Flood Susceptibility Mapping Using Watershed Geomorphic Data in the Onkaparinga Basin, South Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Floods in Australia
2.2. Study Area
2.3. Geological Setting
2.4. Data Sources and Processing
2.5. Ranking Morphometric Parameters for Flash Flood Susceptibility
2.6. Flood Susceptibility Analysis
Parameter | Abbreviation | Formula/Definition | Reference | |
---|---|---|---|---|
Stream and Drainage Aspects | Stream order | Su | Hierarchical | [55,61] |
Total stream number | Nu | Nu = N1 + N2 + … + Nn | [61] | |
Total stream length | Lu | Lu = L1 + L2 + … + Ln | [61] | |
Bifurcation ratio | Rb | Rb = Nn − 1/Nn, where Nu + 1 = no. of segments of the next higher order | [62] | |
Basin area | A | Plan area of the catchment (km2)/GIS software analysis | [61] | |
Basin Length | Lb | Length of basin (km)/GIS software analysis | [61] | |
Perimeter | P | Perimeter of watershed (km)/GIS software analysis | [61] | |
Scale Parameters | Time of concentration | Tc | Tc = G k (L/S0.5)0.77, where, G = 0.0078, k = Kirpich factor, L = Longest watercourse length in the basin, S = Average slope of the basin | [22] |
Length of Overland Flow | Lo | Lo = 0.5 × 1/Dd | [62] | |
Stream frequency | Fs | Fs = Nu/A, where Nu = total number of streams of all orders, A = area of the basin (km2) | [63] | |
Drainage density | Dd | Dd = Lu/A, where Lu = total stream length of all orders (km), A = area of the watershed (km2) | [63] | |
Drainage texture | Dt | Td = Nu/P, where Nu = total no. of stream segments of order “u”, P = perimeter of the watershed (km) | [61] | |
Lineament Density | Ld | Ld = Li/A, where Li = total numbers of lineaments, A = area of the basin (km2) | [64] | |
Shape Parameters | Sinuosity Index | SI | SI = AL/EL, where AL = actual length of stream, EL = expected straight path of the stream | [62] |
Shape index | Sh | Bs = Lb2/A, where Lb = basin length (km), A = area of the basin (km2) | [61] | |
Form factor | Ff | F = A/L2, where A = area of the basin (km2), Lb2 = square of the basin length | [63] | |
Circularity ratio | Ci | Ci = 4πA/P2, where π = 3.14 A = area of the bain (km2), P = perimeter (km) | [65] | |
Compactness index | Cr | Cr = P/2√πA, where P = perimeter of the basin (km), A = area of the basin (km2) | [61] | |
Elongation ratio | Er | Er = √2 Ab/lb, where A = area of the basin (km2), Lb = basin length | [62] | |
Relief Parameters | Basin relief | Hr | Hr = H − h, where H = maximum relief, h = minimum relief | [66] |
Relief ratio | Rr | Rr = Hr/Lb, where Hr = basin relief, Lb = basin length | [62] | |
Ruggedness number | Rn | Rn = Hr/Dd, where Hr = basin relief and Dd = drainage density | [55] | |
Average Slope | Sb | Sb = Hr/Lb, where Hr = basin relief, Lb = basin length | [67] | |
Stream maintenance | Sm | Sm = 1/Dd where Dd = drainage density | [62] | |
Gradient | Gr | G = Hr/Lu × 60, where Hr = basin relief, Lu = stream length | [68] |
2.7. Hazard Evaluation
3. Results and Discussion
3.1. Morphometric Analysis
3.2. Streams Characteristics
3.3. Scale Parameters
3.4. Shape Parameter
3.5. Relief Characteristics
3.6. Flood Susceptibility Analysis
3.7. Flood Risk Evaluation
4. Conclusions
5. Limitation and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Guha-Sapir, D.; Vos, F.; Below, R.; Ponserre, S. Annual Disaster Statistical Review 2011: The Numbers and Trends. 2012. Available online: https://mckellinstitute.org.au/wp-content/uploads/2022/09/The-Cost-of-Extreme-Weather-2022.pdf (accessed on 2 October 2022).
