Use of Tailings as a Substitute for Sand in Concrete Blocks Production: Gravimetric Mining Wastes as a Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Preparation
2.3. Analytical Procedures
2.3.1. Tailing Physicochemical and Mineralogical Properties
2.3.2. Leaching Tests
2.4. Indices of Contamination (IC)
2.5. Concrete Blocks Production, Mechanical Resistance, and Leaching
3. Results
3.1. Mining Wastes Characterization
3.2. Assessment of Pollution Potential from Tailing Samples
3.3. Mechanical Resistance Tests of Concrete Blocks
3.4. Environmental Considerations about the Concrete Blocks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gedam, V.V.; Raut, R.D.; Lopes de Sousa Jabbour, A.B.; Agrawal, N. Moving the Circular Economy Forward in the Mining Industry: Challenges to Closed-Loop in an Emerging Economy. Resour. Policy 2021, 74, 102279. [Google Scholar] [CrossRef]
- Capasso, I.; Lirer, S.; Flora, A.; Ferone, C.; Cioffi, R.; Caputo, D.; Liguori, B. Reuse of Mining Waste as Aggregates in Fly Ash-Based Geopolymers. J. Clean. Prod. 2019, 220, 65–73. [Google Scholar] [CrossRef]
- Lam, E.J.; Zetola, V.; Ramírez, Y.; Montofré, Í.L.; Pereira, F. Making Paving Stones from Copper Mine Tailings as Aggregates. Int. J. Environ. Res. Public Health 2020, 17, 2448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arranz-González, J.C.; Rodríguez-Gómez, V.; Fernández-Naranjo, F.J.; Vadillo-Fernández, L. Assessment of the Pollution Potential of a Special Case of Abandoned Sulfide Tailings Impoundment in Riotinto Mining District (SW Spain). Environ. Sci. Pollut. Res. 2021, 28, 14054–14067. [Google Scholar] [CrossRef]
- Kalisz, S.; Kibort, K.; Mioduska, J.; Lieder, M.; Małachowska, A. Waste Management in the Mining Industry of Metals Ores, Coal, Oil and Natural Gas—A Review. J. Environ. Manag. 2022, 304, 114239. [Google Scholar] [CrossRef]
- Escobar-Segovia, K.; Jiménez-Oyola, S.; Garcés-León, D.; Paz-Barzola, D.; Chavez, E.; Romero-Crespo, P.; Salgado, B. Heavy Metals in Rivers Affected By Mining Activities in Ecuador: Pollution and Human Health Implications. Sustain. Water Resour. Manag. XI Eff. Approaches River Basins Urban Catchments 2021, 1, 61–72. [Google Scholar] [CrossRef]
- Ruiz, V. Ecuador Reports Tailings Dam Breach in Azuay Province. Available online: https://www.mining.com/ecuador-reports-tailings-dam-breach-in-azuay-province/ (accessed on 9 March 2021).
