Encirclement of Natural Resources, Green Investment, and Economic Complexity for Mitigation of Ecological Footprints in BRI Countries
Abstract
:1. Introduction
2. Methodology
2.1. Data and Model
2.2. Econometric Strategy
3. Empirical Findings
4. Discussion of Empirical Findings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chishti, M.Z.; Sinha, A. Do the shocks in technological and financial innovation influence the environmental quality? Evidence from BRICS economies. Technol. Soc. 2021, 68, 101828. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Alvarado, R.; Ortiz, C.; Jimenez, N.; Ochoa-Jimenez, D.; Tillaguango, B. Ecological footprint, air quality and research and development: The role of agriculture and international trade. J. Clean. Prod. 2021, 288, 125589. [Google Scholar] [CrossRef]
- Pata, U.K. Renewable and non-renewable energy consumption, economic complexity, CO2 emissions, and ecological footprint in the USA: Testing the EKC hypothesis with a structural break. Environ. Sci. Pollut. Res. 2021, 28, 846–861. [Google Scholar] [CrossRef] [PubMed]
- Langnel, Z.; Amegavi, G.B. Globalization, electricity consumption and ecological footprint: An autoregressive distributive lag (ARDL) approach. Sustain. Cities Soc. 2020, 63, 102482. [Google Scholar] [CrossRef]
- Shahbaz, M.; Sinha, A.; Raghutla, C.; Vo, X.V. Decomposing scale and technique effects of financial development and foreign direct investment on renewable energy consumption. Energy 2022, 238, 121758. [Google Scholar] [CrossRef]
- Charfeddine, L. The impact of energy consumption and economic development on ecological footprint and CO2 emissions: Evidence from a markov switching equilibrium correction model. Energy Econ. 2017, 65, 355–374. [Google Scholar] [CrossRef]
- Ozcan, B.; Khan, D.; Bozoklu, S. Dynamics of ecological balance in OECD countries: Sustainable or unsustainable? Sustain. Prod. Consum. 2021, 26, 638–647. [Google Scholar] [CrossRef]
- Saud, S.; Chen, S.; Haseeb, A.; Sumayya. The role of financial development and globalization in the environment: Accounting ecological footprint indicators for selected one-belt-one-road initiative countries. J. Clean. Prod. 2020, 250, 119518. [Google Scholar]
- Ahmad, U.S.; Usman, M.; Hussain, S.; Jahanger, A.; Abrar, M. Determinants of Renewable Energy Sources in Pakistan: An Overview. Environ. Sci. Pollut. Res. 2022, 29, 29183–29201. [Google Scholar] [CrossRef]
- Adekoya, O.B.; Oliyide, J.A.; Noman, A. The volatility connectedness of the EU carbon market with commodity and financial markets in time-and frequency-domain: The role of the US economic policy uncertainty. Resour. Pol. 2021, 74, 102252. [Google Scholar] [CrossRef]
- Dagar, V.; Khan, M.K.; Alvarado, R.; Usman, M.; Zakari, A.; Rehman, A.; Murshed, M.; Tillaguango, B. Variations in Technical Efficiency of Farmers with Distinct Land Size across Agro-Climatic Zones: Evidence from India. J. Clean. Prod. 2021, 315, 128109. [Google Scholar] [CrossRef]
- Jahanger, A. Impact of Globalization on CO2 Emissions Based on EKC Hypothesis in Developing World: The Moderating Role of Human Capital. Environ. Sci. Pollut. Res. 2021, 29, 20731–20751. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.R.; Yu, Z.; Sharif, A. No silver bullet for de-carbonization: Preparing for tomorrow, today. Resour. Pol. 2021, 71, 101942. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wang, T.-T.; Deng, Y.; Li, Z.-P.; Atif, J. The Impact of Environmental Regulations on export Trade at Provincial Level in China: Evidence from Panel Quantile Regression. Environ. Sci. Pollut. Res. 2022, 29, 24098–24111. [Google Scholar]
- WHO. Global Panel Report on Health Status. 2019. Available online: https://www.who.int/health_financing/documents/health-expenditure-report-2019.pdf? (accessed on 21 March 2022).
