Does Uncertainty of Trade Environment Promote Green Technological Innovation? Empirical Evidence from China
Abstract
:1. Introduction
2. Literature Review
2.1. UTE and GTI
2.2. Research on the Impact Mechanism of UTE
2.3. Research on UTE, GTI, and Sustainable Development Capacity of Enterprises
2.4. Literature Gap
3. Theoretical Analysis and Research Hypothesis
3.1. Mechanisms of UTE’ Influence on Enterprises’ GTI
3.2. Heterogeneous Effects of Different UTE on GTI
3.2.1. Anti-Dumping
3.2.2. Countervailing
3.2.3. Guarantee Measures
4. Method and Materials
4.1. Model Design
4.2. Description of Main Variables
4.2.1. Explanatory Variables
4.2.2. Explained Variables
4.2.3. Control Variables
4.3. Data Source
5. Empirical Results and Discussion
5.1. Descriptive Statistics
5.2. Baseline Regression Results
5.3. Green Innovation Output Classification Test
5.4. Robustness Tests
5.5. Heterogeneity Test
5.6. The Influence of UTE on Enterprise Sustainable Development and the Mediator Effect of GTI
6. Conclusions and Policy Implication
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Imbruno, M. Importing under Trade Policy Uncertainty: Evidence from China. J. Comp. Econ. 2019, 47, 806–826. [Google Scholar] [CrossRef]
- Kee, H.L.; Neagu, C.; Nicita, A. Is Protectionism on the Rise? Assessing National Trade Policies during the Crisis of 2008. Rev. Econ. Stat. 2013, 95, 342–346. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Sun, Z.; Zhang, S.; Wang, X. Economic Policy Uncertainty, Environmental Regulation, and Green Innovation—An Empirical Study Based on Chinese High-Tech Enterprises. Int. J. Environ. Res. Public Health 2021, 18, 9503. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Shen, N.; Ying, H.; Wang, Q. Can Environmental Regulation Directly Promote Green Innovation Behavior?—Based on Situation of Industrial Agglomeration. J. Clean. Prod. 2021, 314, 128044. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, B.; Elahi, E.; Wan, A. Does the Extended Producer Responsibility System Promote the Green Technological Innovation of Enterprises? An Empirical Study Based on the Difference-in-Differences Model. J. Clean. Prod. 2021, 319, 128631. [Google Scholar] [CrossRef]
- Caggese, A. Entrepreneurial Risk, Investment, and Innovation. J. Financ. Econ. 2012, 106, 287–307. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Dogan, E. The Role of Institutional Quality and Environment-Related Technologies in Environmental Degradation for BRICS. J. Clean. Prod. 2021, 304, 127059. [Google Scholar] [CrossRef]
- Wagner, B.; Wagner, M. Linking Levels of Green Innovation with Profitability under Environmental Uncertainty: An Empirical Study. J. Clean. Prod. 2022, 378, 134438. [Google Scholar] [CrossRef]
- Yin, S.; Zhang, N.; Li, B. Improving the Effectiveness of Multi-Agent Cooperation for Green Manufacturing in China: A Theoretical Framework to Measure the Performance of Green Technology Innovation. Int. J. Environ. Res. Public Health 2020, 17, 3211. [Google Scholar] [CrossRef]
- Gong, R.; Wu, Y.Q.; Chen, F.W.; Yan, T.H. Labor Costs, Market Environment and Green Technological Innovation: Evidence from High-Pollution Firms. Int. J. Environ. Res. Public Health 2020, 17, 522. [Google Scholar] [CrossRef]