- Leaning, J.; Guha-Sapir, D. Natural disasters, armed conflict, and public health. N. Engl. J. Med. 2013, 369, 1836–1842. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; FitzGerald, G.J.; Clark, M.; Hou, X.-Y. Health impacts of floods. Prehospital Disaster Med. 2010, 25, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Markantonis, V.; Meyer, V.; Lienhoop, N. Evaluation of the environmental impacts of extreme floods in the Evros River basin using Contingent Valuation Method. Nat. Hazards 2013, 69, 1535–1549. [Google Scholar] [CrossRef]
- Lefebvre, M.; Reinhard, J. The Cost of extreme Weather “Building Resilience in the Face of Disaster”; The McKell Institute: Sydney, Australia, 2022; p. 32. [Google Scholar]
- Hettiarachchi, S.; Wasko, C.; Sharma, A. Increase in flood risk resulting from climate change in a developed urban watershed–the role of storm temporal patterns. Hydrol. Earth Syst. Sci. 2018, 22, 2041–2056. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Wasko, C.; Lettenmaier, D.P. If precipitation extremes are increasing, why aren’t floods? Water Resour. Res. 2018, 54, 8545–8551. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Jones, S.; Shabani, F. Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. Catena 2019, 175, 174–192. [Google Scholar] [CrossRef]
- Sarkar, D.; Mondal, P. Flood vulnerability mapping using frequency ratio (FR) model: A case study on Kulik river basin, Indo-Bangladesh Barind region. Appl. Water Sci. 2019, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Shehata, M.; Mizunaga, H. Flash flood risk assessment for Kyushu Island, Japan. Environ. Earth Sci. 2018, 77, 76. [Google Scholar] [CrossRef]
- Creutin, J.D.; Borga, M.; Gruntfest, E.; Lutoff, C.; Zoccatelli, D.; Ruin, I. A space and time framework for analyzing human anticipation of flash floods. J. Hydrol. 2013, 482, 14–24. [Google Scholar] [CrossRef]
- Creutin, J.D.; Borga, M. Radar hydrology modifies the monitoring of flash-flood hazard. Hydrol. Process. 2003, 17, 1453–1456. [Google Scholar] [CrossRef]
- Borga, M.; Boscolo, P.; Zanon, F.; Sangati, M. Hydrometeorological analysis of the 29 August 2003 flash flood in the Eastern Italian Alps. J. Hydrometeorol. 2007, 8, 1049–1067. [Google Scholar] [CrossRef]
- Canter, L.W.; Atkinson, S. Multiple uses of indicators and indices in cumulative effects assessment and management. Environ. Impact Assess. Rev. 2011, 31, 491–501. [Google Scholar] [CrossRef]
- Korytny, L.M.; Kichigina, N.V. Geographical analysis of river floods and their causes in southern East Siberia. Hydrol. Sci. J. 2006, 51, 450–464. [Google Scholar] [CrossRef]
- Mohamed, S.A.; El-Raey, M.E. Vulnerability assessment for flash floods using GIS spatial modeling and remotely sensed data in El-Arish City, North Sinai, Egypt. Nat. Hazards 2020, 102, 707–728. [Google Scholar] [CrossRef]
- Bhattacharya, R.K.; Chatterjee, N.D.; Das, K. An integrated GIS approach to analyze the impact of land use change and land cover alteration on ground water potential level: A study in Kangsabati Basin, India. Groundw. Sustain. Dev. 2020, 11, 100399. [Google Scholar] [CrossRef]
- Singh, S.; Dhote, P.R.; Thakur, P.K.; Chouksey, A.; Aggarwal, S. Identification of flash-floods-prone river reaches in Beas river basin using GIS-based multi-criteria technique: Validation using field and satellite observations. Nat. Hazards 2021, 105, 2431–2453. [Google Scholar] [CrossRef]
- Bhat, M.S.; Alam, A.; Ahmad, S.; Farooq, H.; Ahmad, B. Flood hazard assessment of upper Jhelum basin using morphometric parameters. Environ. Earth Sci. 2019, 78, 54. [Google Scholar] [CrossRef]
- Singh, O.; Kumar, D. Evaluating the influence of watershed characteristics on flood vulnerability of Markanda River basin in north-west India. Nat. Hazards 2019, 96, 247–268. [Google Scholar] [CrossRef]
- Bajabaa, S.; Masoud, M.; Al-Amri, N. Flash flood hazard mapping based on quantitative hydrology, geomorphology and GIS techniques (case study of Wadi Al Lith, Saudi Arabia). Arab. J. Geosci. 2014, 7, 2469–2481. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.; Saber, M.; Kantoush, S.A.; Khalil, M.F.; Sumi, T.; Sefelnasr, A.M. A hydrological and geomorphometric approach to understanding the generation of wadi flash floods. Water 2017, 9, 553. [Google Scholar] [CrossRef]
- Ahmed, A.; Hewa, G.; Alrajhi, A. Flood susceptibility mapping using a geomorphometric approach in South Australian basins. Nat. Hazards 2021, 106, 629–653. [Google Scholar] [CrossRef]
