Impacts of Mechanized Crop Residue Management on Rice-Wheat Cropping System—A Review
Abstract
:1. Introduction
2. Residue Generation Status in India
2.1. Effects of Residue Burning on Environment and Human Health
2.2. On-Farm Crop Residue Management Methods
3. Effect of Residue Management on Crop Performance and Soil Biota
3.1. Rice and Wheat Productivity
3.2. Weed Dynamics
3.3. Soil Physical Properties
3.4. Soil Chemical Properties
3.5. Soil Biological Activities
3.6. Soil Enzymatic Activity
4. Residue Degradation Using Microbes
5. Profitability
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, G.; Gupta, M.K.; Chaurasiya, S.; Sharma, V.S.; Pimenov, D.Y. Rice straw burning: Areview on its global prevalence and the sustainable alternatives for its effectivemitigation. Environ. Sci. Pollut. Res. 2021, 28, 32125–32155. [Google Scholar] [CrossRef]
- Singh, Y.; Singh, B.; Ladha, J.K.; Khind, C.S.; Khera, T.S.; Bueno, C.S. Effects of residue decomposition on productivity and soil fertility in rice–wheat rotation. Soil Sci. Soc. Am. J. 2014, 68, 854–864. [Google Scholar] [CrossRef]
- Singh, Y.H.B.; Shan, Y.H.; Beebout, S.E.J.; Singh, Y.; Buresh, R.J. Crop residue management for lowland rice-based cropping systems in Asia. Adv. Agron. 2008, 98, 117–199. [Google Scholar]
- Jain, N.; Bhatia, A.; Pathak, H. Emission of air pollutants from crop residue burning in India. Aerosol Air Qual. Res. 2014, 14, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.N. Worldwide bans of rice straw burning could increase human arsenic exposure. Environ. Sci. Technol. 2020, 54, 3728–3729. [Google Scholar] [CrossRef] [Green Version]
- Jat, H.S.; Choudhary, M.; Datta, A.; Yadav, A.K.; Meena, M.D.; Devi, R.; Sharma, P.C. Temporal changes in soil microbial properties and nutrient dynamics under climate smart agriculture practices. Soil Till. Res. 2020, 199, 104595. [Google Scholar] [CrossRef]
- Sarkar, A.; Yadav, R.L.; Gangwar, B.; Bhatia, P.C. Crop Residues in India. In Technical Bulletin; Project Directorate of Cropping Systems Research: Modipuram, India, 1999. [Google Scholar]
- Kumar, A.; Kushwaha, K.K.; Singh, S.; Shivay, Y.S.; Meena, M.C.; Nain, L. Effect of paddy straw burning on soil microbial dynamics in sandy loam soil of Indo-Gangetic plains. Environ. Technol. Innov. 2019, 16, 100469. [Google Scholar] [CrossRef]
- DOACFW. Review of the Scheme Promotion of Agricultural Mechanization for In-Situ Management of Crop Residue in States of Punjab, Haryana, Uttar Pradesh and nct of Delhi Ministry of Agriculture and Farmers Welfare; Department of Agriculture, Cooperation & Farmers Welfare: Krishi Bhawan, New Delhi, 2019. [Google Scholar]
- Gupta, P.K.; Sahai, S.; Singh, N.; Dixit, C.K.; Singh, D.P.; Sharma, C.; Tiwari, M.K.; Gupta, R.K.; Garg, S.C. Residue burning in rice–wheat cropping system: Causes and implications. Curr. Sci. 2004, 87, 1713–1717. [Google Scholar]
- Chauhan, B.S.; Mahajan, G.; Sardana, V.; Timsina, J.; Jat, M.L. Productivity and sustainability of the rice-wheat cropping system in the Indo-Gangetic Plains of the Indian subcontinent: Problems, opportunities and strategies. Adv. Agron. 2012, 117, 315–369. [Google Scholar]
- Lohan, S.K.; Jat, H.S.; Yadav, A.K.; Sidhu, H.S.; Jat, M.L.; Choudhary, M.; Peter, J.K.; Sharma, P.C. Burning issues of paddy residue management in north-west states of India. Renew. Sustain. Energy Rev. 2018, 81, 693–706. [Google Scholar] [CrossRef]
- Sidhu, H.S.; Humphreys, E.; Dhillon, S.S.; Blackwell, J.; Bector, V. The Happy Seeder enables direct drilling of wheat into rice stubble. Aust. J. Exp. Agric. 2007, 47, 844–854. [Google Scholar] [CrossRef] [Green Version]
- Rajanna, G.A.; Dhindwal, A.S. Water dynamics, productivity and heat use efficiency responses in wheat (Triticum aestivum) to land configuration techniques and irrigation schedules. Indian J. Agric. Sci. 2019, 89, 912–919. [Google Scholar]
- Keil, A.; Mitra, A.; McDonald, A.; Malik, R.K. Zero-tillage wheat provides stable yield and economic benefits under diverse growing season climates in the Eastern Indo-Gangetic Plains. Int. J. Agric. Sustain. 2020, 18, 567–593. [Google Scholar] [CrossRef]