- Hu, D.; Huang, Y.; Zhong, C. Does Environmental Information Disclosure Affect the Sustainable Development of Enterprises: The Role of Green Innovation. Sustainbility 2021, 13, 11064. [Google Scholar] [CrossRef]
- Palčič, I.; Prester, J. Impact of Advanced Manufacturing Technologies on Green Innovation. Sustainbility 2020, 12, 3499. [Google Scholar] [CrossRef] [Green Version]
- Roper, S.; Tapinos, E. Taking Risks in the Face of Uncertainty: An Exploratory Analysis of Green Innovation. Technol. Forecast. Soc. Chang. 2016, 112, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Gozgor, G.; Mahalik, M.K.; Padhan, H.; Xu, R. The Impact of Economic Complexity on Energy Demand in OECD Countries. Environ. Sci. Pollut. Res. 2021, 28, 33771–33780. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, X.; Bi, C.; Ahmad, M.; Wang, J. Can Sustainable Development Policy Reduce Carbon Emissions? Empirical Evidence from Resource-Based Cities in China. Sci. Total Environ. 2022, 838, 156341. [Google Scholar] [CrossRef]
- Gao, X.; Miyagiwa, K. Antidumping Protection and R&D Competition. Can. J. Econ. 2005, 38, 211–227. [Google Scholar] [CrossRef]
- Kao, K.F.; Peng, C.H. Anti-Dumping Protection, Price Undertaking and Product Innovation. Int. Rev. Econ. Financ. 2016, 41, 53–64. [Google Scholar] [CrossRef]
- Lin, B.W.; Lee, Y.; Hung, S.C. R&D Intensity and Commercialization Orientation Effects on Financial Performance. J. Bus. Res. 2006, 59, 679–685. [Google Scholar] [CrossRef]
- Liebman, B.H.; Reynolds, K.M. Innovation through Protection: Does Safeguard Protection Increase Investment in Research and Development? South. Econ. J. 2013, 80, 205–225. [Google Scholar] [CrossRef]
- Bravo-Ortega, C.; Benavente, J.M.; González, Á. Innovation, Exports, and Productivity: Learning and Self-Selection in Chile. Emerg. Mark. Financ. Trade 2014, 50, 68–95. [Google Scholar] [CrossRef]
- Bloom, N.; Draca, M.; Van Reenen, J. Trade Induced Technical Change? The Impact of Chinese Imports on Innovation, IT and Productivity. Rev. Econ. Stud. 2016, 83, 87–117. [Google Scholar] [CrossRef] [Green Version]
- Miyagiwa, K.; Song, H.; Vandenbussche, H. Accounting for Stylised Facts about Recent Anti-Dumping: Retaliation and Innovation. World Econ. 2016, 39, 221–235. [Google Scholar] [CrossRef]
- Jabbour, L.; Tao, Z.; Vanino, E.; Zhang, Y. The Good, the Bad and the Ugly: Chinese Imports, European Union Anti-Dumping Measures and Firm Performance. J. Int. Econ. 2019, 117, 1–20. [Google Scholar] [CrossRef]
- Ouyang, X.; Li, Q.; Du, K. How Does Environmental Regulation Promote Technological Innovations in the Industrial Sector? Evidence from Chinese Provincial Panel Data. Energy Policy 2020, 139, 111310. [Google Scholar] [CrossRef]
- Autor, D.H.; Dorn, D.; Hanson, G.H.; Pisano, G.; Shu, P. Foreign Competition and Domestic Innovation: Evidence from U.S. Patents. SSRN Electron. J. 2021, 2, 357–374. [Google Scholar] [CrossRef]