- Vilela, A.P.; Eugênio, T.M.C.; de Oliveira, F.F.; Mendes, J.F.; Ribeiro, A.G.C.; Brandão, L.E.V.D.S.; Mendes, R.F. Technological Properties of Soil-Cement Bricks Produced with Iron Ore Mining Waste. Constr. Build. Mater. 2020, 262, 120883. [Google Scholar] [CrossRef]
- Calandra, P.; Quaranta, S.; Apolo Miranda Figueira, B.; Caputo, P.; Porto, M.; Oliviero Rossi, C. Mining Wastes to Improve Bitumen Performances: An Example of Circular Economy. J. Colloid Interface Sci. 2022, 614, 277–287. [Google Scholar] [CrossRef]
- Rana, N.M.; Ghahramani, N.; Evans, S.G.; McDougall, S.; Small, A.; Take, W.A. Catastrophic Mass Flows Resulting from Tailings Impoundment Failures. Eng. Geol. 2021, 292, 106262. [Google Scholar] [CrossRef]
- Salgado-Almeida, B.; Falquez-Torres, D.A.; Romero-Crespo, P.L.; Valverde-Armas, P.E.; Guzmán-Martínez, F.; Jiménez-Oyola, S. Risk Assessment of Mining Environmental Liabilities for Their Categorization and Prioritization in Gold-Mining Areas of Ecuador. Sustainability 2022, 14, 6089. [Google Scholar] [CrossRef]
- Jiménez-Oyola, S.; García-Martínez, M.-J.; Ortega, M.; Chavez, E.; Romero, P.; Garcia-Garizabal, I.; Bolonio, D. Ecological and Probabilistic Human Health Risk Assessment of Heavy Metal(Loid)s in River Sediments Affected by Mining Activities in Ecuador. Environ. Geochem. Health 2021, 43, 4459–4474. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Martínez, F.; Arranz-González, J.C.; Ortega, M.F.; García-Martínez, M.J.; Rodríguez-Gómez, V. A New Ranking Scale for Assessing Leaching Potential Pollution from Abandoned Mining Wastes Based on the Mexican Official Leaching Test. J. Environ. Manag. 2020, 273, 111139. [Google Scholar] [CrossRef] [PubMed]
- Halabi, A.L.M.; Siacara, A.T.; Sakano, V.K.; Pileggi, R.G.; Futai, M.M. Tailings Dam Failures: A Historical Analysis of the Risk. J. Fail. Anal. Prev. 2022, 22, 464–477. [Google Scholar] [CrossRef]
- Dong, L.; Deng, S.; Wang, F. Some Developments and New Insights for Environmental Sustainability and Disaster Control of Tailings Dam. J. Clean. Prod. 2020, 269, 122270. [Google Scholar] [CrossRef]
- Dong, L.; Tong, X.; Li, X.; Zhou, J.; Wang, S.; Liu, B. Some Developments and New Insights of Environmental Problems and Deep Mining Strategy for Cleaner Production in Mines. J. Clean. Prod. 2019, 210, 1562–1578. [Google Scholar] [CrossRef]
- Vilaça, A.S.I.; Simão, L.; Montedo, O.R.K.; Novaes de Oliveira, A.P.; Raupp-Pereira, F. Waste Valorization of Iron Ore Tailings in Brazil: Assessment Metrics from a Circular Economy Perspective. Resour. Policy 2022, 75, 102477. [Google Scholar] [CrossRef]
- UNDP Sustainable Development Goals|United Nations Development Programme. Available online: https://www.undp.org/sustainable-development-goals (accessed on 3 February 2022).
- Seal, R.R.; Piatak, N.M. Environmental Attributes and Resource Potential of Mill Tailings from Diverse Mineral Deposit Types. In Proceedings of the 13th International Mine Water Association Congress—Mine Water & Circular Economy, Lappeenranta, Finland, 25–30 June 2017; Wolkersdorfer, C., Sartz, L., Sillanpää, M., Häkkinen, A., Eds.; LUT Scientific and Expertise Publications: Lappeenranta, Finland, 2017; Volume 1, pp. 603–609. [Google Scholar]
- Lottermoser, B.G. Mine Wastes: Characterization, Treatment, Environmental Impacts, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-48629-9. [Google Scholar]
- Arranz-González, J.C.; Guzmán-Martínez, F.; Tapia-Téllez, A.; Jiménez-Oyola, S.; García-Martínez, M.J. Polluting Potential from Mining Wastes: Proposal for Application a Global Contamination Index. Environ. Monit. Assess. 2022, 194, 792. [Google Scholar] [CrossRef]
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-Thinking Mining Waste through an Integrative Approach Led by Circular Economy Aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Lemos, M.G.; Valente, T.; Marinho-Reis, A.P.; Fonsceca, R.; Dumont, J.M.; Ferreira, G.M.M.; Delbem, I.D. Geoenvironmental Study of Gold Mining Tailings in a Circular Economy Context: Santa Barbara, Minas Gerais, Brazil. Mine Water Environ. 2021, 40, 257–269. [Google Scholar] [CrossRef]
- WEF Can Mining and Metals Be Sustainable?|World Economic Forum. Available online: https://www.weforum.org/agenda/2015/09/can-mining-and-metals-be-sustainable (accessed on 24 May 2022).