- Kamal, M.; Usman, M.; Jahanger, A.; Balsalobre-Lorente, D. Revisiting the Role of Fiscal Policy, Financial Development, and Foreign Direct Investment in Reducing Environmental Pollution during Globalization Mode: Evidence from Linear and Nonlinear Panel Data Approaches. Energies 2021, 14, 6968. [Google Scholar] [CrossRef]
- Nathaniel, S.; Khan, S.A.R. The nexus between urbanization, renewable energy, trade, and ecological footprint in ASEAN countries. J. Clean. Prod. 2020, 272, 122709. [Google Scholar] [CrossRef]
- Khan, I.; Hou, F.; Le, H.P. The impact of natural resources, energy consumption, and population growth on environmental quality: Fresh evidence from the United States of America. Sci. Total Environ. 2021, 754, 142222. [Google Scholar] [CrossRef]
- Erdogan, S.; Yıldırım, D.Ç.; Gedikli, A. Natural resource abundance, financial development and economic growth: An investigation on Next-11 countries. Resour. Pol. 2020, 65, 101559. [Google Scholar] [CrossRef]
- Havranek, T.; Horvath, R.; Zeynalov, A. Natural Resources and Economic Growth: A Meta-Analysis. World Dev. 2016, 88, 134–151. [Google Scholar] [CrossRef] [Green Version]
- Hussain, J.; Khan, A.; Zhou, K. The impact of natural resource depletion on energy use and CO2 emission in Belt & Road Initiative countries: A cross-country analysis. Energy 2020, 199, 117409. [Google Scholar]
- Shen, Y.; Su, Z.W.; Malik, M.Y.; Umar, M.; Khan, Z.; Khan, M. Does green investment, financial development and natural resources rent limit carbon emissions? A provincial panel analysis of China. Sci. Total Environ. 2021, 755, 142538. [Google Scholar] [CrossRef] [PubMed]
- Udi, J.; Bekun, F.V.; Adedoyin, F.F. Modeling the nexus between coal consumption, FDI inflow and economic expansion: Does industrialization matter in South Africa? Environ. Sci. Pollut. Res. 2020, 27, 10553–10564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Mirza, N.; Vasbieva, D.G.; Abbas, Q.; Xiong, D. The nexus of carbon emissions, financial development, renewable energy consumption, and technological innovation: What should be the priorities in light of COP 21 Agreements? J. Environ. Manag. 2020, 271, 111027. [Google Scholar] [CrossRef]
- Adedoyin, F.F.; Gumede, M.I.; Bekun, F.V.; Etokakpan, M.U.; Balsalobre-lorente, D. Modelling coal rent, economic growth and CO2 emissions: Does regulatory quality matter in BRICS economies? Sci. Total Environ. 2020, 710, 136284. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shao, S.; Shi, X.; Sun, Y.; Zhang, X. Structural transformation of manufacturing, natural resource dependence, and carbon emissions reduction: Evidence of a threshold effect from China. J. Clean. Prod. 2019, 206, 920–927. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Shahbaz, M.; Roubaud, D.; Farhani, S. How economic growth, renewable electricity and natural resources contribute to CO2 emissions? Energy Policy 2018, 113, 356–367. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.T.; Xia, E.; Khan, N.H.; Shah, S.M.A. Economic growth, natural resources, and ecological footprints: Evidence from Pakistan. Environ. Sci. Pollut. Res. 2019, 26, 2929–2938. [Google Scholar] [CrossRef]
- Sinha, A.; Shahbaz, M. Estimation of environmental Kuznets curve for CO2 emission: Role of renewable energy generation in India. Renew. Energy 2018, 119, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Hausmann, R.; Hidalgo, C.A.; Bustos, S.; Coscia, M.; Simoes, A.; Yildirim, M.A. The Atlas of Economic Complexity; MIT Press: Cambridge, MA, USA, 2019. [Google Scholar] [CrossRef]