- Li, X.; Hu, Z.; Zhang, Q. Environmental Regulation, Economic Policy Uncertainty, and Green Technology Innovation. Clean Technol. Environ. Policy 2021, 23, 2975–2988. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Shen, W.; Tan, Y.; Matac, L.M.; Samad, S. Environmental Uncertainty, Environmental Regulation and Enterprises’ Green Technological Innovation. Int. J. Environ. Res. Public Health 2022, 19, 9781. [Google Scholar] [CrossRef]
- Konings, J.; Vandenbussche, H. Heterogeneous Responses of Firms to Trade Protection. J. Int. Econ. 2008, 76, 371–383. [Google Scholar] [CrossRef]
- Hombert, J.; Matray, A. Can Innovation Help U.S. Manufacturing Firms Escape Import Competition from China? J. Financ. 2018, 73, 2003–2039. [Google Scholar] [CrossRef]
- Chandra, P.; Long, C. Anti-Dumping Duties and Their Impact on Exporters: Firm Level Evidence from China. World Dev. 2013, 51, 169–186. [Google Scholar] [CrossRef]
- Sunder, J.; Sunder, S.V.; Zhang, J. Pilot CEOs and Corporate Innovation. J. Financ. Econ. 2017, 123, 209–224. [Google Scholar] [CrossRef]
- Handley, K. Exporting under Trade Policy Uncertainty: Theory and Evidence. J. Int. Econ. 2014, 94, 50–66. [Google Scholar] [CrossRef] [Green Version]
- Crowley, M.A.; Meng, N.; Song, H. Policy Shocks and Stock Market Returns: Evidence from Chinese Solar Panels. J. Jpn. Int. Econ. 2019, 51, 148–169. [Google Scholar] [CrossRef] [Green Version]
- Meng, N.; Milner, C.; Song, H. Antidumping and Heterogeneous Quality Adjustment of Multi-Product Firms: Evidence from Chinese Exporters. Econ. Model. 2020, 92, 147–161. [Google Scholar] [CrossRef]
- Xu, Z. Economic Policy Uncertainty, Cost of Capital, and Corporate Innovation. J. Bank. Financ. 2020, 111, 105698. [Google Scholar] [CrossRef]
- Cui, X.; Wang, C.; Liao, J.; Fang, Z.; Cheng, F. Economic Policy Uncertainty Exposure and Corporate Innovation Investment: Evidence from China. Pacific Basin Financ. J. 2021, 67, 101533. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Z. Economic Policy Uncertainty and Green Innovation Based on the Viewpoint of Resource Endowment. Technol. Anal. Strateg. Manag. 2021, 1–14. [Google Scholar] [CrossRef]
- Hermalin, B.E.; Katz, M.L. Moral Hazard and Verifiability: The Effects of Renegotiation in Agency. Econometrica 2012, 59, 1735–1753. [Google Scholar] [CrossRef] [Green Version]
- Forza, C. Performance from Integrated Pipeline Management: An Empirical Study. Int. J. Phys. Distrib. Logist. Manag. 1996, 26, 36–63. [Google Scholar] [CrossRef]
- Deng, Z.; Lev, B.; Narin, F. Science and Technology as Predictors of Stock Performance. Financ. Anal. J. 1999, 55, 20–32. [Google Scholar] [CrossRef]
- Ge, B.; Yang, Y.; Jiang, D.; Gao, Y.; Du, X.; Zhou, T. An Empirical Study on Green Innovation Strategy and Sustainable Competitive Advantages: Path and Boundary. Sustainability 2018, 10, 3631. [Google Scholar] [CrossRef] [Green Version]
- Crowley, M.; Meng, N.; Song, H. Tariff Scares: Trade Policy Uncertainty and Foreign Market Entry by Chinese Firms. J. Int. Econ. 2018, 114, 96–115. [Google Scholar] [CrossRef] [Green Version]
- Prusa, T.J. The Trade Effects of U.S. Antidumping Actions. World Sci. Stud. Int. Econ. 2021, 77, 21–43. [Google Scholar] [CrossRef]
