
Citation: Méndez, D.; Guzmán-

Martínez, F.; Acosta, M.; Collahuazo,

L.; Ibarra, D.; Lalangui, L.;

Jiménez-Oyola, S. Use of Tailings as a

Substitute for Sand in Concrete

Blocks Production: Gravimetric

Mining Wastes as a Case Study.

Sustainability 2022, 14, 16285.

https://doi.org/10.3390/

su142316285

Academic Editor: Guannan Liu

Received: 20 October 2022

Accepted: 29 November 2022

Published: 6 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Use of Tailings as a Substitute for Sand in Concrete Blocks
Production: Gravimetric Mining Wastes as a Case Study
Diana Méndez 1, Fredy Guzmán-Martínez 2 , Mauricio Acosta 3, Luis Collahuazo 3, Danilo Ibarra 3,
Luis Lalangui 1 and Samantha Jiménez-Oyola 1,*

1 Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de la Tierra, Campus
Gustavo Galindo km 30.5 Vía Perimetral, Guayaquil 090904, Ecuador

2 Mexican Geological Survey (SGM), Felipe Angeles Blvd., Km. 93.50-4, Pachuca 42083, Mexico
3 Instituto de Investigación Geológico y Energético, De las Malvas E15-142 y de los Perales-Monteserrín,

Quito 170503, Ecuador
* Correspondence: sjimenez@espol.edu.ec

Abstract: This study assesses the feasibility of reusing tailings from a gold mining area in southern
Ecuador in concrete block (CB) manufacturing. For this purpose, physical, chemical, and mineralog-
ical analyses were performed to characterize the tailings. Furthermore, the tailing samples were
subjected to the European Standard EN 12457-2 leaching test to assess the potential risk of releasing
toxic elements (PTE) into the environment. The CBs were made conventionally and replaced 50% and
70% of the sand with tailings. Lastly, mechanical resistance tests (MRTs) were performed to evaluate
the indirect tensile strength, compressive strength, and absorption. The study results show that
tailings are feasible as a substitute for sand in manufacturing CBs. Furthermore, the leaching tests
complied with the set limit for non-hazardous mining wastes. Regarding the MRT, the CBs made
with 50% of tailings were the ones that gave the most favorable results; however, the compressive
strength and absorption did not comply with the regulations. In this regard, making CBs with less
than 50% tailings is recommended to evaluate their mechanical properties. This study offers an
alternative for recycling tailings and contributing to the circular economy.

Keywords: circular economy; recycling; contamination indices; leaching tests; inert waste

1. Introduction

The mining industry produces economic and social benefits worldwide through the
supply of raw materials [1]. However, mining activities also produce massive amounts
of waste that negatively impact the environment if not suitably managed [2–4]. One of
the main concerns regarding mining waste is the amount generated, even up to 65 billion
tons per year [5]. These wastes are usually put into storage facilities (tailings dams and
waste rock piles), many of which are built without adequate safety standards, mainly in
developed countries [6,7].

Regarding the tailings, the intensive space–time deposition and the characteristics
of wastes make them a potential risk structure for the environment, human health, and
safety [3,8,9]. In addition, the lack of mining–environmental regulations and the inadequate
management of mining wastes have caused several accidents with tailings dams around
the world [10], as well as environmental contamination and risks to the ecosystem and the
population [6,11–13]. For example, in Ecuador, the last mining tailing accident was in July
2020, caused by the failure of a retaining wall, discharging about 50 tons of contaminants
into the Tenguel river in the Ponce Enriquez mining area [7]. Accordingly, numerous
papers deal with tailings issues, from historical analysis of tailings dam failure risk [14] to
developments and new insights for environmental sustainability and disaster control of
tailings dams [15]. First, however, it is necessary to work on the sustainable management
of tailings and to see them with a possibility of reuse [16]. Therefore, reasonable utilization
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of tailings may shift the waste material into valuable raw materials and harness and
improve the surroundings. Tailings should be thoroughly recycled and reused because
they constitute a secondary resource [16].