- Hausmann, R.; Hidalgo, C.A. The network structure of economic output. J. Econ. Growth 2011, 16, 309–342. [Google Scholar] [CrossRef] [Green Version]
- Neagu, O.; Teodoru, M.C. The relationship between economic complexity, energy consumption structure and greenhouse gas emission: Heterogeneous panel evidence from the EU countries. Sustainability 2019, 11, 497. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, U.; Ferraz, D.; Doğan, B. Aparecida do Nascimento Rebelatto, D. Export product diversification and CO2 emissions: Contextual evidences from developing and developed economies. J. Clean. Prod. 2020, 276, 124146. [Google Scholar] [CrossRef]
- Bashir, M.A.; Sheng, B.; Doğan, B.; Sarwar, S.; Shahzad, U. Export product diversification and energy efficiency: Empirical evidence from OECD countries. Struct. Chang. Econ. Dyn. 2020, 55, 232–243. [Google Scholar] [CrossRef]
- Suki, N.M.; Sharif, A.; Afshan, S. Revisiting the Environmental Kuznets Curve in Malaysia: The role of globalization in sustainable environment. J. Clean. Prod. 2020, 264, 121669. [Google Scholar] [CrossRef]
- Atil, A.; Nawaz, K.; Lahiani, A.; Roubaud, D. Are natural resources a blessing or a curse for financial development in Pakistan? The importance of oil prices, economic growth and economic globalization. Resour. Policy 2020, 67, 101683. [Google Scholar] [CrossRef]
- Gurgul, H.; Lach, Ł. Globalization and economic growth: Evidence from two decades of transition in CEE. Econ. Model. 2014, 36, 99–107. [Google Scholar] [CrossRef] [Green Version]
- You, W.; Lv, Z. Spillover effects of economic globalization on CO2 emissions: A spatial panel approach. Energy Econ. 2018, 73, 248–257. [Google Scholar] [CrossRef]
- Akadiri, S.; Saint Alkawfi, M.M.; Uğural, S.; Akadiri, A.C. Towards achieving environmental sustainability target in Italy. The role of energy, real income and globalization. Sci. Total Environ. 2019, 671, 1293–1301. [Google Scholar] [CrossRef]
- Kang, Y.Q.; Zhao, T.; Yang, Y.Y. Environmental Kuznets curve for CO2 emissions in China: A spatial panel data approach. Ecol. Indic. 2016, 63, 231–239. [Google Scholar] [CrossRef]
- Baloch, M.A.; Zhang, J.; Iqbal, K.; Iqbal, Z. The effect of financial development on ecological footprint in BRI countries: Evidence from panel data estimation. Environ. Sci. Pollut. Res. 2019, 26, 6199–6208. [Google Scholar] [CrossRef]
- Ahmad, M.; Jiang, P.; Majeed, A.; Raza, M.Y. Does financial development and foreign direct investment improve environmental quality? Evidence from belt and road countries. Environ. Sci. Pollut. Res. 2020, 27, 23586–23601. [Google Scholar] [CrossRef]
- Khan, A.; Hussain, J.; Bano, S.; Yang, C. The repercussions of foreign direct investment, renewable energy and health expenditure on environmental decay? An econometric analysis of B&RI countries. J. Environ. Plan. Manag. 2020, 63, 1965–1986. [Google Scholar]
- Wang, L.; Vo, X.V.; Shahbaz, M.; Ak, A. Globalization and carbon emissions: Is there any role of agriculture value-added, financial development, and natural resource rent in the aftermath of COP21? J. Environ. Manag. 2020, 268, 110712. [Google Scholar] [CrossRef] [PubMed]
- Miao, C.; Fang, D.; Sun, L.; Luo, Q. Natural resources utilization efficiency under the influence of green technological innovation. Resour. Conserv. Recycl. 2017, 126, 153–161. [Google Scholar] [CrossRef]
- Ulucak, R.; Lin, D. Persistence of policy shocks to ecological footprint of the USA. Ecol. Indicat. 2017, 80, 337–343. [Google Scholar] [CrossRef]
- Baltagi, B.H.; Feng, Q.; Kao, C. A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel. J. Econ. 2012, 170, 164–177. [Google Scholar] [CrossRef] [Green Version]