- Hughes, J.S.; Lenway, S.; Rayburn, J. Stock Price Effects of U.S. Trade Policy Responses to Japanese Trading Practices in Semi- Conductors. Can. J. Econ. 1997, 30, 922–942. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. J. Pers. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef]
- Liu, Q.; Qiu, L.D. Intermediate Input Imports and Innovations: Evidence from Chinese Firms’ Patent Filings. J. Int. Econ. 2016, 103, 166–183. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Ortega-Argilés, R.; Potters, L.; Vivarelli, M.; Voigt, P. Corporate R&D and Firm Efficiency: Evidence from Europe’s Top R&D Investors. J. Product. Anal. 2012, 37, 125–140. [Google Scholar] [CrossRef] [Green Version]
- Choi, I. Unit Root Tests for Panel Data. J. Int. Money Financ. 2001, 20, 249–272. [Google Scholar] [CrossRef]
- Kim, D.W.; Yu, J.S.; Hassan, M.K. Financial Inclusion and Economic Growth in OIC Countries. Res. Int. Bus. Financ. 2018, 43, 1–14. [Google Scholar] [CrossRef]
- Zhao, J.; Shahbaz, M.; Dong, X.; Dong, K. How Does Financial Risk Affect Global CO2 Emissions? The Role of Technological Innovation. Technol. Forecast. Soc. Chang. 2021, 168, 120751. [Google Scholar] [CrossRef]
Variable Definition | English Symbols | Calculation Method |
---|---|---|
Trade environment uncertainty (UTE) | tradfrict | Total number of trade cases |
AD | Number of anti-dumping cases | |
AS | Number of countervailing cases | |
SM | Number of Safeguards cases | |
Green technology innovation (GTI) | grepat | Number of green patent |
indpat | Number of green independent patent | |
invpat | Number of green invention patent | |
noinvpat | Number of green utility model patent | |
Company assets | asset | Total enterprise assets are taken as the logarithm |
Number of employees | staff | The number of employees in a company is taken as a logarithm |
Asset-liability ratio | debt | Total liabilities/assets |
Book-to-market ratio | bm | Total assets/Market value |
Tobin Q | TobinsQ | Tobin’s Q value |
Share proportion of the largest shareholder | Top1 | Percentage of shareholding of the largest shareholder |
Herfindahl–Hirschman Index | HHI | Industry Concentration Index |
Fixed assets ratio | fixasset | Fixed assets/Total assets |
Company age | age | Current year—year of business establishment |
Variable Name | Symbols | Sample Size | Average Value | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|---|---|
Total trade cases | tradfrict | 15,875 | 4.057 | 5.611 | 0 | 40 |
Anti-dumping | AD | 15,875 | 2.810 | 3.917 | 0 | 24 |
Safeguards | AS | 15,875 | 0.561 | 1.135 | 0 | 8 |
Countervailing | SM | 15,875 | 0.697 | 1.395 | 0 | 8 |
Green technology innovation | grepat | 15,875 | 2.739 | 1.490 | 0 | 6.562 |
Independent green innovation patent | indpat | 15,875 | 2.612 | 1.500 | 0 | 6.463 |
Substantial green innovation output | invpat | 15,875 | 1.425 | 1.242 | 0 | 5.198 |
Strategic green innovation Output | noinvpat | 15,875 | 1.179 | 0.673 | 0 | 2.493 |
Company assets | asset | 15,875 | 21.914 | 1.146 | 19.888 | 25.341 |
Number of employees | staff | 15,875 | 7.679 | 1.122 | 5.338 | 10.814 |
Asset-liability ratio | debt | 15,875 | 0.389 | 0.200 | 0.049 | 0.909 |
Book-to-market ratio | bm | 15,875 | 0.596 | 0.227 | 0.134 | 1.112 |
Tobin Q | TobinsQ | 15,875 | 2.243 | 1.317 | 0.940 | 8.449 |