- Martins, N.P.; Srivastava, S.; Veiga, F.; Niu, H.; Perumal, P.; Snellings, R.; Illikainen, M.; Chambart, H.; Habert, G. Exploring the Potential for Utilization of Medium and Highly Sulfidic Mine Tailings in Construction Materials: A Review. Sustainability 2021, 13, 12150. [Google Scholar] [CrossRef]
- Mehta, N.; Dino, G.A.; Passarella, I.; Ajmone-Marsan, F.; Rossetti, P.; de Luca, D.A. Assessment of the Possible Reuse of Extractive Waste Coming from Abandoned Mine Sites: Case Study in Gorno, Italy. Sustainability 2020, 12, 2471. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, H.; Gu, X.; Zhang, W.; Liu, B. Experimental Study on the Use of Iron Tailings-Based Multicomponent Solid Waste as SCMs. Sustainability 2022, 14, 5124. [Google Scholar] [CrossRef]
- Amaral, I.B.C.; Cavalcante, L.C.D.; Fabris, J.D.; Prat, B.V.; Reis, A.B. Use of Mining Tailings or Their Sedimentation and Flotation Fractions in a Mixture with Soil to Produce Structural Ceramics. Sustainability 2021, 13, 911. [Google Scholar] [CrossRef]
- Argane, R.; El Adnani, M.; Benzaazoua, M.; Bouzahzah, H.; Khalil, A.; Hakkou, R.; Taha, Y. Geochemical Behavior and Environmental Risks Related to the Use of Abandoned Base-Metal Tailings as Construction Material in the Upper-Moulouya District, Morocco. Environ. Sci. Pollut. Res. 2016, 23, 598–611. [Google Scholar] [CrossRef]
- Garcia-Troncoso, N.; Baykara, H.; Cornejo, M.H.; Riofrio, A.; Tinoco-Hidalgo, M.; Flores-Rada, J. Comparative Mechanical Properties of Conventional Concrete Mixture and Concrete Incorporating Mining Tailings Sands. Case Stud. Constr. Mater. 2022, 16, e01031. [Google Scholar] [CrossRef]
- Paiva, H.; Yliniemi, J.; Illikainen, M.; Rocha, F.; Ferreira, V.M. Mine Tailings Geopolymers as Awaste Management Solution for a More Sustainable Habitat. Sustainability 2019, 11, 995. [Google Scholar] [CrossRef] [Green Version]
- Ixchel, R.H.M.; de la Luz, P.R.M. Characterization of Mine Tailings in Their Natural State and Stabilized with Cement, Focused on Construction. Ing. Investig. Tecnol. 2021, 22, 1–9. [Google Scholar] [CrossRef]
- Veiga Simão, F.; Chambart, H.; Vandemeulebroeke, L.; Cappuyns, V. Incorporation of Sulphidic Mining Waste Material in Ceramic Roof Tiles and Blocks. J. Geochemical Explor. 2021, 225, 106741. [Google Scholar] [CrossRef]
- Gomes-Pimentel, M.; Rubens Cardoso da Silva, M.; de Cássia, S.; Viveiros, D.; Picanço, M.S. Manganese Mining Waste as a Novel Supplementary Material in Portland Cement. Mater. Lett. 2022, 309, 131459. [Google Scholar] [CrossRef]
- Cardoso da Silva, M.R.; Salvi Malacarne, C.S.; Longhi, M.A.; Kirchheim, A.P. Valorization of Kaolin Mining Waste from the Amazon Region (Brazil) for the Low-Carbon Cement Production. Case Stud. Constr. Mater. 2021, 15, e00756. [Google Scholar] [CrossRef]
- Mymrin, V.; Correia, R.; Alekseev, K.; Klitzke, W.; Avanci, M.; Rolim, P.; Argenta, M.; Carmo, J. Sustainable Materials from Hazardous Lead Ore Flotation Waste in Composites with Spent Foundry Sand and Clay. Int. J. Sci. Technoledge 2020, 109, 1333–1344. [Google Scholar] [CrossRef]
- Cicek, B.; Karadagli, E.; Duman, F. Valorisation of Boron Mining Wastes in the Production of Wall and Floor Tiles. Constr. Build. Mater. 2018, 179, 232–244. [Google Scholar] [CrossRef]
- Wilkinson, M. Reviews Boudreau, B.P. In Diagenetic Models and Their Implementation. Modelling Transport and Reactions in Aquatic Sediments; Springer: Berlin/Heidelberg, Germany, 1997; pp. 877–883. [Google Scholar] [CrossRef]
- Agencia de Regulación y Control de Energía y Recursos Naturales No Renovables, Ecuador (ARCERNNR). Geoportal de Catastro MineroLímites Territoriales Internos, CONALI 2020. Available online: arcgis.com (accessed on 20 March 2022).