- Malik, R.K.; Balyan, R.S.; Yadav, A.; Pahwa, S.K. Herbicide resistance management and zero tillage in rice-wheat cropping system. In Proceedings of the International Workshop, Chaudhary Charan Singh Haryana Agricultural University (CCSHAU), Hisar, India, 4–6 March 2002. [Google Scholar]
- Rajanna, G.A.; Dhindwal, A.S.; Narender, Y.; Patil, M.D.; Shivakumar, L. Alleviating moisture stress under irrigation scheduling and crop establishment techniques on productivity and profitability of wheat (Triticum aestivum) under semi-arid conditions of western India. Indian J. Agric Sci. 2018, 88, 372–378. [Google Scholar]
- Hiloidhari, M.; Das, D.; Baruah, D.C. Bioenergy potential from crop residue biomass in India. Renew. Sustain. Energy Rev. 2014, 32, 504–512. [Google Scholar] [CrossRef]
- NAAS. Innovative Viable Solution to Rice Residue Burning in Rice-Wheat Cropping System Through Concurrent Use of Super Straw Management System-Fitted Combines and Turbo Happy Seeder. Policy Brief No. 2; National Academy of Agricultural Sciences: New Delhi, India, 2017. [Google Scholar]
- Singh, R.; Yadav, D.B.; Ravisankar, N.; Yadav, A.; Singh, H. Crop residue management in rice–wheat cropping system for resource conservation and environmental protection in north-western India. Env. Dev. Sustain. 2020, 22, 3871–3896. [Google Scholar] [CrossRef]
- NITI Aayog. India. 2015. Available online: https://www.niti.gov.in/sites/default/files/2019-03/EOI_on_the_Topic_of_A_Researsh_Study_on_Mass_Production_of_Manure_Fertilizer_form_Agriculture_Bio-Mass.pdf (accessed on 20 November 2022).
- Sharma, M.; Sahajpal, I.; Bhuyan, A. Impacts, and Learnings of Crop Residue Management Programme; Confederation of Indian Industry (CII): New Delhi, India, 2020. [Google Scholar]
- Milham, N.; Kumar, P.; Crean, J.; Singh, R.P. Policy Instruments to Address Air Pollution Issuesin Agriculture: Implications for Happy Seeder Technology Adoption in India. Final Report. FR 2014-17; Australian Centre for International Agricultural Research (ACIAR): Canberra, ACT, Australia, 2014. [Google Scholar]
- Pathak, H.; Bhatia, A.; Jain, N. Crop Residues Management with Conservation Agriculture: Potential, Constraints and Policy Needs; Indian Agricultural Research Institute: New Delhi, India, 2012; p. vii+ 32. [Google Scholar]
- Bakker, R.; Elbersen, W.; Poppens, R.; Lesschen, J.P. Rice Straw and Wheat Straw. Potential Feed Stocks for the Biobased Economy Netherlands Programmes Food and Biobased Research NL Energy and Climate Change; NL Agency: Utrecht, The Netherland, 2013; p. 32. [Google Scholar]
- Singh, R.P.; Verma, S.K.; Kumar, S.; Lakara, K. Impact of tillage and herbicides on the dynamics of broad leaf weeds in wheat (Triticum aestivum L.). Inter. J. Agric Environ. Biotechnol. 2017, 10, 643–652. [Google Scholar] [CrossRef]
- Venkataraman, C.; Habib, G.; Kadamba, D.; Shrivastava, M.; Leon, J.F.; Crouzille, B.; Streets, D.G. Emissions from open biomass burning in India: Integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Glob. Biogeo. Cycles 2006, 20. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, V.P.; Kalhapure, A.; Pandey, D.S. Effect of tillage practices on soil properties under rice- wheat cropping system. Agrica 2015, 4, 111–118. [Google Scholar] [CrossRef]
- Sarnklong, C.; Cone, J.W.; Pellikaan, W.; Hendriks, W.H. Utilization of rice straw and different treatments to improve its feed value for ruminants: A review. Asian Aus. J. Anim. Sci. 2010, 23, 680–692. [Google Scholar] [CrossRef]
- Singh, B.; Humphreys, E.; Gaydon, D.S.; Eberbach, P.L. Evaluation of the Effects of Mulch on Optimum Sowing Date and Irrigation Management of Zero Till Wheat in Central Punjab, India Using APSIM. Field Crop Res. 2016, 197, 83–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventrella, D.; Stellacci, A.M.; Castrignanò, A.; Charfeddine, M.; Castellini, M. Effects of Crop Residue Management on Winter Durum Wheat Productivity in a Long Term Experiment in Southern Italy. Eur. J. Agron. 2016, 77, 188–198. [Google Scholar] [CrossRef]
- Brahmachari, K.; Nanda, M.K.; Saha, H.; Goswami, R.; Ray, K.; Sarkar, S.; Ghosh, A. Final Report of the Project on Cropping Systems Intensification in the Salt Affected Coastal Zones of Bangladesh and West Bengal, India; Australian Centre for International Agricultural Research: Canberra, Australia, 2020.