Share proportion of the largest shareholder | Top1 | 15,875 | 0.342 | 0.140 | 0.091 | 0.722 |
Herfindahl–Hirschman Index | HHI | 15,875 | 0.088 | 0.080 | 0 | 0.362 |
Fixed assets ratio | fixasset | 15,875 | 0.134 | 0.121 | 0 | 0.541 |
Company age | age | 15,875 | 13.934 | 6.933 | 3 | 28 |
Variable | VIF | 1/VIF |
---|---|---|
asset | 3.73 | 0.27 |
bm | 3.65 | 0.27 |
TobinsQ | 3.20 | 0.31 |
staff | 3.17 | 0.32 |
age | 1.53 | 0.65 |
debt | 1.42 | 0.70 |
HHI | 1.10 | 0.91 |
fixasset | 1.09 | 0.92 |
top1 | 1.08 | 0.92 |
Mean VIF | 2.13 |
Explanatory Variables | Explained Variables | Control Variables | CD | p-Value |
---|---|---|---|---|
tradfrict | grepat | Yes | 1.60 | 0.11 |
AS | grepat | Yes | −1.26 | 0.21 |
AD | grepat | Yes | −0.23 | 0.82 |
SM | grepat | Yes | −0.23 | 0.11 |
tradfrict | indpat | Yes | 0.27 | 0.79 |
tradfrict | invpat | Yes | 1.23 | 0.22 |
tradfrict | noinvpat | Yes | −1.60 | 0.11 |
Variable | I(0) | I(1) | Decision |
---|---|---|---|
tradfrict | 45.11 *** | 17.12 *** | I(0) |
AS | 22.54 *** | 11.13 *** | I(0) |
AD | 6.83 *** | −2.15 *** | I(0) |
SM | 25.02 *** | 9.21 *** | I(0) |
grepat | 42.77 *** | 24.13 *** | I(0) |
indpat | 30.04 *** | 11.36 *** | I(0) |
invpat | 28.27 *** | 11.75 *** | I(0) |
invpat | 28.39 *** | 1.13 *** | I(0) |
asset | 14.28 *** | 3.43 *** | I(0) |
staff | 36.40 *** | 13.49 *** | I(0) |
debt | 42.28 *** | 17.74 *** | I(0) |
bm | 16.97 *** | 3.34 *** | I(0) |
TobinsQ | 17.91 *** | 1.91 *** | I(0) |
top1 | 25.38 *** | 7.68 *** | I(0) |
HHI | −21.18 *** | −33.26 *** | I(0) |
fixasset | 117.10 *** | 74.45 *** | I(0) |
age | 5.80 *** | −2.23 *** | I(0) |
Variable Name | OLS Benchmark Estimation Results | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Grepat | Grepat | Grepat | Grepat | |
tradfrict | 0.012 ** (2.49) | |||
AD | 0.016 *** (2.61) | |||
AS | 0.018 (1.44) | |||
SM | 0.005 (0.44) | |||
asset | 0.371 *** (21.14) | 0.372 *** (21.13) | 0.372 *** (21.10) | 0.372 *** (21.10) |
staff | 0.488 *** (30.24) | 0.488 *** (30.24) | 0.488 *** (30.23) | 0.488 *** (30.23) |
debt | −0.375 *** (−6.51) | −0.375 *** (−6.52) | −0.375 *** (−6.52) | −0.375 *** (−6.52) |
bm | −0.690 *** (−8.460) | −0.687 *** (−8.42) | −0.687 *** (−8.42) | −0.687 *** (−8.42) |
TobinsQ | −0.040 *** (−3.16) | −0.040 *** (−3.13) | −0.040 *** (−3.18) | −0.040 *** (−3.18) |
Top1 | −0.002 ** (−2.52) | −0.002 ** (−2.51) | −0.002 ** (−2.52) | −0.002 ** (−2.52) |
HHI | −0.331 (−1.48) | −0.325 (−1.46) | −0.311 (−1.39) | −0.311 (−1.39) |
fixasset | −0.957 *** (−10.94) | −0.956 *** (−10.94) | −0.954 *** (−10.91) | −0.954 *** (−10.91) |
Age | −0.011 *** (−5.92) | −0.011 *** (−5.93) | −0.011 *** (−5.89) | −0.011 *** (−5.89) |
Constant | −9.581 *** (−31.61) | −9.580 *** (−31.60) | −9.556 *** (−31.53) | −9.580 *** (−31.60) |
Industry | Control | Control | Control | Control |
Year | Control | Control | Control | Control |
Sample size | 15,875 | 15,875 | 15,875 | 15,875 |
AJ-R2 | 0.454 | 0.454 | 0.454 | 0.454 |
Variable Name | Independent R&D Inspection | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Indpat | Indpat | Indpat | Indpat | |
tradfrict | 0.014 *** (2.74) | |||
AD | 0.017 *** (2.62) | |||
AS | 0.026 ** (2.27) | |||