- Barba, J. Estudio de Impacto Ambiental Expost y Plan de Manejo Ambiental Para La Fase de Exploración y Explotación Simultánea Bajo El Régimen de Pequeña Minería de La Concesión Minera Campanillas. Report. Ecuador. 2017. Available online: https://www.enamiep.gob.ec/wp-content/uploads/downloads/2017/08/ESIA-CAMPANILLAS-WEB.pdf (accessed on 20 March 2022).
- Smith, K.S.; Ramsey, C.A.; Hageman, P.L. Sampling Strategy for the Rapid Screening of Mine-Waste Dumps on Abandoned Mine Lands. Open-File Rep. 2000, 1453–1461. [Google Scholar]
- Aracena, I.; Triviño, T. Manual de Uso Público. Técnicas de Perforación, Muestreo y Caracterización Para La Recuperación de Elementos de Valor Desde Relaves. 2019. Available online: https://relavesconvalor.cl/material-descargable/ (accessed on 24 May 2022).
- ASTM. Standard Test Method for Materials Finer Than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing 1; ASTM: West Conshohocken, PA, USA, 2013; Volume 4. [Google Scholar]
- Villaseñor-Ortiz, D. Fundamentos y Procedimientos Para Análisis Físicos y Morfológicos Del Suelo; Universidad Técnica de Machala: Machala, Ecuador, 2016; ISBN 9789942240828. [Google Scholar]
- Moore, D.M. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 1997; ISBN 978-0-19-508713-0. [Google Scholar]
- ASTM E2941-14; Standard Practices for Extraction of Elements from Ores and Related Metallurgical Materials by Acid Digestion. ASTM: West Conshohocken, PA, USA, 2014.
- U.S. EPA Method 6010D; Inductively Coupled Plasma—Optical Emission Spectrometry. U.S. EPA: Washington, DC, USA, 2018.
- ASTM E1621-13; Standard Guide for Elemental Analysis by Wavelength Dispersive X-ray Fluorescence Spectrometry. ASTM: West Conshohocken, PA, USA, 2021.
- Jenkins, R. X-ray Fluorescence Spectrometry; Wiley: Hoboken, NJ, USA, 2012; ISBN 0471299421. [Google Scholar]
- Method 3051A (SW-846); Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils. U.S. EPA: Washington, DC, USA, 2007.
- U.S. EPA Method 7471B Mercury in Solid or Semisolid Waste (Manual Cold-Vapor Technique). 2007. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/7471b.pdf (accessed on 24 May 2022).