According to the sustainable development goals from the United Nations Development
Programme for 2015 to 2030, mining can contribute with actions based on the circular
economy and collaborate throughout the supply chain to minimize waste, and reuse and
recycle it. In this regard, it is sought after that the waste of one becomes the raw material of
the other [17,18]. However, it is relevant to mention that there is no generic way to address
the mining tailings issues. Each approach will depend directly on the characteristics of the
tailings. In some cases, the tailings may be reused as a potential critical mineral resource [19].
Sometimes, they will not represent toxicity potential to the environment [20] and can be
employed as a substitute for raw construction materials, reconstruction of landforms, or
rehabilitation of mining areas [21]. However, whatever use and reuse is given to the tailings
will already be a sustainable option for environmental mitigation.

In the circular economy, the reuse and recycling of mining waste can consider-
ably reduce the environmental impacts and the potential risk related to mining waste
storage [5,22]. On the other hand, the demand for raw materials grows yearly, so mining
waste production also increases. In this sense, the transition towards a sustainable mining
industry, in agreement with environmental legal frameworks, is essential [1,23,24].

In recent years, diverse mining waste reuse and recycling strategies have been stud-
ied [2,25–27]. One favorable application for these uses is in the construction industry [28–30].
This industry demands the intensive exploitation of natural resources, so using mining
wastes as a replacement for raw materials is a sustainable alternative to mitigate the
environmental impacts [31,32].

Recent works have evaluated the use of abandoned base-metal tailings as fine ag-
gregates for mortar preparation [29], the incorporation of sulphidic mining wastes from
inactive Pb-Zn and Cu-Zn-Pb mines in ceramic roof tiles and blocks [33], the use of Mn-
mining wastes as a filler material in Portland cement [34], cement production using kaolin
mining wastes [35], the use of lead ore flotation waste in building ceramics [36], bricks
production using mining wastes [8], and the production of wall and floor tiles using boron
mining wastes [37], obtaining favorable results in most of the studies mentioned above.

Despite the progress in this research field, more than 150 mineral processing plants
in Ecuador generate large amounts of mining waste. Consequently, its management and
final disposal become an economic, social, and environmental problem. Therefore, this
study aims to conduct experimental research to assess the viability of reusing tailings as a
substitute for sand in manufacturing concrete blocks. This approach promotes an alterna-
tive sustainable approach to managing mining wastes with economic and environmental
benefits. In addition, with tailings reuse the extraction of raw materials for the construction
industry can be reduced, thus promoting the circular economy.

2. Materials and Methods
2.1. Study Area

The study area is part of the Campanillas mining concession in southern Ecuador,
located in Zamora Chinchipe (Figure 1). Campanillas is a small-scale mining concession
that processes between 20 and 30 tons/day using gravimetric processes, generating around
19 tons/day of tailings. These mining wastes are stored in a tailings dam with an ap-
proximate capacity of 12,250 m3. Campanilllas was selected as a case study because it
presents common characteristics of small-scale gold mining activity in Ecuador and be-
cause of the mining company’s interest in implementing sustainable strategies for reusing
mining waste.
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Inferior Jurassic rocks, where sandstones, clays, and argillites have been reported. The 
unit is a sequence of volcano-sedimentary rocks composed of andesites with tuffs and 
volcanic breccias of varied texture, with sediments of volcanic origin with fine to medium 
grain sizes of greenish–gray color. There are also mineralizations in skarn-type rock with 
hydrothermal alterations [38]. In addition, outcrops can be found in the NW–SW direc-
tion, with pyrite and chalcopyrite veins and highly fractured rocks that host mainly Au, 
Cu, and Zn in vetiform mineralization [39]. The second unit is Zamora, which is consid-
ered a batholith type I. This unit comprises a series of lithologies, ranging from granites 
to granodiorites and coarse to medium-grained hornblende-biotitic, including potassium 
feldspar megacrysts, quartzmonzodiorites with pink perthite megacrysts, granular sub-
volcanic intrusives such as microdiorites, and hornblende porphyries [40]. 