SM | 0.007 (0.66) | |||
asset | 0.337 *** (18.32) | 0.337 *** (18.31) | 0.337 *** (18.29) | 0.337 *** (18.27) |
staff | 0.474 *** (28.62) | 0.474 *** (28.63) | 0.474 *** (28.60) | 0.474 *** (28.60) |
debt | −0.286 *** (−4.77) | −0.287 *** (−4.78) | −0.287 *** (−4.78) | −0.287 *** (−4.78) |
bm | −0.565 *** (−6.60) | −0.562 *** (−6.56) | −0.563 *** (−6.57) | −0.561 *** (−6.55) |
TobinsQ | −0.029 ** (−2.20) | −0.028 ** (−2.17) | −0.029 ** (−2.23) | −0.029 ** (−2.21) |
Top1 | −0.002 *** (−3.18) | −0.002 *** (−3.18) | −0.002 *** (−3.18) | −0.002 *** (−3.18) |
HHI | −0.278 (−1.21) | −0.268 (−1.17) | −0.257 (−1.12) | −0.247 (−1.07) |
fixasset | −0.802 *** (−8.88) | −0.802 *** (−8.87) | −0.799 *** (−8.84) | −0.799 *** (−8.84) |
Age | −0.013 *** (−6.93) | −0.013 *** (−6.93) | −0.013 *** (−6.90) | −0.013 *** (−6.88) |
Constant | −8.902 *** (−27.99) | −8.898 *** (−27.96) | −8.873 *** (−27.90) | −8.874 *** (−27.89) |
Industry | Control | Control | Control | Control |
Year | Control | Control | Control | Control |
Sample size | 15,875 | 15,875 | 15,875 | 15,875 |
AJ-R2 | 0.417 | 0.417 | 0.417 | 0.417 |
Variable Name | Substantial Green Innovation Test | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Invpat | Invpat | Invpat | Invpat | |
tradfrict | 0.007 * (1.73) | |||
AD | 0.004 (0.74) | |||
AS | 0.026 ** (2.27) | |||
SM | 0.012 (1.29) | |||
asset | 0.506 *** (31.87) | 0.505 *** (31.85) | 0.506 *** (31.87) | 0.505 *** (31.84) |
staff | 0.221 *** (15.92) | 0.221 *** (15.92) | 0.221 *** (15.92) | 0.221 *** (15.92) |
debt | −0.435 *** (−8.70) | −0.435 *** (−8.71) | −0.435 *** (−8.71) | −0.435 *** (−8.70) |
bm | −0.915 *** (−12.34) | −0.913 *** (−12.31) | −0.915 *** (−12.34) | −0.914 *** (−12.33) |
TobinsQ | −0.037 *** (−3.47) | −0.037 *** (−3.46) | −0.037 *** (−3.50) | −0.037 *** (−3.49) |
Top1 | −0.002 *** (−3.32) | −0.002 *** (−3.31) | −0.002 *** (−3.32) | −0.002 *** (−3.32) |
HHI | 0.002 (0.01) | 0.015 (0.08) | 0.006 (0.03) | 0.014 (0.07) |
fixasset | −0.514 *** (−6.94) | −0.513 *** (−6.92) | −0.513 *** (−6.92) | −0.513 *** (−6.92) |
Age | −0.012 *** (−7.24) | −0.012 *** (−7.22) | −0.012 *** (−7.23) | −0.012 *** (−7.21) |
Constant | −11.146 *** (−40.65) | −11.135 *** (−40.60) | −11.132 *** (−40.62) | −11.133 *** (−40.61) |
Industry | Control | Control | Control | Control |
Year | Control | Control | Control | Control |
Sample size | 15,875 | 15,875 | 15,875 | 15,875 |
AJ-R2 | 0.380 | 0.379 | 0.380 | 0.379 |
Variable Name | Strategic Green Innovation Test | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Noinvpat | Noinvpat | Noinvpat | Noinvpat | |
tradfrict | 0.005 ** (2.46) | |||
AD | 0.007 ** (2.45) | |||
AS | 0.002 (0.26) | |||
SM | 0.005 (1.13) | |||
asset | 0.066 *** (8.09) | 0.066 *** (8.08) | 0.066 *** (8.05) | 0.066 *** (8.05) |
staff | 0.234 *** (30.97) | 0.234 *** (30.97) | 0.234 *** (30.95) | 0.234 *** (30.95) |
debt | −0.146 *** (−5.31) | −0.146 *** (−5.32) | −0.146 *** (−5.32) | −0.146 *** (−5.31) |
bm | −0.114 *** (−2.93) | −0.113 *** (−2.91) | −0.112 *** (−2.89) | −0.113 *** (−2.91) |
TobinsQ | −0.010 (−1.60) | −0.010 (−1.57) | −0.010 (−1.60) | −0.010 (−1.61) |
Top1 | −0.001 (−1.46) | −0.001 (−1.45) | −0.001 (−1.46) | −0.001 (−1.45) |