- Sofi, M.S.; Rautela, K.S.; Bhat, S.U.; Rashid, I.; Kuniyal, J.C. Application of Geomorphometric Approach for the Estimation of Hydro-sedimentological Flows and Cation Weathering Rate: Towards Understanding the Sustainable Land Use Policy for the Sindh Basin, Kashmir Himalaya. Water Air Soil Pollut. 2021, 232, 280. [Google Scholar] [CrossRef]
- Adnan, M.S.G.; Dewan, A.; Zannat, K.E.; Abdullah, A.Y.M. The use of watershed geomorphic data in flash flood susceptibility zoning: A case study of the Karnaphuli and Sangu river basins of Bangladesh. Nat. Hazards 2019, 99, 425–448. [Google Scholar] [CrossRef]
- Costache, R.; Pham, Q.B.; Sharifi, E.; Linh, N.T.T.; Abba, S.I.; Vojtek, M.; Vojteková, J.; Nhi, P.T.T.; Khoi, D.N. Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniques. Remote Sens. 2020, 12, 106. [Google Scholar] [CrossRef] [Green Version]
- Dano, U.L.; Balogun, A.-L.; Matori, A.-N.; Wan Yusouf, K.; Abubakar, I.R.; Said Mohamed, M.A.; Aina, Y.A.; Pradhan, B. Flood susceptibility mapping using GIS-based analytic network process: A case study of Perlis, Malaysia. Water 2019, 11, 615. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hong, H.; Chen, W.; Li, S.; Pamučar, D.; Gigović, L.; Drobnjak, S.; Tien Bui, D.; Duan, H. A hybrid GIS multi-criteria decision-making method for flood susceptibility mapping at Shangyou, China. Remote Sens. 2019, 11, 62. [Google Scholar] [CrossRef] [Green Version]
- Avand, M.; Moradi, H. Using machine learning models, remote sensing, and GIS to investigate the effects of changing climates and land uses on flood probability. J. Hydrol. 2021, 595, 125663. [Google Scholar] [CrossRef]
- Kabenge, M.; Elaru, J.; Wang, H.; Li, F. Characterizing flood hazard risk in data-scarce areas, using a remote sensing and GIS-based flood hazard index. Nat. Hazards 2017, 89, 1369–1387. [Google Scholar] [CrossRef]
- Unduche, F.; Tolossa, H.; Senbeta, D.; Zhu, E. Evaluation of four hydrological models for operational flood forecasting in a Canadian Prairie watershed. Hydrol. Sci. J. 2018, 63, 1133–1149. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Kar, S.K. Application of analytical hierarchy process (AHP) for flood risk assessment: A case study in Malda district of West Bengal, India. Nat. Hazards 2018, 94, 349–368. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mukhopadhyay, S. Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): Application in Coochbehar district of West Bengal, India. Nat. Hazards 2019, 99, 247–274. [Google Scholar] [CrossRef]
- Vojtek, M.; Vojteková, J. Flood susceptibility mapping on a national scale in Slovakia using the analytical hierarchy process. Water 2019, 11, 364. [Google Scholar] [CrossRef] [Green Version]
- Costache, R. Flash-flood Potential Index mapping using weights of evidence, decision Trees models and their novel hybrid integration. Stoch. Environ. Res. Risk Assess. 2019, 33, 1375–1402. [Google Scholar] [CrossRef]
- Jaafari, A. LiDAR-supported prediction of slope failures using an integrated ensemble weights-of-evidence and analytical hierarchy process. Environ. Earth Sci. 2018, 77, 42. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, H.; Yi, S.; Xiao, Y. Assessment of flood susceptible areas using spatially explicit, probabilistic multi-criteria decision analysis. J. Hydrol. 2018, 558, 144–158. [Google Scholar] [CrossRef]
- Arabameri, A.; Rezaei, K.; Cerda, A.; Lombardo, L.; Rodrigo-Comino, J. GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Sci. Total Environ. 2019, 658, 160–177. [Google Scholar] [CrossRef] [PubMed]
- Jabbari, A.; Bae, D.-H. Application of Artificial Neural Networks for accuracy enhancements of real-time flood forecasting in the Imjin basin. Water 2018, 10, 1626. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Wang, Y.; Peng, L.; Hong, H. Predicting flood susceptibility using LSTM neural networks. J. Hydrol. 2021, 594, 125734. [Google Scholar] [CrossRef]
- Shu, C.; Ouarda, T.B. Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system. J. Hydrol. 2008, 349, 31–43. [Google Scholar] [CrossRef]
- Termeh, S.V.R.; Kornejady, A.; Pourghasemi, H.R.; Keesstra, S. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci. Total Environ. 2018, 615, 438–451. [Google Scholar] [CrossRef]
- Nandi, A.; Mandal, A.; Wilson, M.; Smith, D. Flood hazard mapping in Jamaica using principal component analysis and logistic regression. Environ. Earth Sci. 2016, 75, 465. [Google Scholar] [CrossRef]
- Johnson, F.; White, C.J.; van Dijk, A.; Ekstrom, M.; Evans, J.P.; Jakob, D.; Kiem, A.S.; Leonard, M.; Rouillard, A.; Westra, S.J.C.C. Natural hazards in Australia: Floods. Clim. Chang. 2016, 139, 21–35. [Google Scholar] [CrossRef] [Green Version]
- Australian Bureau of Statistics. 2008 Year Book Australia No. 90; Australian Bureau of Statistics: Canberra, Australia, 2008.