2.2. Sample Collection and Preparation 
According to the methodology proposed by Smith [41], six sites were sampled ran-

domly at the tailing dam (Figure 1). First, a surface layer of 0.1 m was removed in each 
one, then 36.5 kg of tailings were collected at a depth between 0.1 and 0.5 m using a hand 
shovel. As a result, a composite sample of 219 kg was collected. This sample was trans-
ported in polyethylene bags and stored at room temperature. In the laboratory, the com-
posite sample was air-dried and homogenized. Then, the sample was sieved through an 
8 mm and 4 mm stainless steel sieve. Then, the sample was spread on the floor on a poly-
ethylene film covering an approximate surface of 1.15 × 1.45 m and a deepness of 0.1 m. 
Following the division method by increments [42], a homogenized lot with 20 arrange-
ments was obtained. Finally, by random sampling, ten samples of 1 kg each were collected 
in arrays 3, 7, 8, 10, 12, 14, 15, 16, 17, and 20. Each sample was reduced to 0.5 kg using a 
riffle splitter. The number of kg used for physicochemical and mineralogical analysis was 
0.4, and 0.1 kg was used for leaching tests. Samples were labeled CA, standing for Campa-
nillas, followed by a consecutive sampling number. 

  

Figure 1. Location of the study area, Zamora Chinchipe province, and satellite image where the
tailing dam is highlighted.

The study area presents two geological units. The main unit is Piuntza, a group of
Inferior Jurassic rocks, where sandstones, clays, and argillites have been reported. The unit
is a sequence of volcano-sedimentary rocks composed of andesites with tuffs and volcanic
breccias of varied texture, with sediments of volcanic origin with fine to medium grain sizes
of greenish–gray color. There are also mineralizations in skarn-type rock with hydrothermal
alterations [38]. In addition, outcrops can be found in the NW–SW direction, with pyrite
and chalcopyrite veins and highly fractured rocks that host mainly Au, Cu, and Zn in
vetiform mineralization [39]. The second unit is Zamora, which is considered a batholith
type I. This unit comprises a series of lithologies, ranging from granites to granodiorites and
coarse to medium-grained hornblende-biotitic, including potassium feldspar megacrysts,
quartzmonzodiorites with pink perthite megacrysts, granular subvolcanic intrusives such
as microdiorites, and hornblende porphyries [40].

2.2. Sample Collection and Preparation

According to the methodology proposed by Smith [41], six sites were sampled ran-
domly at the tailing dam (Figure 1). First, a surface layer of 0.1 m was removed in each one,
then 36.5 kg of tailings were collected at a depth between 0.1 and 0.5 m using a hand shovel.
As a result, a composite sample of 219 kg was collected. This sample was transported
in polyethylene bags and stored at room temperature. In the laboratory, the composite
sample was air-dried and homogenized. Then, the sample was sieved through an 8 mm
and 4 mm stainless steel sieve. Then, the sample was spread on the floor on a polyethylene
film covering an approximate surface of 1.15 × 1.45 m and a deepness of 0.1 m. Following
the division method by increments [42], a homogenized lot with 20 arrangements was
obtained. Finally, by random sampling, ten samples of 1 kg each were collected in arrays 3,
7, 8, 10, 12, 14, 15, 16, 17, and 20. Each sample was reduced to 0.5 kg using a riffle splitter.
The number of kg used for physicochemical and mineralogical analysis was 0.4, and 0.1 kg
was used for leaching tests. Samples were labeled CA, standing for Campanillas, followed
by a consecutive sampling number.
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2.3. Analytical Procedures
2.3.1. Tailing Physicochemical and Mineralogical Properties

The grain size distribution was determined using eight grain-size classes according to
the normalized protocol ASTM C 117 [43]. The Gay-Lussac BOECO® pycnometer analyzed
the bulk and real density according to the Villaseñor-Ortiz [44] method. Mineralogy was
determined by X-ray diffraction spectroscopy (XRD) [45]. XRD analyses were carried
out using a Bruker AXS D8 Advance diffractometer equipped with a copper anticathode,
scanning over a diffraction angle range of 4◦ to 75◦ with a step size of 0.01◦ per step.
Minerals were identified based on the peaks and d-spaces using the software DIFFRAC.EVA
for identification and DIFFRAC.TOPAS for quantification.