- Sarkar, S.; Skalicky, M.; Hossain, A.; Brestic, M.; Saha, S.; Garai, S.; Ray, K.; Brahmachari, K. Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability. Sustainability 2020, 12, 9808. [Google Scholar] [CrossRef]
- Porichha, G.K.; Hu, Y.; Rao, K.T.V.; Xu, C.C. Crop residue management in India: Stubble burning vs. other utilizations including bioenergy. Energies 2021, 14, 4281. [Google Scholar] [CrossRef]
- Jiang, D.; Zhuang, D.; Fu, J.; Huang, Y.; Wen, K. Bioenergy potentialfrom crop residues in China: Availability and distribution. Renew. Sustain. Energy Rev. 2012, 16, 1377–1382. [Google Scholar] [CrossRef]
- Ngan, N.; Chan, F.; Nam, T.; van Thao, H.; Maguyon-Detras, M.; Hung, D.; Cuong, D.M.; van Hung, N. Anaerobic Digestion of Rice Straw for Biogas Production. In Insustainable Rice Straw Management; Gummert, M., van Hung, N., Chivenge, P., Douthwaite, B., Eds.; Springer: Cham, Switzerland, 2019; pp. 65–92. [Google Scholar] [CrossRef] [Green Version]
- Venkatramanan, V.; Shah, S.; Rai, A.K.; Prasad, R. Nexus between cropresidue burning, bioeconomy andsustainable development goals over North-Western India. Front. Energy Res. 2021, 8, 614212. [Google Scholar] [CrossRef]
- Liska, A.; Yang, H.; Milner, M.; Goddard, S.; Blanco-Canqui, H.; Pelton, M.; Fang, X.X.; Zhu, H.; Suyker, A.E. Biofuels from crop residue can reduce soil carbon and increase CO2 emissions. Nat. Clim. Chang. 2014, 4, 398–401. [Google Scholar] [CrossRef] [Green Version]
- Prasad, S.; Kumar, S.; Sheetal, K.; Venkatramanan, V. Global Climate Change and Biofuels Policy: Indian Perspectives. In Global Climate Change Andenvironmental Policy: Agriculture Perspectives; Shah, V.V., Ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 207–226. [Google Scholar]
- Thuc, L.; Corales, R.; Sajor, J.; Truc, N.; Hien, P.; Ramos, R.; Bautista, E.; Tado, C.J.M.; Ompad, V.; Son, D.T.; et al. Rice-Straw Mushroom Production. In Sustainable Rice Straw Management; Gummert, N., van Hung, N., Chivenge, P., Douthwaite, B., Eds.; Springer: Cham, Switzerland, 2019; pp. 93–109. [Google Scholar]
- Van-Soest, P.J. Review: Rice straw, the role of silica and treatments to improve quality. Anim. Feed Sci. Technol. 2006, 130, 137–171. [Google Scholar] [CrossRef]
- Singh, A.; Kang, J.S.; Kaur, M.; Goel, A. Root parameters, weeds, economics and productivity of wheat (Triticum aestivum L.) as affected by methods of planting in-situ paddy straw. Int. J. Curr. Microb. App. Sci. 2013, 2, 396–405. [Google Scholar]
- Singh, V.K.; Dwivedi, B.S.; Singh, S.K.; Mishra, R.P.; Shukla, A.K.; Rathore, S.S.; Jat, M.L. Effect of tillage and crop establishment, residue management and K fertilization on yield, K use efficiency and apparent K balance under rice-maize system in north-western India. Field Crop Res. 2018, 224, 1–12. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Yadav, D.S.; Sood, P.; Rahi, S.; Arya, K.; Thakur, S.K.; Lal, R.; Kumar, S.; Sharma, J.; Dass, A.; et al. Post-Emergence herbicides for effective weed management, enhanced wheat productivity, profitability and quality in North-Western Himalayas: A ‘Participatory-Mode’ Technology Development and Dissemination. Sustainability 2020, 13, 5425. [Google Scholar] [CrossRef]
- Usman, K.; Khan, E.A.; Khan, N.; Rashid, A.; Yazdan, F.; Saleem, U.D. Response of Wheat to Tillage Plus Rice Residue and Nitrogen Management in Rice-Wheat System. J. Integr. Agric. 2014, 13, 2389–2398. [Google Scholar] [CrossRef] [Green Version]
- Zamir, M.S.I.; Ahmad, A.H.; Nadeem, M.A. Behavior of various wheat cultivars at tillage in Sub-tropical conditions. Cerc. Agron. Moldov. 2010, 4, 13–19. [Google Scholar]
- Meenakshi. Influence of Paddy Residue and Nitrogen Management on the Productivity of Wheat (Triticum aestivum L.). Master’s Thesis, Punjab Agricultural University, Ludhiana, India, 2010. [Google Scholar]
- Kaushal, M.; Singh, A.; Kang, J.S. Effect of planting techniques and nitrogen levels on growth, yield and N recovery in wheat (Triticum aestivum L.). J. Res. Punjab Agric. Univers. 2012, 49, 14–16. [Google Scholar]
- Tripathi, S.C.; Chander, S.; Meena, R.P. Effect of residue retention, tillage options and timing of nitrogen application in rice-wheat cropping system. SAARC J. Agri. 2015, 13, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Timalsina, H.P.; Marahatta, S.; Sah, S.K.; Gautam, A.K. Effect of tillage method, crop residue and nutrient management on growth and yield of wheat in rice-wheat cropping system at Bhairahawa condition. Agron. J. Nepal 2021, 5, 52–62. [Google Scholar] [CrossRef]