- Teoh, K.S. Estimating the Impact of Current Farm Dams Development on the Surface Water Resources of the Onkaparinga River Catchment. 2003. Available online: https://e-docs.geo-leo.de/handle/11858/00-1735-0000-0001-3370-3 (accessed on 2 October 2022).
- Sturman, A.P.; Tapper, N.J. The Weather and Climate of Australia and New Zealand; Oxford University Press: Oxford, MO, USA, 1996. [Google Scholar]
- Semenov, E.K.; Sokolikhina, E.V.; Sokolikhina, N.N. Vertical circulation in the tropical atmosphere during extreme El Niño-Southern Oscillation events. Russ. Meteorol. Hydrol. 2008, 33, 416–423. [Google Scholar] [CrossRef]
- Dai, A.; Wigley, T.M.L. Global patterns of ENSO-induced precipitation. Geophys. Res. Lett. 2000, 27, 1283–1286. [Google Scholar] [CrossRef] [Green Version]
- Preiss, W.V. The Adelaide Geosyncline: Late Proterozoic Stratigraphy, Sedimentation, Palaeontology and Tectonics; Department of Mines and Energy: Brasília, Brazil, 1987. [Google Scholar]
- Zulfic, D.; Barnett, S.R.; Van den Akker, J. Mount Lofty Ranges groundwater assessment: Upper Onkaparinga catchment; Department of Water, Land and Biodiversity Conservation: Adelaide, Australia, 2003. [Google Scholar]
- Preiss, W. The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambrian Res. 2000, 100, 21–63. [Google Scholar] [CrossRef]
- May, R.I. Origin, Mineralogy and Diagenesis of Quaternary Sediments from the Noarlunga and Willunga Embayments, South Australia. Ph.D. Dissertation, Department of Soil Science, University of Adelaide, Adelaide, Australia, 1992. [Google Scholar]
- Geoscience, A. SRTM-derived 1 Second Digital Elecation Models Version 1.0. 2011. Available online: https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/72759 (accessed on 2 September 2022).
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.C.; Sampson, R.J. Statistics and Data Analysis in Geology; Wiley: New York, NY, USA, 1986; Volume 646. [Google Scholar]
- McCarthy, D.; Rogers, T.; Casperson, K. Floods in South Australia: 1836–2005; Bureau of Meteorology: Melbourne, Australia, 2006.
- Oliver, J.E. Monthly precipitation distribution: A comparative index. Prof. Geogr. 1980, 32, 300–309. [Google Scholar] [CrossRef]
- De Luis, M.; Gonzalez-Hidalgo, J.; Brunetti, M.; Longares, L.J.N.H.; Sciences, E.S. Precipitation concentration changes in Spain 1946–2005. Nat. Hazards Earth Syst. Sci. 2011, 11, 1259–1265. [Google Scholar] [CrossRef] [Green Version]
- Van Rooy, M. A rainfall Anomally Index Independent of Time and Space. Notos 1965, 14, 43–48. [Google Scholar]
- Horton, R.E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 1945, 56, 275–370. [Google Scholar] [CrossRef] [Green Version]
- Schumm, S.A. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol. Soc. Am. Bull. 1956, 67, 597–646. [Google Scholar] [CrossRef]
- Horton, R.E. Drainage-basin characteristics. Am. Geophys. Union 1932, 13, 350–361. [Google Scholar] [CrossRef]
- Greenbaum, D. Review of Remote Sensing Applications to Groundwater Exploration in Basement and Regolith. 1985. Available online: https://nora.nerc.ac.uk/id/eprint/505150/1/WC_OG_85_1.pdf (accessed on 2 October 2022).