Potentially toxic elements (PTE), As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, Se, V, and
Zn, were identified and quantified using the optical spectroscopy technique according
to E2941-14 [46] and 6010D [47] standard methods. An optical emission spectrometer
(ICP-OES) from Perkin Elmer®, model OPTIMA 8300, was used with previous total diges-
tion with four acids (HNO3-HCl-HClO4-HF). The reference standard employed was ERA
D110-540 Metals in Soil, PriorityPollutnT™. Major elements (Na2O, MgO, Al2O3, SiO2,
P2O5, SO3, K2O, CaO, TiO2, Mn2O3, Fe2O3) were analyzed using the XRF fluorescence
E1621-13 standard method [48,49], using Bruker S8 Tiger Series 2 spectrometer equipment.
In addition, Hg content was quantified by cold-vapor atomic absorption spectrometry
following the 30501A [50] and 7471B [51] standard methods. During the analytical pro-
cedures, all the obtained results were assessed with an internal quality control system
of the IIGE labs, which has a management system implemented under the NTE INEN-
ISO/IEC17025:2018 standard.

2.3.2. Leaching Tests

The tailing samples were leached by the European compliance laboratory leaching
test (EN LLT) [52] (Table 1). An extraction test with deionized water was carried out to
simulate scenarios in which the tailings are in contact with solutions with low buffering
capacity, such as rainwater [53].

Table 1. Parameters of the leaching tests.

Characteristic EN-LLT

Test type Batch
Liquid to solid ratio 10:1

Extracting fluid Deionized water
pH of extracting fluid 5.0 < pH < 7.5

Particle size used <2 mm
Sample amount 100 g

Duration of agitation 24 h
Agitation method End-over-end rotatory (5–10 rpm)

Filtration Vacuum filtration device
Filter type Nitro-cellulose

Filter pore size 0.45 micrometer
Source: Guzmán-Martínez et al. [54].

The eluates’ pH, specific conductivity (SC), and redox potential (Eh) were measured
with a HATCH® portable multimeter. In addition, PTE was quantified by inductively
coupled plasma mass spectroscopy (ICP-MS) from Agilent 7700x, according to 3120D [55]
and 6020B [56] standard methods.
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2.4. Indices of Contamination (IC)

The IC from Alberruche del Campo et al. [57] is a tool used to determine the contami-
nant potential from mining wastes and is calculated by the following equation:

IC = (1/n)
(
∑n

i=1[X]i/RLx

)
(1)

where X is the element concentration in mining waste leachate; RLX is the reference levels
for each element measured in the leachate; and n is the number of elements measured whose
concentrations are above the values adopted in RLX. The Ecuadorian legislation established
the reference levels [58]. The assessment of the IC results was evaluated according to the
classification proposed by Arranz-González et al. [59], as follows: very low (<3.2), low
(3.2–6.4), medium (6.4–9.6), high (9.6–12.8), and very high (>12.8).

2.5. Concrete Blocks Production, Mechanical Resistance, and Leaching

The concrete blocks were made with three raw material proportions (Table 2). Firstly,
with a conventional method with 100% sand. Secondly, by replacing 50% of the sand with
tailing, and finally by replacing 70% of the sand with tailing. These values were selected
based on the literature review [8,60–62]. A pallet of 14 blocks was produced for each
proportion of raw materials. Each block measured 0.65 × 0.22 × 0.1 m.

Table 2. Proportions of raw materials used for concrete blocks production.

Method Sand (kg) Tailing (kg) Crushed
Stone (kg)

Portland
Cement (kg) Water (L) Blocks

Produced
Sample
Code *

Conventional method 17 0 0 1.8 1.4 14 CA-Bn
By replacing 50% of the

sand with tailing 11.4 11.4 11.4 3.6 2.8 14 CA-50%-Bn

By replacing 70% of the
sand with tailing 7.8 18.2 13.0 4.0 2.4 14 CA-70%-Bn

* n is the consecutive number of the sample.

To produce concrete blocks using the conventional method, 17 kg of sand was mixed
with 1.8 kg of Portland cement and approximately 1.4 L of water, then mixed at 33.3 rpm for
8 min. Subsequently, the mixture was placed for 6 s inside the molds in the Vibro-pressing
machine. Afterward, the curing process was carried out, moistening the blocks thrice a day
for five days. Finally, the setting was completed, allowing the blocks to dry for 23 days at
room temperature [63]. Then, the same procedure described in the conventional method
was used to produce blocks with tailings as a substitute for sand (Figure 2a), with the
proportions shown in Table 2.
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Three were randomly selected for mechanical resistance tests from each pallet of blocks
(made with each of the three raw material proportions). Assays were carried out in the
Soil Laboratory of the Engineering Faculty in Earth Sciences of the Littoral Superior School
of Ecuador. The tests applied to each concrete block were the compressive strength test
(Figure 2b), using the standardized ASTM C140 method [64], and the absorption (Figure 2c)
and indirect tensile strength tests (Figure 2d) using the Ecuadorian technical standard NTE-
INEN 3040 methodology [65]. In addition, five concrete blocks were randomly selected
from each pallet to determine which PTE could be solubilized. Then the blocks were
crushed to a particle size of 2 mm, and the leaching EN LLT test was applied.