- CEN. Characterization of Waste-Leaching-Compliance Test for Leaching of Granular Waste Materials and Sludges—Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/Kg for Materials with Particle Size below 4 Mm (without or with Size Reduction); European Committee for Standardization: Brussels, Belgium, 2002. [Google Scholar]
- Al-Abed, S.R.; Hageman, P.L.; Jegadeesan, G.; Madhavan, N.; Allen, D. Comparative Evaluation of Short-Term Leach Tests for Heavy Metal Release from Mineral Processing Waste. Sci. Total Environ. 2006, 364, 14–23. [Google Scholar] [CrossRef]
- Guzmán-Martínez, F.; Arranz-González, J.C.; García-Martínez, M.; Ortega, M.F.; Rodríguez-Gómez, V.; Jiménez-Oyola, S. Comparative Assessment of Leaching Tests According to Lixiviation and Geochemical Behavior of Potentially Toxic Elements from Abandoned Mining Wastes. Mine Water Environ. 2022, 41, 265–279. [Google Scholar] [CrossRef]
- SMWW 3120 Metals by Plasma Emission Spectroscopy. In Standard Methods for the Examination Water and Wastewater; American Public Health Association: Washington DC, USA, 2020.
- U.S. EPA Method 6020B; Inductively Coupled Plasma—Mass Spectrometry. U.S. EPA: Washington, DC, USA, 2014.
- del Campo, A.; Arranz-González, J.; Rodríguez-Gómez, V.; Vadillo, L.; Rodríguez, V.; Fernández, F. Manual Para La Evaluación de Riesgos de Instalaciones de Residuos de Industrias Extractivas Cerradas o Abandonadas, 1st ed.; Ministerio de Agricultura, Alimentación y Medio Ambiente España: Madrid, Spain; Instituto Geológico y Minero de España: Madrid, Spain, 2014; ISBN 9788478409341. [Google Scholar]
- TULSMA. Texto Unificado de Legislación Secundaria Medio Ambiental; Ministerio de Ambiente de Ecuador: Quito, Ecuador, 2015. [Google Scholar]
- Arranz-González, J.; Rodríguez-Gómez, V.; Rodríguez-Pacheco, R.; Fernández-Naranjo, F.J.; Vadillo-Fernández, L.; Alberruche del Campo, E. Guía Para La Rehabilitación de Instalaciones Abandonadas de Residuos Mineros. Ministerio para la Transición Ecológica España: Madrid, Spain; Instituto Geológico y Minero de España: Madrid, Spain, 2019; Volume 620. [Google Scholar]
- Roy, S.; Adhikari, G.R.; Gupta, R.N. Use of Gold Mill Tailings in Making Bricks: A Feasibility Study. Waste Manag. Res. 2007, 25, 475–482. [Google Scholar] [CrossRef]
- Thejas, H.K.; Hossiney, N. Compressed Unfired Blocks Made with Iron Ore Tailings and Slag. Cogent Eng. 2022, 9, 2032975. [Google Scholar] [CrossRef]
- Thejas, H.K.; Hossiney, N. Alkali-Activated Bricks Made with Mining Waste Iron Ore Tailings. Case Stud. Constr. Mater. 2022, 16, e00973. [Google Scholar] [CrossRef]
- NTE INEN 1855-2; Hormigones. Hormigón Preparado En Obra. Requisitos. NTE INEN: Quito, Ecuador, 2015.
- ASTM C140/C140M-22a; Standard Test Methods for Sampling and Testing Concrete Masonry Units and Related Units. ASTM: West Conshohocken, PA, USA, 2022; pp. 1–24.
- NTE INEN 3040; Norma Técnica Ecuatoriana Adoquines de Hormigón. Requisitos y Métodos de Ensayo. NTE INEN: Quito, Ecuador, 2016.