- Pandey, B.P.; Kandel, T.P. Response of rice to tillage, wheat residue and weed management in a rice-wheat cropping system. Agronomy 2020, 10, 1734. [Google Scholar] [CrossRef]
- Nandan, R.; Singh, V.; Kumar, V.; Singh, S.S.; Hazra, K.K.; Nath, C.P.; Malik, R.K.; Poonia, S.P. Viable weed seed density and diversity in soil and crop productivity under conservation agriculture practices in rice-based cropping systems. Crop Prot. 2020, 136, 105210. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, L.-F. Impact of tillage and crop residue management on the weed community and wheat yield in a wheat–maize double cropping system. Agriculture 2021, 11, 265. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Mohler, C. Light transmittance, soil temperature, and soil moisture under residue of hairy vetch and rye. Agron. J. 1993, 85, 673–680. [Google Scholar] [CrossRef]
- Singh, A.; Kaur, J. Impact of conservation tillage on soil properties in rice wheat cropping system. Agric. Sci. Res. J. 2012, 2, 30–41. [Google Scholar]
- Kumar, V.; Singh, S.; Chhokar, R.S.; Malik, R.K.; Brainard, D.C.; Ladha, J.K. Weed management strategies to reduce herbicide use in zero-till rice-wheat cropping systems of the Indo-Gangetic Plains. Weed Technol. 2013, 27, 241–254. [Google Scholar] [CrossRef] [Green Version]
- Walia, U.S.; Brar, L.S. Effect of tillage and weed managem4nt on seed bank of Phalaris minor in wheat under rice-wheat sequence. Ind. J. Weed Sci. 2006, 38, 104–107. [Google Scholar]
- Choudhary, M.; Datta, A.; Jat, H.S.; Yadav, K.A.; Gathala, M.K.; Sapkota, T.B.; Das, A.K.; Sharma, P.C.; Jat, M.L.; Singh, R.; et al. Changes in soil biology under conservation agriculture based sustainable intensification of cereal systems in Indo-Gangetic Plains. Geoderma 2018, 313, 193–204. [Google Scholar] [CrossRef]
- Jat, M.L.; Gathala, M.K.; Ladha, J.K.; Saharawat, Y.S.; Jat, A.S.; Kumar, V.; Sharma, S.K.; Kumar, V.; Gupta, R.K. Evaluation of precision land levelling and double zero-tillage systems in the rice-wheat rotation: Water use, productivity, profitability and soil physical properties. Soil Till. Res. 2009, 105, 112–121. [Google Scholar] [CrossRef]
- Singh, Y.; Gupta, R.K.; Singh, J.; Singh, G.; Singh, G.; Ladha, J.K. Placement effects on rice residue decomposition and nutrient dynamics on two soil types during wheat cropping in rice—wheat system in north-western India. Nutr. Cycl. Agroecosyst. 2010, 88, 471–480. [Google Scholar] [CrossRef]
- Gathala, M.K.; Kumar, V.; Sharma, P.C.; Saharawat, Y.S.; Jat, H.S.; Singh, M.; Kumar, A.; Jat, M.L.; Humphreys, E.; Sharma, D.K. Optimizing intensive cereal-based cropping systems addressing current and future drivers of agricultural change in the north western Indo-Gangetic Plains of India. Agri. Ecosyst. Environ. 2013, 177, 85–97. [Google Scholar] [CrossRef]
- Acharya, C.L.; Hati, K.M.; Bandyopadhyay, K.K. Mulches. In Encyclopedia of Soils in the Environment; Hillel, D., Rosenzweig, C., Pawlson, D.S., Scow, K.M., Sorger, M.J., Sparks, D.L., Hatfield, J., Eds.; Academic Press: London, UK, 2005; pp. 521–532. [Google Scholar]
- Abid, M.; Lal, R. Tillage and drainage impact on soil quality, aggregate stability, carbon and nitrogen pools. Soil Till. Res. 2008, 100, 89–98. [Google Scholar] [CrossRef]
- Osunbitan, J.A.; Oyedele, D.J.; Adekalu, K.O. Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil Till. Res. 2005, 82, 57–64. [Google Scholar] [CrossRef]
- Indoria, A.K.; Rao, C.S.; Sharma, K.L.; Reddy, K.S. Conservation agriculture—A panacea to improve soil physical health. Curr. Sci. 2017, 112, 52–61. [Google Scholar] [CrossRef]
- Upadhyay, P.K.; Sen, A.; Singh, Y.; Singh, R.K.; Prasad, S.K.; Sankar, A.; Singh, V.K.; Dutta, S.K.; Kumar, R.; Rathore, S.S.; et al. Soil health, energy budget, and rice productivity as influenced by cow products application with fertilizers under South Asian Eastern Indo-Gangetic Plains Zone. Front. Agron. 2022, 3, 758572. [Google Scholar]
- Dardanelli, J.L.; Ritchie, J.T.; Calmon, M.; Andriani, J.M.; Collino, D.J. An empirical model for root water uptake. Field Crop Res. 2004, 87, 59–71. [Google Scholar] [CrossRef]
- Shaxson, T.F.; Barber, R.G. Conservation Agriculture. In Optimizing Soil Moisture for Plant Production; The Significance of Soil Porosity FAO Soils Bulletin: Rome, Italy, 2003; Volume 79, pp. 1–107. [Google Scholar]