3. Results
3.1. Mining Wastes Characterization

As shown in Figure 3, the samples correspond to sands as the particle size is between
65 and 1000 µm [66]. These results suggest that tailings can replace sands in the elaboration
of concrete blocks since they can be categorized as sands. Furthermore, the samples present
an average d80 of 73.8 µm because these mining wastes come from a size reduction stage
consisting of crushing–sorting–grinding. This particle size is expected because a ball mill
is used in the grinding stage; therefore, the tailings’ particle size corresponds to fines
(<100 µm). The tailings samples have nearly similar bulk densities (1.7 g/cm3 on average)
and real densities (2.4 g/cm3 on average) (Table 3), which are close to quartz density [29],
the principal mineralogical constituent of the samples and the main constituent of the sands
used in the production of concrete blocks.
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Table 3. Physicochemical characterization and PTE content in tailings.

Sample
Bulk

Density
(g/cm3)

Real
Density
(g/cm3)

PTE Content (mg/kg)
IC a

As Cd Co Cr Cu Hg Mo Ni Pb Se Sb V Zn

CA-01 1.7 2.3 <DL <DL <DL 76 34 0.2 <DL <DL 26 <DL <DL 73 159 1.8
CA-02 1.6 2.4 <DL <DL <DL 78 33 <DL <DL <DL 35 <DL <DL 70 161 1.5
CA-03 1.7 2.5 <DL <DL <DL 71 34 <DL <DL <DL 34 <DL <DL 67 164 1.4
CA-04 1.7 2.3 <DL <DL <DL 77 32 <DL <DL <DL 43 <DL <DL 71 161 1.5
CA-05 1.7 2.5 <DL <DL <DL 75 35 <DL <DL <DL 35 <DL <DL 69 171 1.5
CA-06 1.6 2.5 <DL <DL <DL 80 35 <DL <DL <DL 29 <DL <DL 72 165 1.4
CA-07 1.7 2.5 <DL <DL <DL 82 33 <DL <DL <DL 29 <DL <DL 70 183 1.5
CA-08 1.7 2.7 <DL <DL <DL 87 33 <DL <DL <DL <DL <DL <DL 70 160 1.4
CA-09 1.7 2.2 <DL <DL <DL 72 35 <DL <DL <DL 35 <DL <DL 72 161 1.4
CA-10 1.7 2.3 <DL <DL <DL 76 32 <DL <DL <DL 31 <DL <DL 70 156 1.4

Ecuadorian reference levels b 12 0.5 10 54 25 0.1 5 19 19 1 * 76 60

a Contamination index. b Reference levels according to Unified Text on Secondary Environmental Legislation [58].
<DL below detection limit. * PTE not listed in the reference level.
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Regarding mineralogical characterization (Figure 4a), the samples have a typical tailing
composition, with more than 85% silicates and less than 12% carbonates [67]. Although, it
is worth noting the absence of sulfides in the XRD analysis since they usually represent
between 1% and 40% of the tailing’s composition. The fact that no sulfides were found in
the samples suggests that there will be no leaching of potentially toxic elements in the short
term. On the other hand, the most significant mineralogical contents in tailing samples
were quartz, at 36%. Other significant minerals in abundance were the plagioclase group
(Albite and Anorthite) (22%) and andradite (19%). The group of K-feldspars (Orthoclase,
Microcline, Sanidine) and calcite, both with neutralizing capacity, were found in a low
proportion, with 7% and 6%, respectively. Calcite is a typical mineral in tailings and the
most rapidly reacting carbonate mineral to contribute to neutralization processes [68,69].
Major elements determined by fluorescence XRF are presented in Figure 4b. The tailings
were found to have a high content of SiO2, while CaO, Fe2O3, and Al2O3 were minor
components. The content of SiO2 is related to the presence of quartz and other silicates.
The CaO corresponds to the presence of calcite (CaCO3), which, when subjected to 1000 ◦C,
originated CaO and CO2 4% of calcination losses (CL). Finally, the presence of Fe2O3 may
be due to the high concentration of andradite ((SiO4)3Fe2Ca3). The amount of quartz
detected in the tailing samples is relevant because it has a high mechanical resistance to
impact, influencing the mechanical resistance of the concrete blocks made with tailings
(Lam et al., 2020).
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Physicochemical characterization and PTE content in mining wastes are present in
Table 3. As, Cd, Co, Mo, Ni, Se, and Sb were below the detection limit (DL) in all samples,
while Hg was below DL in nine out of ten samples. On the other hand, the concentration
of Ba, Cr, Cu, Pb, and Zn were above the reference levels according to the Ecuadorian
Environmental Legislation [58] in the ten samples. Such concentration indicates a potential
environmental risk since the tailings are mostly made up of fine materials easily transported
by the wind [70].