- Miller, V.C. A Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area Virginia and Tennessee; Columbia University: New York, NY, USA, 1953. [Google Scholar]
- Hadley, R.F.; Schumm, S.A. Sediment sources and drainage basin characteristics in upper Cheyenne River basin. US Geol. Surv. Water-Supply Pap. 1961, 1531, 198. [Google Scholar]
- Mesa, L.M. Morphometric analysis of a subtropical Andean basin (Tucuman, Argentina). Environ. Geol. 2006, 50, 1235–1242. [Google Scholar] [CrossRef]
- Singh, N.; Singh, K.K. Geomorphological analysis and prioritization of sub-watersheds using Snyder’s synthetic unit hydrograph method. Appl. Water Sci. 2017, 7, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Sreedevi, P.; Owais, S.; Khan, H.; Ahmed, S. Morphometric analysis of a watershed of South India using SRTM data and GIS. J. Geol. Soc. India 2009, 73, 543–552. [Google Scholar] [CrossRef]
- Sreedevi, P.; Subrahmanyam, K.; Ahmed, S. The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environ. Geol. 2005, 47, 412–420. [Google Scholar] [CrossRef]
- Reddy, G.O.; Maji, A.; Chary, G.; Srinivas, C.; Tiwary, P.; Gajbhiye, K. GIS and remote sensing applications in prioritization of river sub basins using morphometric and USLE parameters-a case study. Asian J. Geoinform. 2004, 4, 35–50. [Google Scholar]
- Bhatt, S.; Ahmed, S. Morphometric analysis to determine floods in the Upper Krishna basin using Cartosat DEM. Geocarto Int. 2014, 29, 878–894. [Google Scholar] [CrossRef]
- Pande, C.B.; Moharir, K. GIS based quantitative morphometric analysis and its consequences: A case study from Shanur River Basin, Maharashtra India. Appl. Water Sci. 2017, 7, 861–871. [Google Scholar] [CrossRef] [Green Version]
- Chitra, C.; Alaguraja, P.; Ganeshkumari, K.; Yuvaraj, D.; Manivel, M. Watershed characteristics of Kundah sub basin using remote sensing and GIS techniques. Int. J. Geomat. Geosci. 2011, 2, 311. [Google Scholar]
- Smith, K.G. Standards for grading texture of erosional topography. Am. J. Sci. 1950, 248, 655–668. [Google Scholar] [CrossRef]
- Abdel-Lattif, A.; Sherief, Y. Morphometric analysis and flash floods of Wadi Sudr and Wadi Wardan, Gulf of Suez, Egypt: Using digital elevation model. Arab. J. Geosci. 2012, 5, 181–195. [Google Scholar] [CrossRef]
- McCuen, R.H.; Wong, S.L.; Rawls, W.J. Estimating urban time of concentration. J. Hydraul. Eng. 1984, 110, 887–904. [Google Scholar] [CrossRef]
- Thomas, J.; Joseph, S.; Thrivikramji, K.; Abe, G.; Kannan, N. Morphometrical analysis of two tropical mountain river basins of contrasting environmental settings, the southern Western Ghats, India. Environ. Earth Sci. 2012, 66, 2353–2366. [Google Scholar] [CrossRef]
- Sklash, M.G.; Farvolden, R.N. The role of groundwater in storm runoff. J. Hydrol. 1979, 43, 45–65. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Hassan, A.M. Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ. Earth Sci. 2011, 62, 611–623. [Google Scholar] [CrossRef]
- Altaf, F.; Meraj, G.; Romshoo, S.A. Morphometric analysis to infer hydrological behaviour of Lidder watershed, Western Himalaya, India. Geogr. J. 2013, 2013, 178021. [Google Scholar] [CrossRef] [Green Version]
- Wentz, E.A. A shape definition for geographic applications based on edge, elongation, and perforation. Geogr. Anal. 2000, 32, 95–112. [Google Scholar] [CrossRef]