- Kroulik, M.; Hula, J.; Sindelar, R.; Illek, F. Water infiltration into soil related to the soil tillage intensity. Soil Water Res. 2007, 2, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Stawinski, C.; Cymerman, J.; Witkowska-Walczak, B.; Lamorski, K. Impact of diverse tillage on soil moisture dynamics. Int. Agrophys. 2015, 26, 301–309. [Google Scholar] [CrossRef]
- Rajput, R.; Arunachalam, K.; Arunachalam, A. Role of crop residue management practices on microbial dynamics of Soil—A Mini Review. Ind. J. Hill Farm. 2017, 30, 1–6. [Google Scholar]
- Kaur, R.; Bansal, M.; Sharma, S.; Tallapragada, S. Impact of in situ rice crop residue burning on agricultural soil of district bathinda, Punjab, India. Rasayan J. Chem. 2019, 12, 421–430. [Google Scholar] [CrossRef]
- Mandal, K.G.; Misra, A.K.; Hati, K.M.; Bandyopadhyay, K.K.; Ghosh, P.K.; Mohanty, M. Rice residue- management options and effects on soil properties and crop productivity. Food Agric. Environ. 2004, 2, 224–231. [Google Scholar]
- Moharana, P.C.; Sharma, B.M.; Biswas, D.R.; Dwivedi, B.S.; Singh, R.V. Long-term effect of nutrient management on soil fertility and soil organic carbon pools under a 6-year-old pearl millet-wheat cropping system in an Inceptisol of subtropical India. Field Crops Res. 2012, 136, 32–41. [Google Scholar] [CrossRef]
- Cheng, Z.S.; Yun, C.C.; Jiang, L.K.; Qiu, S.J.; Wei, Z.; Ping, H.E. Effects of long-termstraw return on soil fertility, nitrogen pool fractions and crop yields on a fluvoaquic soil in North China. J. Plant Nutri. Fert. 2014, 20, 1441–1449. [Google Scholar]
- Gu, S.; Guo, X.; Cai, Y.; Zhang, Z.; Wu, S.; Li, X.; Yang, W. Residue management alters microbial diversity and activity without affecting their community composition in black soil, Northeast China. Peer J. 2018, 6, 5754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, C. Management of Crop Residue for Sustaining Soil Fertility and Food grains Production in India. Acta Sci. Agric. 2019, 3, 188–195. [Google Scholar]
- Wozniak, A.; Gos, M. Yield and quality of spring wheat and soil properties as affected by tillage system. Plant Soil Environ. 2014, 60, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Sah, G.; Shah, S.C.; Sah, S.K.; Thapa, R.B.; McDonald, A.; Sidhu, H.S.; Gupta, R.K.; Sherchan, D.P.; Tripathi, B.P.; Davare, M.; et al. Tillage, crop residue, and nitrogen level effects on soil properties and crop yields under rice-wheat system in the terai region of Nepal. Glob. J. Biol. Agric. Health Sci. 2014, 3, 139–147. [Google Scholar]
- Patra, A.K.; Chhonkar, P.K.; Khan, M.A. Nitrogen loss and wheat (Triticum aestivum L.) yields in response to zero tillage and sowing time in a semi-arid tropical environment. J. Agron. Crop Sci. 2004, 190, 324–331. [Google Scholar] [CrossRef]
- Gupta, R.K.; Singh, Y.; Ladha, J.K.; Singh, B.; Singh, J.; Singh, G.; Pathak, H. Yield and phosphorus transformations in a rice-wheat system with crop residue and phosphorus management. Soil Sci. Soc. Am. J. 2007, 71, 1500–1507. [Google Scholar] [CrossRef]
- Reeder, R. Conservation Tillage Systems and Management; MidWest Plan Service: Ames, IA, USA, 2000. [Google Scholar]
- Nandan, R.; Singh, V.; Singh, S.; Hazra, K.; Nath, P.C. Performance of crop residue management with different tillage and crop establishment practices on weed flora and crop productivity in rice-wheat cropping system of eastern Indo-Gangetic plains. J. Crop Weed 2018, 14, 65–71. [Google Scholar]
- Dwivedi, D.K.; Thakur, S.S. Production potential of wheat (Triticum aestivum L.) crop as influenced by residual organics, direct and residual fertility levels under rice (Oryza sativa)-wheat cropping system. Ind. J. Agron. 2000, 45, 641–647. [Google Scholar]
- Korav, S. Rice Crop Residue Management in No-Till Wheat Under Rice-Wheat Cropping System. Ph.D. Thesis, CCSHAU Hisar, Haryana, India, 2021. [Google Scholar]
- Licht, M.A.; Al-Kaisi, M. Strip-tillage effect on seedbed soil temperature and other soil physical properties. Soil Till. Res. 2005, 80, 233–249. [Google Scholar] [CrossRef]
- Dahiya, R.; Ingwersen, J.; Streck, T. The effects of mulching and tillage on the water and temperature regimes of a loess soil: Experimental findings and modeling. Soil Till. Res. 2007, 96, 52–63. [Google Scholar] [CrossRef]
- Mickovski, M. Effect of burned straw on the microflora of the soil. Ann. Fac. Agric. Univers. 1967, 20, 55–68. [Google Scholar]