- Breusch, T.S.; Pagan, A.R. The Lagrange multiplier test and its applications to model specification in econometrics. Rev. Econ. Stud. 1980, 47, 239. [Google Scholar] [CrossRef]
- Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937, 32, 675–701. [Google Scholar] [CrossRef]
- Frees, E.W. Assessing cross-sectional correlation in panel data. J. Econ. 1995, 69, 393–414. [Google Scholar] [CrossRef]
- Pesaran, M.H. General Diagnostic Tests for Cross-Sectional Dependence in Panels. Empir. Econ. 2021, 60, 13–50. [Google Scholar] [CrossRef]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econ. 2007, 22, 265–312. [Google Scholar] [CrossRef] [Green Version]
- Westerlund, J.; Edgerton, D.L. A panel bootstrap cointegration test. Econ. Lett. 2007, 97, 185–190. [Google Scholar] [CrossRef]
- Driscoll, J.C.; Kraay, A.C. Consistent covariance matrix estimation with spatially dependent panel data. Rev. Econ. Stat. 1998, 80, 549–559. [Google Scholar] [CrossRef]
- Beck, N.; Katz, J.N. What to do (and not to do) with time-series cross-section data. Am. Polit. Sci. Rev. 1995, 89, 634–647. [Google Scholar] [CrossRef]
- Parks, R.W. Efficient estimation of a system of regression equations when disturbances are both serially and contemporaneously correlated. J. Am. Stat. Assoc. 1967, 62, 500–509. [Google Scholar] [CrossRef]
- Dumitrescu, E.I.; Hurlin, C. Testing for Granger non-causality in heterogeneous panels. Econ. Model. 2012, 29, 1450–1460. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, Z.; Asghar, M.M.; Malik, M.N.; Nawaz, K. Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China. Resour. Policy 2020, 67, 101677. [Google Scholar] [CrossRef]
- Mensah, C.N.; Long, X.; Boamah, K.B.; Bediako, I.A.; Dauda, L.; Salman, M. The effect of innovation on CO2 emissions of OCED countries from 1990 to 2014. Environ. Sci. Pollut. Res. 2018, 25, 29678–29698. [Google Scholar] [CrossRef]
- Khan, Z.; Hussain, M.; Shahbaz, M.; Yang, S.; Jiao, Z. Natural resource abundance, technological innovation, and human capital nexus with financial development: A case study of China. Resour. Policy 2020, 65, 101585. [Google Scholar] [CrossRef]
- Pata, U.K.; Yilanci, V. Financial development, globalization and ecological footprint in G7: Further evidence from threshold cointegration and fractional frequency causality tests. Environ. Ecol. Stat. 2020, 27, 803–825. [Google Scholar] [CrossRef]
- Pata, U.K.; Caglar, A.E. Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: Evidence from augmented ARDL approach with a structural break. Energy 2021, 216, 119220. [Google Scholar] [CrossRef]
- Yilanci, V.; Pata, U.K. Investigating the EKC hypothesis for China: The role of economic complexity on ecological footprint. Environ. Sci. Pollut. Res. 2020, 27, 32683–32694. [Google Scholar] [CrossRef] [PubMed]
Variables | Symbols | Measurements | Sources | Source Link |
---|---|---|---|---|
Ecological Footprint | ECFT | Global hectares Per Person | Global Footprint Network | https://www.footprintnetwork.org/ accessed on 14 February 2022 |
Green Investment | GRIN | Public Investment in Renewable Energy | International Renewable Energy Agency | https://www.irena.org/ accessed on 14 February 2022 |
Economic Complexity | ECCM | Economic Complexity Index | Atlas of Economic Complexity | https://atlas.cid.harvard.edu/ accessed on 14 February 2022 |
Natural Resources | NARE | Natural Resources Rent (% of GDP) | World Development Indicators | https://databank.worldbank.org/source/world-development-indicators accessedon 14 February 2022 |
Economic Growth | ECGR | Per Capita GDP | World Bank | https://databank.worldbank.org/home.aspx accessed on 14 February 2022 |