- Folk, R.L. The Distinction between Grain Size and Mineral Composition in Sedimentary-Rock Nomenclature. J. Geol. 1954, 62, 344–359. [Google Scholar] [CrossRef]
- Blowes, D.W.; Ptacek, C.J.; Jurjovec, J. Mill Tailings: Hidrogeology and Geochemistry. In Environmental Aspects of Mine Wastes; Jambor, J.L., Blowes, D.W., Ritchie, A., Eds.; Mineralogical Association of Canada: Vancouver, BC, Canada, 2003; pp. 95–116. [Google Scholar]
- Jamieson, H.E.; Walker, S.R.; Parsons, M.B. Mineralogical Characterization of Mine Waste. Appl. Geochem. 2015, 57, 85–105. [Google Scholar] [CrossRef]
- Jamieson, H.E. Geochemistry and Mineralogy of Solid Mine Waste: Essential Knowledge for Predicting Environmental Impact. Elements 2011, 7, 381–386. [Google Scholar] [CrossRef]
- Mokhtari, A.R.; Feiznia, S.; Jafari, M.; Tavili, A.; Ghaneei-Bafghi, M.J.; Rahmany, F.; Kerry, R. Investigating the Role of Wind in the Dispersion of Heavy Metals Around Mines in Arid Regions (a Case Study from Kushk Pb–Zn Mine, Bafgh, Iran). Bull. Environ. Contam. Toxicol. 2018, 101, 124–130. [Google Scholar] [CrossRef]
- Taha, Y.; Benzaazoua, M.; Edahbi, M.; Mansori, M.; Hakkou, R. Leaching and Geochemical Behavior of Fired Bricks Containing Coal Wastes. J. Environ. Manag. 2018, 209, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Das, P.K.; Das, B.P.; Dash, P. Chromite Mining Pollution, Environmental Impact, Toxicity and Phytoremediation: A Review. Environ. Chem. Lett. 2021, 19, 1369–1381. [Google Scholar] [CrossRef]
Characteristic | EN-LLT |
---|---|
Test type | Batch |
Liquid to solid ratio | 10:1 |
Extracting fluid | Deionized water |
pH of extracting fluid | 5.0 < pH < 7.5 |
Particle size used | <2 mm |
Sample amount | 100 g |
Duration of agitation | 24 h |
Agitation method | End-over-end rotatory (5–10 rpm) |
Filtration | Vacuum filtration device |
Filter type | Nitro-cellulose |
Filter pore size | 0.45 micrometer |
Method | Sand (kg) | Tailing (kg) | Crushed Stone (kg) | Portland Cement (kg) | Water (L) | Blocks Produced | Sample Code * |
---|---|---|---|---|---|---|---|
Conventional method | 17 | 0 | 0 | 1.8 | 1.4 | 14 | CA-Bn |
By replacing 50% of the sand with tailing | 11.4 | 11.4 | 11.4 | 3.6 | 2.8 | 14 | CA-50%-Bn |
By replacing 70% of the sand with tailing | 7.8 | 18.2 | 13.0 | 4.0 | 2.4 | 14 | CA-70%-Bn |
Sample | Bulk Density (g/cm3) | Real Density (g/cm3) | PTE Content (mg/kg) | IC a | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | Cd | Co | Cr | Cu | Hg | Mo | Ni | Pb | Se | Sb | V | Zn | ||||
CA-01 | 1.7 | 2.3 | <DL | <DL | <DL | 76 | 34 | 0.2 | <DL | <DL | 26 | <DL | <DL | 73 | 159 | 1.8 |