3.2. Assessment of Pollution Potential from Tailing Samples

IC was used as an indicator of the pollution level of the tailings due to the probability
of erosion contamination scenarios [4]. The IC calculated stood between 1.4 and 1.8 (Table 3)
which falls into the category of very low risk (IC < 3.2), which means that in the long term
the tailings of this study present a very low probability of contamination due to erosion
processes [59]. The percentage contribution of PTE in the contamination index result is
similar in most samples (Figure 5). As previously mentioned, Ba, Cr, Cu, and Zn exceeded
the Ecuadorian reference levels for soil quality in 100% of the analyzed samples, 90% in Pb,
and Hg was only higher than the reference levels in sample CA-01. Nevertheless, based on
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the IC, the tailings are categorized as having very low pollution, suggesting no potential
environmental risk.
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The results of the release of PTE from the tailings are presented in Table 4. It is
important to note that no element exceeds the reference values of the Royal Decree 646/2020,
so they are considered inert waste and, therefore, are suitable for reuse as a sand substitute.
In addition, the mine tailings’ pH is neutral, with values between 7.0 and 7.3, suggesting a
low degree of solubilization of the elements contained in the tailings. These results agree
with Argane et al. [29], who reported that tailings used as aggregates in the manufacturing
of construction material in the Moulouya region (Morocco) have very low generating
potential of contaminated effluents; therefore, their reuse is an efficient alternative for
tailing management.

Table 4. Release of PTE obtained (mg/kg) from the EN-LLT leaching test method.

Sample pH Eh
(µS/cm)

SC
(mV) PTE Release (mg/kg)

As Ba Cd Co Cr Cu Mo Ni Pb Sb Se V Zn SO4 F− Cl−

CA-01 7.0 181 104 <DL <DL <DL <DL <DL 0.1 <DL <DL <DL <DL <DL <DL 0.2 161 2 412
CA-02 7.2 162 98 <DL <DL <DL <DL <DL 0.1 <DL <DL <DL <DL <DL <DL <DL 145 1 233
CA-03 7.2 163 97 <DL <DL <DL <DL <DL 0.1 <DL <DL <DL <DL <DL <DL <DL 135 <DL 122
CA-04 7.3 154 95 <DL <DL <DL <DL <DL 0.1 <DL <DL <DL <DL <DL <DL 0.4 147 1 105
CA-05 7.1 150 112 <DL <DL <DL <DL <DL 0.1 <DL <DL <DL <DL <DL <DL <DL 159 <DL 17
CA-06 7.2 178 125 <DL <DL <DL <DL <DL 0.1 <DL <DL <DL <DL <DL <DL 0.3 142 <DL 202
CA-07 7.3 169 117 <DL <DL <DL <DL <DL 0.1 <DL <DL <DL <DL <DL <DL 0.2 157 <DL 121
CA-08 7.2 161 120 <DL <DL <DL <DL <DL 0.1 <DL <DL <DL <DL <DL <DL <DL 155 <DL 200
CA-09 7.2 170 118 <DL <DL <DL <DL <DL 0.1 <DL <DL <DL <DL <DL <DL 0.2 166 <DL 9
CA-10 7.1 148 121 <DL <DL <DL <DL <DL 0.1 <DL <DL <DL <DL <DL <DL 0.3 168 <DL 25

LLV a 0.5 20 0.04 * 0.5 2 0.5 0.4 0.5 0.06 0.1 * 4 1000 10 800

a LLV: leaching limit values for inert waste admissible in landfills for inert waste by Royal Decree 646/2020. <DL
below detection limit. * PTE not listed in the limit values for leaching.