HHI | −0.082 (−0.81) | −0.080 (−0.79) | −0.070 (−0.69) | −0.073 (−0.72) |
fixasset | −0.428 *** (−10.43) | −0.428 *** (−10.42) | −0.426 *** (−10.40) | −0.427 *** (−10.40) |
Age | −0.001 (−1.25) | −0.001 (−1.25) | −0.001 (−1.21) | −0.001 (−1.21) |
Constant | −2.423 *** (−17.23) | −2.423 *** (−17.23) | −2.412 *** (−17.16) | −2.414 *** (−17.17) |
Industry | Control | Control | Control | Control |
Year | Control | Control | Control | Control |
Sample size | 15,875 | 15,875 | 15,875 | 15,875 |
AJ-R2 | 0.394 | 0.394 | 0.394 | 0.394 |
Variable Name | Robustness Tests for Variable Substitution | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Grepat | Indpat | Invpat | Noinvpat | |
Tradfrict USA | 0.018 * (1.72) | 0.033 * (1.75) | 0.031 *** (2.86) | −0.001 (−0.14) |
asset | 0.372 *** (21.10) | 0.337 *** (18.28) | 0.506 *** (31.88) | 0.066 *** (8.05) |
staff | 0.488 *** (30.23) | 0.474 *** (28.61) | 0.221 *** (15.92) | 0.234 *** (30.95) |
debt | −0.376 *** (−6.53) | −0.288 *** (−4.80) | −0.436 *** (−8.73) | −0.146 *** (−5.32) |
bm | −0.689 *** (−8.45) | −0.564 *** (−6.57) | −0.918 *** (−12.39) | −0.112 *** (−2.89) |
TobinsQ | −0.041 *** (−3.20) | −0.029 ** (−2.22) | −0.038 *** (−3.55) | −0.010 (−1.60) |
Top1 | −0.002 ** (−2.51) | −0.002 *** (−3.18) | −0.002 *** (−3.31) | −0.001 (−1.46) |
HHI | −0.281 (−1.25) | −0.215 (−0.94) | 0.054 (0.28) | −0.070 (−0.69) |
fixasset | −0.955 *** (−10.92) | −0.800 *** (−8.86) | −0.514 *** (−6.94) | −0.426 *** (−10.39) |
Age | −0.011 *** (−5.87) | −0.013 *** (−6.89) | −0.012 *** (−7.20) | −0.001 (−1.21) |
Constant | −9.554 *** (−31.52) | −8.876 *** (−27.90) | −11.129 *** (−40.61) | −2.411 *** (−17.16) |
Industry | Control | Control | Control | Control |
Year | Control | Control | Control | Control |
Sample size | 15,875 | 15,875 | 15,875 | 15,875 |
AJ-R2 | 0.454 | 0.417 | 0.380 | 0.394 |
Variable Name | Time Sample Robustness Test | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Grepat | Grepat | Grepat | Grepat | |
tradfrict | 0.016 *** (2.74) | |||
AD | 0.018 ** (2.48) | |||
AS | 0.027 (1.56) | |||
SM | 0.020 (1.42) | |||
asset | 0.419 *** (17.51) | 0.418 *** (17.50) | 0.419 *** (17.50) | 0.418 ** (17.46) |
staff | 0.418 *** (17.89) | 0.418 *** (17.88) | 0.420 *** (17.83) | 0.418 *** (17.85) |
debt | −0.002 (−0.05) | −0.002 (−0.05) | −0.002 (−0.06) | −0.002 (−0.06) |
bm | −0.630 *** (−7.93) | −0.630 *** (−7.90) | −0.630 *** (−7.93) | −0.636 *** (−7.87) |
TobinsQ | 0.009 (1.21) | 0.009 (1.21) | 0.008 (1.16) | 0.008 (1.16) |
Top1 | −0.002 ** (−2.03) | −0.002 ** (−2.04) | −0.002 ** (−2.05) | −0.002 ** (−2.03) |
HHI | 0.232 (0.64) | 0.262 (0.72) | 0.313 (0.86) | 0.328 (0.91) |
fixasset | −0.870 *** (−8.54) | −0.869 *** (−8.52) | −0.862 *** (−8.46) | −0.864 *** (−8.48) |
Age | −0.018 *** (−7.63) | −0.018 *** (−7.63) | −0.017 *** (−7.60) | −0.017 *** (−7.57) |
Constant | −10.059 *** (−25.92) | −10.056 *** (−25.91) | −10.080 *** (−25.97) | −10.078 *** (−25.96) |
Industry | Control | Control | Control | Control |
Year | Control | Control | Control | Control |
Sample size | 10,744 | 10,744 | 10,744 | 10,744 |
AJ-R2 | 0.437 | 0.437 | 0.436 | 0.436 |