CA-02 | 1.6 | 2.4 | <DL | <DL | <DL | 78 | 33 | <DL | <DL | <DL | 35 | <DL | <DL | 70 | 161 | 1.5 |
CA-03 | 1.7 | 2.5 | <DL | <DL | <DL | 71 | 34 | <DL | <DL | <DL | 34 | <DL | <DL | 67 | 164 | 1.4 |
CA-04 | 1.7 | 2.3 | <DL | <DL | <DL | 77 | 32 | <DL | <DL | <DL | 43 | <DL | <DL | 71 | 161 | 1.5 |
CA-05 | 1.7 | 2.5 | <DL | <DL | <DL | 75 | 35 | <DL | <DL | <DL | 35 | <DL | <DL | 69 | 171 | 1.5 |
CA-06 | 1.6 | 2.5 | <DL | <DL | <DL | 80 | 35 | <DL | <DL | <DL | 29 | <DL | <DL | 72 | 165 | 1.4 |
CA-07 | 1.7 | 2.5 | <DL | <DL | <DL | 82 | 33 | <DL | <DL | <DL | 29 | <DL | <DL | 70 | 183 | 1.5 |
CA-08 | 1.7 | 2.7 | <DL | <DL | <DL | 87 | 33 | <DL | <DL | <DL | <DL | <DL | <DL | 70 | 160 | 1.4 |
CA-09 | 1.7 | 2.2 | <DL | <DL | <DL | 72 | 35 | <DL | <DL | <DL | 35 | <DL | <DL | 72 | 161 | 1.4 |
CA-10 | 1.7 | 2.3 | <DL | <DL | <DL | 76 | 32 | <DL | <DL | <DL | 31 | <DL | <DL | 70 | 156 | 1.4 |
Ecuadorian reference levels b | 12 | 0.5 | 10 | 54 | 25 | 0.1 | 5 | 19 | 19 | 1 | * | 76 | 60 |
Sample | pH | Eh (µS/cm) | SC (mV) | PTE Release (mg/kg) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | Ba | Cd | Co | Cr | Cu | Mo | Ni | Pb | Sb | Se | V | Zn | SO4 | F− | Cl− | ||||
CA-01 | 7.0 | 181 | 104 | <DL | <DL | <DL | <DL | <DL | 0.1 | <DL | <DL | <DL | <DL | <DL | <DL | 0.2 | 161 | 2 | 412 |
CA-02 | 7.2 | 162 | 98 | <DL | <DL | <DL | <DL | <DL | 0.1 | <DL | <DL | <DL | <DL | <DL | <DL | <DL | 145 | 1 | 233 |
CA-03 | 7.2 | 163 | 97 | <DL | <DL | <DL | <DL | <DL | 0.1 | <DL | <DL | <DL | <DL | <DL | <DL | <DL | 135 | <DL | 122 |
CA-04 | 7.3 | 154 | 95 | <DL | <DL | <DL | <DL | <DL | 0.1 | <DL | <DL | <DL | <DL | <DL | <DL | 0.4 | 147 | 1 | 105 |
CA-05 | 7.1 | 150 | 112 | <DL | <DL | <DL | <DL | <DL | 0.1 | <DL | <DL | <DL | <DL | <DL | <DL | <DL | 159 | <DL | 17 |
CA-06 | 7.2 | 178 | 125 | <DL | <DL | <DL | <DL | <DL | 0.1 | <DL | <DL | <DL | <DL | <DL | <DL | 0.3 | 142 | <DL | 202 |
CA-07 | 7.3 | 169 | 117 | <DL | <DL | <DL | <DL | <DL | 0.1 | <DL | <DL | <DL | <DL | <DL | <DL | 0.2 | 157 | <DL | 121 |
CA-08 | 7.2 | 161 | 120 | <DL | <DL | <DL | <DL | <DL | 0.1 | <DL | <DL | <DL | <DL | <DL | <DL | <DL | 155 | <DL | 200 |
CA-09 | 7.2 | 170 | 118 | <DL | <DL | <DL | <DL | <DL | 0.1 | <DL | <DL | <DL | <DL | <DL | <DL | 0.2 | 166 | <DL | 9 |
CA-10 | 7.1 | 148 | 121 | <DL | <DL | <DL | <DL | <DL | 0.1 | <DL | <DL | <DL | <DL | <DL | <DL | 0.3 | 168 | <DL | 25 |
LLV a | 0.5 | 20 | 0.04 | * | 0.5 | 2 | 0.5 | 0.4 | 0.5 | 0.06 | 0.1 | * | 4 | 1000 | 10 | 800 |
Sample | pH | Eh (S/cm) | SC (mV) | PTE Release (mg/kg) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | Ba | Cd | Co | Cr | Cu | Mo | Ni | Pb | Sb | Se | V | Zn | SO4 | F− | Cl− | ||||