3.3. Mechanical Resistance Tests of Concrete Blocks

The mechanical resistance results for the concrete blocks produced conventionally and
with 50% and 70% of tailing are presented in Figure 6. The indirect traction test showed that
only two of the concrete blocks made with 50% of tailings (CA-50%-B1 and CA-50%-B2)
gave resistance values greater than 2.9 MPa (Figure 6a), which are the compliance criteria
set by the Ecuadorian technical standard NTE-INEN 3040. This standard sets concrete
blocks’ materials, properties, requirements, and test methods [65].



Sustainability 2022, 14, 16285 9 of 14

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 14 
 

CA-50%-B2) gave resistance values greater than 2.9 MPa (Figure 6a), which are the com-
pliance criteria set by the Ecuadorian technical standard NTE-INEN 3040. This standard 
sets concrete blocks’ materials, properties, requirements, and test methods [65]. 

Regarding compressive strength, according to the standard ASTM C140 [64], the 
minimum value requirement is 55 MPa. Nevertheless, all the blocks analyzed reported 
values lower than the compliance criteria. As shown in Figure 6b, the sample CA-50%-B1 
was the closest to the compliance criteria, so further studies could evaluate how to im-
prove the compressive strength in detail. Compressive strength is related to the water–
cement ratio; reducing this proportion could decrease porosity and increase compressive 
strength [34]. In addition, high compressive strength is attributed to the high bonding 
interactions between particles due to the fineness of waste particles and their plasticity 
[71]. 

 
Figure 6. Comparative assessment of (a) the indirect traction, (b) compression, and (c) absorption
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Regarding compressive strength, according to the standard ASTM C140 [64], the
minimum value requirement is 55 MPa. Nevertheless, all the blocks analyzed reported
values lower than the compliance criteria. As shown in Figure 6b, the sample CA-50%-
B1 was the closest to the compliance criteria, so further studies could evaluate how to
improve the compressive strength in detail. Compressive strength is related to the water–
cement ratio; reducing this proportion could decrease porosity and increase compressive
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strength [34]. In addition, high compressive strength is attributed to the high bonding
interactions between particles due to the fineness of waste particles and their plasticity [71].

Concerning the absorption test (Figure 6c), no block met the maximum absorption
value of 6% established in the standard NTE-INEN 3040. The concrete blocks produced
conventionally and using 50% of tailing were in the same absorption range. In comparison,
the blocks manufactured with the highest amount of waste (70%) showed the highest value
for absorption. Based on these results, the use of 70% tailings in the production of blocks
presents the least favorable results. On the other hand, more tests should be carried out
with blocks with 50% tailings to obtain more conclusive results. In addition, making blocks
with a lower proportion of tailings, for example, 40% and 30%, is recommended to evaluate
their mechanical properties and have more conclusive results.

3.4. Environmental Considerations about the Concrete Blocks

Studying the environmental behavior of concrete blocks is essential to guarantee that
they will be safe for users and the environment. Table 5 shows the leaching test results
applied to the concrete blocks. As can be seen, the concentration of PTE in blocks produced
using both 50% and 70% of tailing is significantly lower than the limit set for inert wastes
established in the Royal Decree 646/2020. The As, Ba, Cd, Co, Cu, Mo, Ni, Pb, Sb, Se, V,
Zn, SO4, F−, and Cl− content in all concrete blocks sample leachates was insignificant or
below detection limits for the ICP-MS analysis. Cr showed similar concentrations for all
blocks ranging from 1 to 4 mg/kg, which is higher than the Royal Decree 646/2020 limits
(0.5 mg/kg). The Cr release in block samples may be related to their leachates’ higher
pH (12 on average). However, few studies have investigated the Cr in mining wastes. In
addition, unlike other PTE in which the total concentration is relevant, the toxicity depends
on the available oxidation states in Cr. Therefore, a future study should look into the
oxidation states of Cr present in the blocks since Cr (III) is considered benign and essential
as a micronutrient. At the same time, Cr (VI) is highly toxic and carcinogenic [72]. On the
other hand, as shown in Table 4 (tailings leaching) and Table 5 (blocks leaching), the pH
ranged from neutral to basic and the Eh from positive to negative. These results suggest
that in the tailings the conditions are oxidizing and neutral, while in the cement blocks there
are reducing and basic conditions, which could mean that the PTE has less mobilization
potential in the cement blocks than in the tailings.