- Baghel, J.K.; Das, T.K.; Mukherjee, I.; Nath, C.P.; Bhattacharyya, R.; Ghosh, S.; Raj, R. Impacts of conservation agriculture and herbicides on weeds, nematodes, herbicide residue and productivity in direct-seeded rice. Soil Till. Res. 2020, 201, 104634. [Google Scholar] [CrossRef]
- Das, T.K.; Sourav, G.; Das, A.; Sen, S.; Datta, D.; Sonaka, G.; Raj, R.; Behera, B.; Roy, A.; Vyas, A.K.; et al. Conservation agriculture impacts on productivity, resource-use efficiency and environmental sustainability: A holistic review. Indian J. Agron. 2021, 66, S111–S127. [Google Scholar]
- Yang, Q.; Wang, X.; Shen, Y.; Philp, J.N.M. Functional diversity of soil microbial communities in response to tillage and crop residue retention in an eroded Loess soil. Soil Sci. Plant Nutri. 2013, 59, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Wortman, S.E.; Drijber, R.A.; Francis, C.A.; Lindquist, J.L. Arable weeds, cover crops, and tillage drive soil microbial community composition in organic cropping systems. Appl. Soil Ecol. 2013, 72, 232–241. [Google Scholar] [CrossRef]
- Zhong, S.; Zeng, H.C.; Jin, Z.Q. Influences of different tillage and residue management systems on soil nematode community composition and diversity in the tropics. Soil Biol. Biochem. 2017, 107, 234–243. [Google Scholar] [CrossRef]
- Gaind, S.; Nain, L. Soil health in response to Bio-Augmented paddy straw compost. World J. Agric. Sci. 2011, 7, 480–488. [Google Scholar]
- Bhagat, P.; Gosal, S.K. Long term application of rice straw and nitrogen fertilizer affects soil health and microbial communities. Chem. Sci. Rev. Lett. 2018, 7, 586–593. [Google Scholar]
- Kladivko, E.J. Tillage systems and soil ecology. Soil Till. Res. 2001, 61, 61–76. [Google Scholar] [CrossRef]
- Spurgeon, D.J.; Keith, A.M.; Schmidt, O.; Lammertsma, D.R.; Faber, J.H. Land-use and land-management change: Relationships with earthworm and fungi communities and soil structural properties. BMC Ecol. 2013, 13, 46. [Google Scholar] [CrossRef] [Green Version]
- Thierfelder, C.; Wall, P.C. Rotation in conservation agriculture systems of Zambia: Effects on soil quality and water relations. Exp. Agric. 2010, 46, 309–325. [Google Scholar] [CrossRef] [Green Version]
- Mutema, M.; Mafongoya, P.L.; Nyagumbo, I.; Chikukura, L. Effects of crop residues and reduced tillage on macrofauna abundance. J. Org. Syst. 2013, 8, 5–16. [Google Scholar]
- TerAvest, D.; Carpenter-Boggs, L.; Thierfelder, C.; Reganold, J.P. Crop production and soil water management in conservation agriculture, no-till, and conventional tillage systems in Malawi. Agric. Ecosyst. Environ. 2015, 212, 285–296. [Google Scholar] [CrossRef]
- Mcinga, S.; Muzangwa, L.; Janhi, K.; Mnkeni, P.N.S. Conservation agriculture practices improve earthworm species richness and abundance in the semi-arid climate of Eastern Cape, South Africa. Agriculture 2020, 10, 576. [Google Scholar] [CrossRef]
- Briones, M.J.I.; Schmidt, O. Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Glob. Chang. Biol. 2017, 23, 4396–4419. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Kular, J.S.; Ram, H.; Mahal, M.S. Relative abundance and damage of some insect pests of wheat under different tillage practices in rice-wheat cropping in India. Crop Prot. 2014, 61, 16–22. [Google Scholar] [CrossRef]
- Jacobsen, S.K.; Sigsgaard, L.; Johansen, A.B.; Kristensen, K.T.; Jensen, P.M. The impact of reduced tillage and distance to field margin on predator functional diversity. J. Insect Conserv. 2022, 26, 491–501. [Google Scholar] [CrossRef]
- Nawaz, A.; Ahmad, J.N. Insect Pest Management in Conservation Agriculture. In Conservation Agriculture; Farooq, M., Siddique, K.H.M., Eds.; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Jaipal, S.; Singh, S.; Yadav, A.; Malik, R.K.; Hobbs, P.R. Species diversity and population density of macro-fauns of rice-wheat copping habitat in semi-arid subtropical northwest India in relation to modified tillage practices of wheat sowing. Herbicide-resistance management and zero-tillage in the rice-wheat cropping system. In Proceedings of the International Workshop, Hissar, India, 4–6 March 2002. [Google Scholar]