Globalization | GLOB | KOF (Konjunkturforschungsstelle) Index | KOF Swiss Economic Institute | https://kof.ethz.ch/en/ accessed on 14 February 2022 |
CDLMBP | CDSLMBC | |
---|---|---|
LnECFT | 412.622 * | 42.268 * |
LnNARE | 518.338 * | 53.491 * |
LnGRIN | 584.391 * | 59.372 * |
LnECCM | 834.924 * | 83.282 * |
LnECGR | 1257.618 * | 126.382 * |
LnGLOB | 964.88 * | 96.375 * |
Pesaran Test | 3.645 ** | |
Frees Test | 3.039 * | |
Friedman Test | 54.628 * |
Variable | CIPS | CADF | ||
---|---|---|---|---|
Level | Difference | Level | Difference | |
LnECFT | −3.51 | −6.82 * | −3.65 | −4.72 * |
LnNARE | −3.81 | −5.38 * | −3.83 | −4.22 * |
LnGRIN | −2.99 | −4.37 * | −3.24 | −4.28 * |
LnECCM | −3.69 | −5.69 * | −3.28 | −4.88 * |
LnECGR | −2.89 | −3.92 * | −2.99 | −4.29 * |
LnGLOB | −1.37 | −2.64 | −2.14 | −4.53 * |
Constant | Constant & Trend | ||
---|---|---|---|
LM-Statistics | Bootstrap p-Value | LM-Statistics | Bootstrap p-Value |
3.927 | 1.000 | 5.927 | 1.000 |
Variable | Coefficient | Std. Error | p-Value |
---|---|---|---|
LnNARE | 0.537 | 0.172 | 0.000 |
LnGRIN | −0.491 | 0.021 | 0.000 |
LnECCM | 0.272 | 0.164 | 0.005 |
LnECGR | 0.338 | 0.211 | 0.000 |
LnGLOB | 0.517 | 0.187 | 0.001 |
Variable | Coefficient | Std. Error | p-Value |
---|---|---|---|
Cross-sectional Time Series FGLS Regression | |||
LnNARE | 0.214 | 0.124 | 0.005 |
LnGRIN | −0.135 | 0.027 | 0.061 |
LnECCM | 0.092 | 0.138 | 0.000 |
LnECGR | 0.341 | 0.267 | 0.001 |
LnGLOB | 0.387 | 0.139 | 0.005 |
Correlated Panels Corrected Standard Errors (PCSEs) | |||
LnNARE | 0.386 | 0.281 | 0.003 |
LnGRIN | 0.261 | 0.143 | 0.000 |
LnECCM | 0.197 | 0.249 | 0.005 |
LnECGR | 0.299 | 0.197 | 0.006 |
LnGLOB | 0.286 | 0.099 | 0.001 |
Variable | Coefficient | Std. Error | p-Value |
---|---|---|---|
CCEMG | |||
LnNARE | 0.038 | 0.028 | 0.015 |
LnGRIN | −0.168 | 0.052 | 0.032 |
LnECCM | −0.481 | 0.270 | 0.000 |
LnECGR | 0.557 | 0.335 | 0.005 |
LnGLOB | 0.379 | 0.195 | 0.009 |
AMG | |||
LnNARE | 0.025 | 0.019 | 0.042 |
LnGRIN | −0.127 | 0.095 | 0.033 |
LnECCM | −0.368 | 0.273 | 0.001 |
LnECGR | 0.042 | 0.022 | 0.008 |
LnGLOB | 0.195 | 0.099 | 0.024 |
LnECFT | LnNARE | LnGRIN | LnECCM | LnECGR | LnGLOB | |
---|---|---|---|---|---|---|
LnECFT | 4.152 ** | −3.614 * | −4.627 ** | 5.007 ** | 2.911 *** | |
LnNARE | 3.971 ** | 4.182 ** | 5.814 ** | 4.819 * | 3.671 ** | |
LnGRIN | 4.287 * | 3.618 ** | 6.811 *** | 4.682 ** | 4.371 ** | |
LnECCM | 3.947 * | 4.681 * | 4.823 ** | 6.182 * | 4.812 ** | |
LnECGR | 5.173 ** | 5.972 ** | 5.817 *** | 4.952 * | 6.728 * | |
LnGLOB | 3.782 * | 5.998 | 3.718 * | 6.971 | 5.716 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, C.; Madni, G.R. Encirclement of Natural Resources, Green Investment, and Economic Complexity for Mitigation of Ecological Footprints in BRI Countries. Sustainability 2022, 14, 15269. https://doi.org/10.3390/su142215269
Qian C, Madni GR. Encirclement of Natural Resources, Green Investment, and Economic Complexity for Mitigation of Ecological Footprints in BRI Countries. Sustainability. 2022; 14(22):15269. https://doi.org/10.3390/su142215269
Chicago/Turabian StyleQian, Chen, and Ghulam Rasool Madni. 2022. "Encirclement of Natural Resources, Green Investment, and Economic Complexity for Mitigation of Ecological Footprints in BRI Countries" Sustainability 14, no. 22: 15269. https://doi.org/10.3390/su142215269
APA StyleQian, C., & Madni, G. R. (2022). Encirclement of Natural Resources, Green Investment, and Economic Complexity for Mitigation of Ecological Footprints in BRI Countries. Sustainability, 14(22), 15269. https://doi.org/10.3390/su142215269