Variable Name | Test for Firm Size Heterogeneity | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Grepat | Grepat | Grepat | Grepat | Grepat | Grepat | Grepat | Grepat | |
tradfrict | 0.017 ** (2.25) | 0.008 (1.40) | ||||||
AD | 0.026 ** (2.48) | 0.009 (1.28) | ||||||
AS | 0.042 * (1.82) | 0.003 (0.18) | ||||||
SM | 0.004 (0.22) | 0.008 (0.67) | ||||||
Control variables | Control | Control | Control | Control | Control | Control | Control | Control |
Industry | Control | Control | Control | Control | Control | Control | Control | Control |
Year | Control | Control | Control | Control | Control | Control | Control | Control |
Sample size | 5066 | 5066 | 5066 | 5066 | 10,454 | 10,454 | 10,454 | 10,454 |
AJ-R2 | 0.551 | 0.551 | 0.550 | 0.550 | 0.413 | 0.413 | 0.413 | 0.413 |
Variable Name | Heterogeneity Test of Shareholding Nature | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Grepat | Grepat | Grepat | Grepat | Grepat | Grepat | Grepat | Grepat | |
tradfrict | 0.021 *** (2.58) | 0.005 (0.86) | ||||||
AD | 0.031 *** (2.83) | 0.006 (0.85) | ||||||
AS | 0.059 ** (2.44) | −0.008 (−0.56) | ||||||
SM | 0.003 (0.14) | 0.012 (0.95) | ||||||
Control variables | Control | Control | Control | Control | Control | Control | Control | Control |
Industry | Control | Control | Control | Control | Control | Control | Control | Control |
Year | Control | Control | Control | Control | Control | Control | Control | Control |
Sample size | 4311 | 4311 | 4311 | 4311 | 11,209 | 11,209 | 11,209 | 11,209 |
AJ-R2 | 0.564 | 0.564 | 0.563 | 0.563 | 0.412 | 0.412 | 0.412 | 0.412 |
Variable Name | Corporate Performance Check | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Roa | Roa | Roa | Roa | |
tradfrict | −0.019 *** (−3.56) | −0.020 *** (−3.71) | −0.019 *** (−3.88) | −0.019 *** (−3.63) |
grepat | 0.055 *** (5.69) | |||
invpat | 0.081 *** (5.28) | |||
noinvpat | 0.029 *** (3.12) | |||
Constant | 10.254 *** (29.05) | 10.833 *** (29.10) | 11.535 *** (19.11) | 11.535 *** (19.11) |
Control variables | Control | Control | Control | Control |
Industry | Control | Control | Control | Control |
Year | Control | Control | Control | Control |
Sample size | 15,875 | 15,875 | 15,875 | 15,875 |
AJ-R2 | 0.360 | 0.362 | 0.362 | 0.362 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Yu, M.; Zhang, H.; Zhang, Y. Does Uncertainty of Trade Environment Promote Green Technological Innovation? Empirical Evidence from China. Sustainability 2022, 14, 16195. https://doi.org/10.3390/su142316195
Sun W, Yu M, Zhang H, Zhang Y. Does Uncertainty of Trade Environment Promote Green Technological Innovation? Empirical Evidence from China. Sustainability. 2022; 14(23):16195. https://doi.org/10.3390/su142316195
Chicago/Turabian StyleSun, Weize, Mingtao Yu, Haotian Zhang, and Yifan Zhang. 2022. "Does Uncertainty of Trade Environment Promote Green Technological Innovation? Empirical Evidence from China" Sustainability 14, no. 23: 16195. https://doi.org/10.3390/su142316195
APA StyleSun, W., Yu, M., Zhang, H., & Zhang, Y. (2022). Does Uncertainty of Trade Environment Promote Green Technological Innovation? Empirical Evidence from China. Sustainability, 14(23), 16195. https://doi.org/10.3390/su142316195