- Singh, B. Incidence of the pink noctuid stem borer, Sesamiainferens (walker), on wheat under two tillage conditions and three sowing dates in north-western plains of India. J. Entomol. 2012, 9, 368–376. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Kaur, S.; Deol, J.S.; Sharma, R.; Kaur, T.; Brar, A.S.; Choudhary, O.M. Soil Properties and Weed Dynamics in Wheat as Affected by Rice Residue Management in the Rice–Wheat Cropping System in South Asia: A Review. Plants 2021, 10, 953. [Google Scholar] [CrossRef]
- Alyokhin, A.; Nault, B.; Brown, B. Soil conservation practices for insect pest management in highly disturbed agroecosystems—a review. Entomol. Exp. Appl. 2020, 168, 7–27. [Google Scholar] [CrossRef]
- Tamburini, G.; De-Simone, S.; Sigura, M.; Boscutti, F.; Marini, L. Conservation tillage mitigates the negative effect of landscape simplification on biological control. J. Appl. Ecol. 2016, 53, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.M.; Singh, J.; Kumar, H.; Singh, S.; Sachdeva, J.; Kaur, B.; Chopra, S.; Chand, P. Management of paddy straw in Punjab: An economic analysis of different techniques. Indian J. Agric. Econ. 2019, 74, 301–310. [Google Scholar]
- Sharma, A.; Singh, R. Effect of abiotic factors on burrow density of Indian gerbil, Tatera indica (Hardwicke) (Rodentia: Muridae) in Punjab. J. Entomol. Zool. Stud. 2018, 6, 1508–1513. [Google Scholar]
- Kumar, R.; Choudhary, J.S.; Mishra, J.S.; Mondal, S.S.; Poonia, S.; Monobrullah, M.; Hans, H.; Verma, M.; Kumar, U.; Bhatt, B.P.; et al. Outburst of pest populations in rice-based cropping systems under conservation agricultural practices in the middle Indo-Gangetic Plains of South Asia. Sci. Rep. 2022, 12, 3753. [Google Scholar] [CrossRef] [PubMed]
- Dill-Macky, R. The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Dis. 2000, 84, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.; De-Boer, S.; Lorenzen, J.; Karasev, A.; Whitworth, J. Potato virus Y: An evolving concern for potato crops in the United States and Canada. Plant Dis. 2010, 94, 1384–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.A.; Ditommaso, A.; Fuchs, M.; Shelton, A.M.; Nault, B.A. Weed hosts for onion thrips (Thysanoptera: Thripidae) and their potential role in the epidemiology of Iris yellow spot virus in an onion ecosystem. Environ. Entomol. 2011, 40, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, K. Soil microbial activity and biomass as influenced by tillage and fertilization in wheat production. Am. Eur. J. Agric. Environ. Sci. 2011, 10, 330–337. [Google Scholar]
- Nannipieri, P. The potential use of soil enzymes as indicators of productivity, sustainability and pollution. In Soil biota: Management in Sustainable Farming Systems; CSIRO Publications: Clayton, Australia, 1994; pp. 238–244. [Google Scholar]
- Majumder, B.; Kuzyakov, Y. Effect of fertilization on decomposition of 14C labeled plant residues and their incorporation into soil aggregates. Soil Till. Res. 2010, 109, 94–102. [Google Scholar] [CrossRef]
- Nisha, S.; Kewat, M.L.; Sharma, A.R. Impact of conservation agriculture and weed control measures on soil physical and biological properties under rice-wheat-mungbean cropping system in vertisols. Int. J. Agric. Sci. 2016, 8, 2691–2695. [Google Scholar]
- Ceccanti, B.; Pezzarossa, B.; Gallardo-Lancho, F.J.; Masciandaro, G. Biotests as markers of soil utilization and fertility. Geomicrobiol. J. 1993, 11, 309–316. [Google Scholar] [CrossRef]
- Nannipieri, P.; Pedrazzini, F.; Arcara, P.G.; Piovanelli, C. Changes in amino acids, enzyme activities, and biomasses during soil microbial growth. Soil Sci. 1979, 127, 26–34. [Google Scholar] [CrossRef]
- Yang, F.; Ali, M.; Zheng, X.; He, Q.; Yang, X.; Huo, W.; Liang, F.C.; Wang, S.M. Diurnal dynamics of soil respiration and the influencing factors for three land-cover types in the hinterland of the Taklimakan Desert, China. J. Arid. Land 2017, 9, 568–579. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Sun, L.; Hu, H.; Guo, F. Effects of fire disturbance on soil respiration in the non-growing season in a Larix gmelinii forest in the Daxing’an Mountains, China. PLoS ONE 2017, 12, e0180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Singh, B.J.; Mukherjee, T.K.; Kumar, V.; Upadhyay, S.K. Biochemical changes during solid state fermentation of wheat crop residues by Aspergillus flavus Link and Aspergillus niger. Biointerface Res. Appl. Chem. 2022, 13, 231. [Google Scholar] [CrossRef]