- Roux, H.; Labat, D.; Garambois, P.-A.; Maubourguet, M.-M.; Chorda, J.; Dartus, D. A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments. Nat. Hazards Earth Syst. Sci. 2011, 11, 2567–2582. [Google Scholar] [CrossRef] [Green Version]
- Patton, P.C. Drainage basin morphometry and floods. In Flood Geomorphology; John Wiley & Sons: New York, NY, USA, 1988; pp. 51–64. [Google Scholar]
- Ogarekpe, N.M.; Obio, E.A.; Tenebe, I.T.; Emenike, P.C.; Nnaji, C.C. Flood vulnerability assessment of the upper Cross River basin using morphometric analysis. Geomat. Nat. Hazards Risk 2020, 11, 1378–1403. [Google Scholar] [CrossRef]
- Mahala, A. The significance of morphometric analysis to understand the hydrological and morphological characteristics in two different morpho-climatic settings. Appl. Water Sci. 2020, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Patton, P.C.; Baker, V.R. Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resour. Res. 1976, 12, 941–952. [Google Scholar] [CrossRef] [Green Version]
- Masoud, M.H. Geoinformatics application for assessing the morphometric characteristics’ effect on hydrological response at watershed (case study of Wadi Qanunah, Saudi Arabia). Arab. J. Geosci. 2016, 9, 280. [Google Scholar] [CrossRef]
- Keesstra, S. Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2007, 32, 49–65. [Google Scholar] [CrossRef]
- Norman, L.M.; Huth, H.; Levick, L.; Shea Burns, I.; Phillip Guertin, D.; Lara-Valencia, F.; Semmens, D. Flood hazard awareness and hydrologic modelling at Ambos Nogales, United States–Mexico border. J. Flood Risk Manag. 2010, 3, 151–165. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Mansor, S.; Ahmad, N. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena 2015, 125, 91–101. [Google Scholar] [CrossRef]
- Jonkman, S.N. Global perspectives on loss of human life caused by floods. Nat. Hazards 2005, 34, 151–175. [Google Scholar] [CrossRef]
- Khan, K.A.; Zaman, K.; Shoukry, A.M.; Sharkawy, A.; Gani, S.; Ahmad, J.; Khan, A.; Hishan, S.S. Natural disasters and economic losses: Controlling external migration, energy and environmental resources, water demand, and financial development for global prosperity. Environ. Sci. Pollut. Res. 2019, 26, 14287–14299. [Google Scholar] [CrossRef]
- Haynes, K.; Coates, L.; van den Honert, R.; Gissing, A.; Bird, D.; de Oliveira, F.D.; D’Arcy, R.; Smith, C.; Radford, D.J. Exploring the circumstances surrounding flood fatalities in Australia—1900–2015 and the implications for policy and practice. Environ. Sci. Policy 2017, 76, 165–176. [Google Scholar] [CrossRef]
- Coates, L. Flood fatalities in Australia, 1788-1996. Aust. Geogr. 1999, 30, 391–408. [Google Scholar] [CrossRef]
- FitzGerald, G.; Du, W.; Jamal, A.; Clark, M.; Hou, X.Y. Flood fatalities in contemporary Australia (1997–2008). Emerg. Med. Australas. 2010, 22, 180–186. [Google Scholar] [CrossRef] [PubMed]
Catchment | Nu | Lu | Rb | A | Lb | Tc | Sh | Lo | Dd | Fs | Dt | Ld |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Charleston | 48.00 | 41.77 | 2.81 | 51.60 | 11.46 | 13.92 | 0.5 | 0.62 | 0.81 | 0.93 | 0.87 | 2.25 |
Western Branch | 24.00 | 26.24 | 4.23 | 31.70 | 10.25 | 12.66 | 0.38 | 0.60 | 0.83 | 0.76 | 1.09 | 3.06 |