Table 5. EN-LLT leaching test applied to the concrete blocks.

Sample pH Eh
(S/cm)

SC
(mV) PTE Release (mg/kg)

As Ba Cd Co Cr Cu Mo Ni Pb Sb Se V Zn SO4 F− Cl−

CA-50%-B1 12.1 −42 1424 <DL 0.3 <DL <DL 1 <DL <DL <DL <DL <DL <DL 0.02 <DL 30 1 12
CA-50%-B2 12.1 −48 1467 <DL 0.4 <DL <DL 2 <DL 0.1 <DL <DL <DL <DL 0.02 <DL 50 1 11
CA-50%-B3 12.0 −36 1200 <DL 0.3 <DL <DL 2 <DL 0.1 <DL <DL <DL <DL 0.03 <DL 50 1 12
CA-50%-B4 12.1 −36 1454 <DL 0.3 <DL <DL 3 <DL 0.1 <DL <DL <DL <DL 0.03 <DL 60 1 11
CA-50%-B5 11.6 −9 561 <DL 0.2 <DL <DL 1 <DL <DL <DL <DL <DL <DL 0.07 <DL 60 1 3
CA-70%-B1 12.1 −28 1240 <DL 0.01 <DL <DL 2 <DL 0.1 <DL <DL <DL <DL 0.09 <DL 80 1 1.1
CA-70%-B2 12.3 −30 2170 <DL 0.3 <DL <DL 2 <DL 0.1 <DL <DL <DL <DL 0.03 <DL 60 1 14
CA-70%-B3 11.7 −17 694 <DL <DL <DL <DL 4 <DL 0.1 <DL <DL <DL <DL 0.03 <DL 380 1 10
CA-70%-B4 12.0 −17 1104 <DL 0.07 <DL <DL 2 <DL 0.1 <DL <DL <DL <DL 0.09 <DL 100 1 16
CA-70%-B5 11.4 −1 386 <DL 0.05 <DL <DL 1 <DL <DL <DL <DL <DL <DL 0.09 1 40 1 <DL

LLV a 0.5 20 0.04 * 0.5 2 0.5 0.4 0.5 0.06 0.1 * 4 1000 10 800

a LLV: leaching limit values for inert waste admissible in landfills by Royal Decree 646/2020. <DL below detection
limit. * PTE not listed in the reference level.

4. Conclusions

This paper assessed the potential use of tailings as a substitute for sand in concrete
block production. For this purpose, physical, chemical, mineralogical, and mechanical
characterization were performed on tailings and concrete block samples. As a result, the
Index of Contamination (IC) used as an indicator of the pollution level was into the category
of very low risk (IC < 3.2) for all of the samples, which means that in the long term the
tailings present a very low probability of pollution. Furthermore, the results show that the
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leachates from the tailings of the Campanillas mine have low contents of PTE and comply
with the reference values of the Royal Decree 646/2020 for inert waste. Therefore, the
tailings are suitable for use as a sand substitute.

Moreover, the leaching test results for concrete blocks (with 50% and 70% of tailing)
concluded that the concrete blocks made with tailings do not produce toxic leachates.
Therefore, they are not considered potentially dangerous for users and the environment.
Regarding the mechanical resistance tests, the concrete blocks made with 50% of tailings
were the ones that gave the most favorable results; however, the compressive strength
and absorption did not comply with the regulations. Therefore, further research should
be undertaken to improve the mechanical resistance of blocks manufactured with tailings
as a substitute for sand. This study constitutes a proposal to reuse tailings simply, thus
promoting the circular economy and sustainability in the mining industry. However, the
characteristics of mining waste can vary significantly and, thus, vary its applicability in the
construction industry. Therefore, the residues and products made from them must be duly
examined and monitored so that their use is not dangerous for users.
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