- Dash, P.K.; Padhy, S.R.; Bhattacharyya, P.; Pattanayak, A.; Routray, S.; Panneerselvam, P.; Nayak, A.K.; Pathak, H. Efficient lignin decomposing microbial consortium to hasten rice-straw composting with moderate GHGs fluxes. Waste Biomass Valoriz. 2021, 13, 481–496. [Google Scholar] [CrossRef]
- Zaidi, S.T. Rice Crop Residue burning and alternative measures by India: A Review. J. Sci. Res. Inst. Sci. 2021, 65, 132–137. [Google Scholar] [CrossRef]
- Zhao, J.; Ni, T.; Xun, W.; Huang, X.; Huang, Q.; Ran, W.; Shen, B.; Zhang, R.; Shen, Q. Influence of Straw Incorporation with and without Straw Decomposer on Soil Bacterial Community Structure and Function in a Rice-Wheat Cropping System. Appl. Microbiol. Biotechnol. 2017, 101, 4761–4773. [Google Scholar] [CrossRef]
- Schmidt, A.; John, K.; Arida, G.; Auge, H.; Brandl, R.; Horgan, F.G. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community. PLoS ONE 2015, 10, e0134402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomar, R.K.; Singh, J.P.; Garg, R.N.; Gupta, V.K.; Sahoo, R.N.; Arora, R.P. Effect of weed management practices on weed growth and yield of wheat in rice-based cropping system under varying levels of tillage. Ann. Plant Prot. Sci. 2003, 11, 123–128. [Google Scholar]
- Zhang, X.; Qi, L.; Zhub, A.; Lianga, W.; Zhangb, J.; Steinbergerc, Y. Effects of tillage and residue management on soil nematode communities in North China. Ecol. Ind. 2012, 13, 75–81. [Google Scholar] [CrossRef]
- Dhillon, G.S. Comparative evaluation of happy seeder technology versus normal sowing in wheat (Triticum aestivum) in adopted village Killi Nihal Singh of Bathinda district of Punjab. J. Appl. Nat. Sci. 2016, 8, 2278–2282. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Hussain, M.; Faisal, N.; Iqbal, J.; Rehaman, A.U.; Ahmad, M.; Padyar, J.A. Happy seeder zero tillage equipment for sowing of wheat in standing rice stubbles. Int. J. Adv. Res. Biol. Sci. 2017, 4, 101–105. [Google Scholar] [CrossRef]
- Rafiq, M.H.; Ahmad, R.; Jabbar, A.; Munir, H.; Hussain, M. Wheat productivity responses in the rice-based system under different no-till techniques and nitrogen sources. Environ. Sci. Pollut. Res. 2017, 17, 9813–9818. [Google Scholar] [CrossRef]
- Jordan, N.; Boody, G.; Broussard, W.; Glover, J.; Keeney, D.; McCown, B.; McIsaac, G.; Muller, M.; Murray, H.; Neal, J.; et al. Sustainable development of the agricultural bio-economy. Science 2007, 316, 1570–1571. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Babu, J.N.; Kumar, R.; Srivastava, P.; Singh, P.; Raghubanshi, A.S. Multifaceted application of crop residue biochar as a tool for sustainable agriculture: An ecological perspective. Ecol. Eng. 2015, 77, 324–347. [Google Scholar] [CrossRef]
Rice Yield (kg ha−1) | Reference | Wheat Yield (kg ha−1) | Reference | ||||
---|---|---|---|---|---|---|---|
CT | ZT | ZT+R | CT | ZT | ZT+R | ||
4800 | 4400 | 4900 | [50] | 5570 | 5280 | 6750 | [51] |
7240 | 5010 | 5380 | [49] | 1916 | 2426 | 2268 | [50] |
Soil parameter | Rice | Reference | Wheat | Reference | ||||
---|---|---|---|---|---|---|---|---|
CT | ZT | ZT+R | CT | ZT | ZT+R | |||
pH | 7.44 | 7.41 | 7.38 | [83] | 8.9 | 8.8 | 8.9 | [3] |
TOC (g kg−1) | 1.90 | 2.30 | 2.29 | 0.52 | 0.50 | 0.56 | ||
N (kg ha−1) | 185.8 | 185 | 195.7 | - | - | - | ||
P (kg ha−1) | 29 | 27.5 | 30.6 | 10 | 10 | 11 | ||
K (kg ha−1) | 236.2 | 222.4 | 250.6 | 208 | 204 | 206 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korav, S.; Rajanna, G.A.; Yadav, D.B.; Paramesha, V.; Mehta, C.M.; Jha, P.K.; Singh, S.; Singh, S. Impacts of Mechanized Crop Residue Management on Rice-Wheat Cropping System—A Review. Sustainability 2022, 14, 15641. https://doi.org/10.3390/su142315641
Korav S, Rajanna GA, Yadav DB, Paramesha V, Mehta CM, Jha PK, Singh S, Singh S. Impacts of Mechanized Crop Residue Management on Rice-Wheat Cropping System—A Review. Sustainability. 2022; 14(23):15641. https://doi.org/10.3390/su142315641
Chicago/Turabian StyleKorav, Santosh, Gandhamanagenahalli A. Rajanna, Dharam Bir Yadav, Venkatesh Paramesha, Chandra Mohan Mehta, Prakash Kumar Jha, Surendra Singh, and Shikha Singh. 2022. "Impacts of Mechanized Crop Residue Management on Rice-Wheat Cropping System—A Review" Sustainability 14, no. 23: 15641. https://doi.org/10.3390/su142315641
APA StyleKorav, S., Rajanna, G. A., Yadav, D. B., Paramesha, V., Mehta, C. M., Jha, P. K., Singh, S., & Singh, S. (2022). Impacts of Mechanized Crop Residue Management on Rice-Wheat Cropping System—A Review. Sustainability, 14(23), 15641. https://doi.org/10.3390/su142315641