Lenswood Creek | 19.00 | 22.33 | 2.57 | 28.32 | 8.72 | 9.86 | 0.47 | 0.63 | 0.79 | 0.67 | 1.18 | 3.74 |
Inverbrackie Creek | 17.00 | 24.79 | 2.84 | 26.40 | 10.48 | 13.47 | 0.31 | 0.53 | 0.94 | 0.64 | 1.46 | 0.98 |
Upper Onkaparinga | 40.00 | 39.48 | 2.44 | 47.91 | 9.49 | 10.03 | 0.68 | 0.61 | 0.82 | 0.83 | 0.99 | 1.94 |
Cox Creek | 29.00 | 23.73 | 5.00 | 29.88 | 9.98 | 9.75 | 0.38 | 0.63 | 0.79 | 0.97 | 0.82 | 3.21 |
Mitchell Creek | 11.00 | 12.64 | 2.21 | 14.43 | 4.74 | 5.90 | 0.82 | 0.57 | 0.88 | 0.76 | 1.15 | 2.26 |
Aldgate Creek | 15.00 | 16.71 | 3.00 | 19.48 | 8.04 | 7.92 | 0.38 | 0.58 | 0.86 | 0.77 | 1.11 | 2.25 |
Balhannah | 9.00 | 10.25 | 1.97 | 10.38 | 5.19 | 6.89 | 0.49 | 0.51 | 0.99 | 0.87 | 1.14 | 5.00 |
Hahndorf | 14.00 | 14.44 | 3.90 | 14.75 | 4.60 | 5.70 | 0.89 | 0.51 | 0.98 | 0.95 | 1.03 | 3.07 |
Mount Bold Reservoir | 46.00 | 40.05 | 2.44 | 46.83 | 15.48 | 21.10 | 0.25 | 0.58 | 0.86 | 0.98 | 0.87 | 2.65 |
Scott Creek | 29.00 | 24.14 | 4.07 | 28.67 | 9.83 | 12.52 | 0.38 | 0.59 | 0.84 | 1.01 | 0.83 | 6.43 |
Biggs Flat | 21.00 | 19.26 | 3.08 | 23.58 | 5.71 | 6.98 | 0.92 | 0.61 | 0.82 | 0.89 | 0.92 | 1.71 |
Chandlers Hill | 9.00 | 11.27 | 1.97 | 14.10 | 3.50 | 3.82 | 1.46 | 0.63 | 0.80 | 0.64 | 1.25 | 1.92 |
Echunga Creek | 32.00 | 33.32 | 2.92 | 39.19 | 6.85 | 7.97 | 1.06 | 0.59 | 0.85 | 0.82 | 1.04 | 1.03 |
Clarendon Weir | 14.00 | 14.09 | 4.04 | 15.16 | 6.20 | 7.10 | 0.5 | 0.54 | 0.93 | 0.92 | 1.01 | 3.65 |
Lower Onkaparinga | 43.00 | 55.05 | 4.75 | 64.39 | 18.50 | 21.12 | 0.24 | 0.58 | 0.85 | 0.67 | 1.28 | 3.84 |
Baker Gully | 34.00 | 41.04 | 2.63 | 48.49 | 11.90 | 14.10 | 0.43 | 0.59 | 0.85 | 0.70 | 1.21 | 0.31 |
Catchment | Ff | Si | Ci | Cr | Er | Rr | Rn | S | Gr | Sm |
---|---|---|---|---|---|---|---|---|---|---|
Charleston | 0.39 | 0.50 | 1.50 | 0.44 | 0.71 | 20.94 | 0.19 | 5 | 0.35 | 1.24 |
Western Branch | 0.30 | 0.38 | 1.58 | 0.27 | 0.62 | 21.46 | 0.18 | 8.14 | 0.36 | 1.21 |
Lenswood Creek | 0.37 | 0.47 | 1.70 | 0.24 | 0.69 | 29.82 | 0.21 | 6.99 | 0.50 | 1.27 |
Inverbrackie Creek | 0.24 | 0.31 | 1.65 | 0.23 | 0.55 | 19.08 | 0.19 | 5.48 | 0.32 | 1.06 |
Upper Onkaparinga | 0.53 | 0.68 | 1.81 | 0.41 | 0.82 | 33.72 | 0.26 | 8.96 | 0.56 | 1.21 |
Cox Creek | 0.30 | 0.38 | 1.63 | 0.26 | 0.62 | 40.08 | 0.32 | 7.86 | 0.67 | 1.26 |
Mitchell Creek | 0.64 | 0.82 | 1.35 | 0.12 | 0.90 | 33.76 | 0.14 | 5.08 | 0.56 | 1.14 |
Aldgate Creek | 0.30 | 0.38 | 1.73 | 0.17 | 0.62 | 44.78 | 0.31 | 6.94 | 0.75 | 1.17 |
Balhannah | 0.39 | 0.49 | 1.45 | 0.09 | 0.70 | 26.97 | 0.14 | 6.24 | 0.45 | 1.01 |
Hahndorf | 0.70 | 0.89 | 1.25 | 0.13 | 0.94 | 34.78 | 0.16 | 6.52 | 0.58 | 1.02 |
Mount Bold Reservoir | 0.20 | 0.25 | 2.03 | 0.40 | 0.50 | 12.92 | 0.17 | 10.16 | 0.22 | 1.17 |
Scott Creek | 0.30 | 0.38 | 1.61 | 0.25 | 0.61 | 20.35 | 0.17 | 9.2 | 0.34 | 1.19 |
Biggs Flat | 0.72 | 0.92 | 1.35 | 0.20 | 0.96 | 31.52 | 0.15 | 6.76 | 0.53 | 1.22 |
Chandlers Hill | 1.15 | 1.46 | 1.37 | 0.12 | 1.21 | 57.14 | 0.16 | 7.16 | 0.95 | 1.25 |
Echunga Creek | 0.84 | 1.06 | 1.45 | 0.34 | 1.03 | 32.12 | 0.19 | 7.38 | 0.54 | 1.18 |
Clarendon Weir | 0.39 | 0.50 | 1.81 | 0.13 | 0.71 | 35.48 | 0.20 | 10.71 | 0.59 | 1.08 |
Lower Onkaparinga | 0.19 | 0.24 | 1.91 | 0.55 | 0.49 | 18.38 | 0.29 | 9.94 | 0.31 | 1.17 |
