental and control | |
land | |
civil and transportation | |
[26] |
Case | CAPEX M EUR | OPEX M EUR | LCOE EUR/MWh | LCOH EUR/GJ |
---|---|---|---|---|
D_sCO2 | 17.17 | 0.10 | 169.13 | n/a |
I_sCO2_ORC | 19.30 | 0.17 | 219.47 | n/a |
D_sCO2_DHSA | 19.68 | 0.18 | 141.11 | 2.75 |
D_sCO2_DHSB | 18.60 | 0.14 | 118.02 | 3.87 |
D_sCO2_ORCA | 19.28 | 0.17 | 145.04 | n/a |
D_sCO2_ORCB | 18.69 | 0.15 | 139.58 | n/a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tagliaferri, M.; Gładysz, P.; Ungar, P.; Strojny, M.; Talluri, L.; Fiaschi, D.; Manfrida, G.; Andresen, T.; Sowiżdżał, A. Techno-Economic Assessment of the Supercritical Carbon Dioxide Enhanced Geothermal Systems. Sustainability 2022, 14, 16580. https://doi.org/10.3390/su142416580
Tagliaferri M, Gładysz P, Ungar P, Strojny M, Talluri L, Fiaschi D, Manfrida G, Andresen T, Sowiżdżał A. Techno-Economic Assessment of the Supercritical Carbon Dioxide Enhanced Geothermal Systems. Sustainability. 2022; 14(24):16580. https://doi.org/10.3390/su142416580
Chicago/Turabian StyleTagliaferri, Mauro, Paweł Gładysz, Pietro Ungar, Magdalena Strojny, Lorenzo Talluri, Daniele Fiaschi, Giampaolo Manfrida, Trond Andresen, and Anna Sowiżdżał. 2022. "Techno-Economic Assessment of the Supercritical Carbon Dioxide Enhanced Geothermal Systems" Sustainability 14, no. 24: 16580. https://doi.org/10.3390/su142416580
APA StyleTagliaferri, M., Gładysz, P., Ungar, P., Strojny, M., Talluri, L., Fiaschi, D., Manfrida, G., Andresen, T., & Sowiżdżał, A. (2022). Techno-Economic Assessment of the Supercritical Carbon Dioxide Enhanced Geothermal Systems. Sustainability, 14(24), 16580. https://doi.org/10.3390/su142416580