CA-50%-B1 | 12.1 | −42 | 1424 | <DL | 0.3 | <DL | <DL | 1 | <DL | <DL | <DL | <DL | <DL | <DL | 0.02 | <DL | 30 | 1 | 12 |
CA-50%-B2 | 12.1 | −48 | 1467 | <DL | 0.4 | <DL | <DL | 2 | <DL | 0.1 | <DL | <DL | <DL | <DL | 0.02 | <DL | 50 | 1 | 11 |
CA-50%-B3 | 12.0 | −36 | 1200 | <DL | 0.3 | <DL | <DL | 2 | <DL | 0.1 | <DL | <DL | <DL | <DL | 0.03 | <DL | 50 | 1 | 12 |
CA-50%-B4 | 12.1 | −36 | 1454 | <DL | 0.3 | <DL | <DL | 3 | <DL | 0.1 | <DL | <DL | <DL | <DL | 0.03 | <DL | 60 | 1 | 11 |
CA-50%-B5 | 11.6 | −9 | 561 | <DL | 0.2 | <DL | <DL | 1 | <DL | <DL | <DL | <DL | <DL | <DL | 0.07 | <DL | 60 | 1 | 3 |
CA-70%-B1 | 12.1 | −28 | 1240 | <DL | 0.01 | <DL | <DL | 2 | <DL | 0.1 | <DL | <DL | <DL | <DL | 0.09 | <DL | 80 | 1 | 1.1 |
CA-70%-B2 | 12.3 | −30 | 2170 | <DL | 0.3 | <DL | <DL | 2 | <DL | 0.1 | <DL | <DL | <DL | <DL | 0.03 | <DL | 60 | 1 | 14 |
CA-70%-B3 | 11.7 | −17 | 694 | <DL | <DL | <DL | <DL | 4 | <DL | 0.1 | <DL | <DL | <DL | <DL | 0.03 | <DL | 380 | 1 | 10 |
CA-70%-B4 | 12.0 | −17 | 1104 | <DL | 0.07 | <DL | <DL | 2 | <DL | 0.1 | <DL | <DL | <DL | <DL | 0.09 | <DL | 100 | 1 | 16 |
CA-70%-B5 | 11.4 | −1 | 386 | <DL | 0.05 | <DL | <DL | 1 | <DL | <DL | <DL | <DL | <DL | <DL | 0.09 | 1 | 40 | 1 | <DL |
LLV a | 0.5 | 20 | 0.04 | * | 0.5 | 2 | 0.5 | 0.4 | 0.5 | 0.06 | 0.1 | * | 4 | 1000 | 10 | 800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez, D.; Guzmán-Martínez, F.; Acosta, M.; Collahuazo, L.; Ibarra, D.; Lalangui, L.; Jiménez-Oyola, S. Use of Tailings as a Substitute for Sand in Concrete Blocks Production: Gravimetric Mining Wastes as a Case Study. Sustainability 2022, 14, 16285. https://doi.org/10.3390/su142316285
Méndez D, Guzmán-Martínez F, Acosta M, Collahuazo L, Ibarra D, Lalangui L, Jiménez-Oyola S. Use of Tailings as a Substitute for Sand in Concrete Blocks Production: Gravimetric Mining Wastes as a Case Study. Sustainability. 2022; 14(23):16285. https://doi.org/10.3390/su142316285
Chicago/Turabian StyleMéndez, Diana, Fredy Guzmán-Martínez, Mauricio Acosta, Luis Collahuazo, Danilo Ibarra, Luis Lalangui, and Samantha Jiménez-Oyola. 2022. "Use of Tailings as a Substitute for Sand in Concrete Blocks Production: Gravimetric Mining Wastes as a Case Study" Sustainability 14, no. 23: 16285. https://doi.org/10.3390/su142316285
APA StyleMéndez, D., Guzmán-Martínez, F., Acosta, M., Collahuazo, L., Ibarra, D., Lalangui, L., & Jiménez-Oyola, S. (2022). Use of Tailings as a Substitute for Sand in Concrete Blocks Production: Gravimetric Mining Wastes as a Case Study. Sustainability, 14(23), 16285. https://doi.org/10.3390/su142316285