Baker Gully | 0.34 | 0.43 | 1.49 | 0.42 | 0.66 | 21.85 | 0.22 | 5.02 | 0.36 | 1.18 |
Catchment | Nu | Lu | Rb | A | L | Ld | Tc | Sh | Lo | Dd | Fs | Dt | Ff | Si | Ci | C | Er | Rr | Rn | Gr | Sm | S | Ts |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Charleston | 1 | 4 | 4 | 4 | 3 | 4 | 3 | 3 | 1 | 3 | 4 | 1 | 4 | 4 | 3 | 5 | 4 | 2 | 3 | 2 | 3 | 4 | 69 |
Western Branch | 3 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 1 | 3 | 2 | 3 | 4 | 4 | 3 | 3 | 4 | 2 | 3 | 2 | 3 | 2 | 62 |
Lenswood Creek | 2 | 2 | 4 | 2 | 4 | 3 | 4 | 3 | 1 | 2 | 1 | 4 | 4 | 4 | 3 | 3 | 4 | 2 | 4 | 3 | 3 | 3 | 65 |
Inverbrackie Creek | 2 | 2 | 4 | 2 | 3 | 5 | 4 | 4 | 4 | 5 | 1 | 5 | 4 | 4 | 3 | 3 | 5 | 1 | 3 | 2 | 5 | 4 | 75 |
Upper Onkaparinga | 4 | 3 | 4 | 4 | 3 | 4 | 3 | 3 | 1 | 3 | 3 | 2 | 3 | 4 | 2 | 5 | 3 | 3 | 4 | 3 | 3 | 2 | 69 |
Cox Creek | 3 | 2 | 1 | 2 | 3 | 3 | 4 | 4 | 1 | 2 | 4 | 1 | 4 | 4 | 3 | 3 | 4 | 4 | 5 | 4 | 3 | 3 | 67 |
Mitchell Creek | 2 | 1 | 5 | 1 | 5 | 4 | 4 | 2 | 2 | 4 | 2 | 4 | 3 | 2 | 4 | 2 | 3 | 3 | 2 | 3 | 4 | 4 | 66 |
Aldgate Creek | 2 | 1 | 4 | 1 | 4 | 4 | 4 | 4 | 2 | 4 | 2 | 4 | 4 | 3 | 3 | 2 | 4 | 4 | 5 | 4 | 4 | 3 | 72 |
Balhannah | 1 | 1 | 5 | 1 | 5 | 2 | 4 | 3 | 5 | 5 | 2 | 4 | 4 | 3 | 4 | 1 | 4 | 2 | 2 | 3 | 5 | 3 | 69 |
Hahndorf | 2 | 1 | 3 | 1 | 5 | 3 | 4 | 2 | 5 | 5 | 4 | 3 | 3 | 2 | 5 | 2 | 3 | 3 | 2 | 3 | 5 | 3 | 69 |
Mount Bold Reservoir | 5 | 4 | 4 | 4 | 1 | 4 | 1 | 4 | 2 | 4 | 4 | 1 | 4 | 4 | 1 | 4 | 5 | 1 | 3 | 2 | 4 | 1 | 67 |
Scott Creek | 3 | 2 | 2 | 2 | 3 | 1 | 3 | 4 | 1 | 3 | 5 | 1 | 4 | 4 | 3 | 3 | 4 | 2 | 3 | 2 | 4 | 2 | 61 |
Biggs Flat | 3 | 1 | 4 | 2 | 5 | 4 | 4 | 2 | 1 | 3 | 3 | 2 | 3 | 3 | 4 | 2 | 3 | 3 | 2 | 3 | 3 | 3 | 63 |
Chandlers Hill | 1 | 1 | 5 | 1 | 5 | 4 | 5 | 1 | 1 | 3 | 1 | 5 | 5 | 1 | 4 | 2 | 1 | 5 | 2 | 5 | 3 | 3 | 64 |
Echunga Creek | 3 | 3 | 4 | 3 | 4 | 1 | 4 | 1 | 1 | 3 | 3 | 3 | 2 | 3 | 4 | 4 | 2 | 3 | 3 | 3 | 4 | 3 | 64 |
Clarendon Weir | 2 | 1 | 2 | 1 | 4 | 3 | 4 | 3 | 3 | 5 | 4 | 3 | 4 | 3 | 2 | 2 | 4 | 3 | 4 | 3 | 5 | 1 | 66 |
Lower Onkaparinga | 5 | 5 | 1 | 5 | 1 | 3 | 1 | 4 | 2 | 3 | 1 | 5 | 5 | 5 | 2 | 5 | 5 | 1 | 5 | 2 | 4 | 2 | 72 |
Baker Gully | 3 | 4 | 4 | 4 | 3 | 1 | 3 | 3 | 1 | 3 | 2 | 5 | 4 | 4 | 4 | 5 | 5 | 2 | 4 | 2 | 4 | 4 | 74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.; Alrajhi, A.; Alquwaizany, A.; Al Maliki, A.; Hewa, G. Flood Susceptibility Mapping Using Watershed Geomorphic Data in the Onkaparinga Basin, South Australia. Sustainability 2022, 14, 16270. https://doi.org/10.3390/su142316270
Ahmed A, Alrajhi A, Alquwaizany A, Al Maliki A, Hewa G. Flood Susceptibility Mapping Using Watershed Geomorphic Data in the Onkaparinga Basin, South Australia. Sustainability. 2022; 14(23):16270. https://doi.org/10.3390/su142316270
Chicago/Turabian StyleAhmed, Alaa, Abdullah Alrajhi, Abdulaziz Alquwaizany, Ali Al Maliki, and Guna Hewa. 2022. "Flood Susceptibility Mapping Using Watershed Geomorphic Data in the Onkaparinga Basin, South Australia" Sustainability 14, no. 23: 16270. https://doi.org/10.3390/su142316270
APA StyleAhmed, A., Alrajhi, A., Alquwaizany, A., Al Maliki, A., & Hewa, G. (2022). Flood Susceptibility Mapping Using Watershed Geomorphic Data in the Onkaparinga Basin, South Australia. Sustainability, 14(23), 16270. https://doi.org/10.3390/su142316270