A Systematic Review of Knowledge Representation Techniques in Smart Agriculture (Urban)
Abstract
:1. Introduction
1.1. Agriculture
1.2. Precision Agriculture
1.3. Urban Agriculture
1.4. Knowledge Representation
2. Methodology
3. Knowledge Representation in Agriculture
3.1. Global Geographical KR
3.2. Country/Location-Specific Geographical KR
3.3. General Farming KR
3.4. Specific Farming KR
3.4.1. Water-Based KR
3.4.2. Animal-Based KR
3.4.3. Plants-Based KR
3.4.4. Farm- or Crop-Based KR
3.4.5. Pests-Based KR
3.4.6. Fruits-Based KR
3.4.7. Vegetable-Based KR
3.5. Organic KR
3.6. Climate and Environmental KR
4. Knowledge Representation in Smart Urban Agriculture
5. Conclusions
- (a)
- It is essential that ontology evaluation methods are clear and well-organised; otherwise, an ontology cannot be regarded as a contribution to research and practice. It is becoming more vital to use ontologies and the Semantic Web in agricultural systems in order for them to be effective. It is difficult to exchange and to reuse agricultural ontologies, since as our examination of the literature has revealed, most of the studies that generate them do not disclose the creation process or even mention how the resulting ontologies were rated.
- (b)
- Spatial–temporal knowledge representation is a challenge by itself, and so it is a rare characteristic found in the survey.
- (c)
- Generalisation of the knowledge representation to include all domains in agriculture is also an issue by itself.
- (d)
- A majority of the ontologies miss a proper validation technique for ensuring the correctiveness and soundness of the same.
6. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heilig, G. World population trends: How do they affect global food security? Food Secur. Differ. Scales Demogr. Biophys. Socio. Econ. Considerations 1999, 2025, 25. [Google Scholar]
- Newling, B.E. The spatial variation of urban population densities. Geogr. Rev. 1969, 59, 242–252. [Google Scholar] [CrossRef]
- Bettencourt, L.M. Urban growth and the emergent statistics of cities. Sci. Adv. 2020, 6, eaat8812. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Havlík, P.; Frank, S.; Palazzo, A.; Valin, H. Tackling food consumption inequality to fight hunger without pressuring the environment. Nat. Sustain. 2019, 2, 826–833. [Google Scholar] [CrossRef]
- Saad, M.H.M.; Hamdan, N.M.; Sarker, M.R. State of the art of urban smart vertical farming automation system: Advanced topologies, issues and recommendations. Electronics 2021, 10, 1422. [Google Scholar] [CrossRef]
- Kanjilal, D.; Singh, D.; Reddy, R.; Mathew, J. Smart farm: Extending automation to the farm level. Int. J. Sci. Technol. Res. 2014, 3, 109–113. [Google Scholar]
- Abraham, A.; Dash, S.; Rodrigues, J.J.; Acharya, B.; Pani, S.K. AI, Edge and IoT-based Smart Agriculture; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Vij, A.; Vijendra, S.; Jain, A.; Bajaj, S.; Bassi, A.; Sharma, A. IoT and machine learning approaches for automation of farm irrigation system. Procedia Comput. Sci. 2020, 167, 1250–1257. [Google Scholar] [CrossRef]
- Beacham, A.M.; Vickers, L.H.; Monaghan, J.M. Vertical farming: A summary of approaches to growing skywards. J. Hortic. Sci. Biotechnol. 2019, 94, 277–283. [Google Scholar] [CrossRef]
- Kalantari, F.; Tahir, O.M.; Joni, R.A.; Fatemi, E. Opportunities and challenges in sustainability of vertical farming: A review. J. Landsc. Ecol. 2018, 11, 35–60. [Google Scholar] [CrossRef] [Green Version]
- Rhayem, A.; Mhiri, M.B.A.; Gargouri, F. Semantic web technologies for the internet of things: Systematic literature review. Internet Things 2020, 11, 100206. [Google Scholar] [CrossRef]
- Bratianu, C.; Stanescu, D.F.; Mocanu, R.; Bejinaru, R. Serial multiple mediation of the impact of customer knowledge management on sustainable product innovation by innovative work behavior. Sustainability 2021, 13, 12927. [Google Scholar] [CrossRef]
- Bejinaru, R.; Neamţu, D.M.; Condratov, I.; Stanciu, P.; Hapenciuc, C.V. Exploring the effectiveness of university agenda for developing students’ entrepreneurial behavior. Econ. Res. Ekon. Istraživanja 2022, 1–21. [Google Scholar] [CrossRef]
- Pastor-Sánchez, J.A.; Martínez Méndez, F.J.; Rodríguez-Muñoz, J.V. Advantages of Thesaurus Representation Using the Simple Knowledge Organization System (SKOS) Compared with Proposed Alternatives. Inf. Res. Int. Electron. J. 2009, 14, n4. [Google Scholar]
- Martinez-Cruz, C.; Blanco, I.J.; Vila, M.A. Ontologies versus relational databases: Are they so different? A comparison. Artif. Intell. Rev. 2012, 38, 271–290. [Google Scholar] [CrossRef]
- Lev-Yadun, S.; Gopher, A.; Abbo, S. The cradle of agriculture. Science 2000, 288, 1602–1603. [Google Scholar] [CrossRef]
- Sultan, B.; Gaetani, M. Agriculture in West Africa in the twenty-first century: Climate change and impacts scenarios, and potential for adaptation. Front. Plant Sci. 2016, 7, 1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Blackmore, S. Precision farming: An introduction. Outlook Agric. 1994, 23, 275–280. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, M.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Sung, J. The fourth industrial revolution and precision agriculture. In Automation in Agriculture: Securing Food Supplies for Future Generations; IntechOpen: London, UK, 2018; Volume 1. [Google Scholar]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef]
- Stafford, J.V. Implementing precision agriculture in the 21st century. J. Agric. Eng. Res. 2000, 76, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Khanna, A.; Kaur, S. Evolution of Internet of Things (IoT) and its significant impact in the field of Precision Agriculture. Comput. Electron. Agric. 2019, 157, 218–231. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, L.; Li, Y.; Li, D. Model predictive control and its application in agriculture: A review. Comput. Electron. Agric. 2018, 151, 104–117. [Google Scholar] [CrossRef]
- Cisternas, I.; Velásquez, I.; Caro, A.; Rodríguez, A. Systematic literature review of implementations of precision agriculture. Comput. Electron. Agric. 2020, 176, 105626. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision agriculture techniques and practices: From considerations to applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [Green Version]
- Orsini, F.; Kahane, R.; Nono-Womdim, R.; Gianquinto, G. Urban agriculture in the developing world: A review. Agron. Sustain. Dev. 2013, 33, 695–720. [Google Scholar] [CrossRef] [Green Version]
- Pearson, L.J.; Pearson, L.; Pearson, C.J. Sustainable urban agriculture: Stocktake and opportunities. Int. J. Agric. Sustain. 2010, 8, 7–19. [Google Scholar] [CrossRef]
- Opitz, I.; Berges, R.; Piorr, A.; Krikser, T. Contributing to food security in urban areas: Differences between urban agriculture and peri-urban agriculture in the Global North. Agric. Hum. Values 2016, 33, 341–358. [Google Scholar] [CrossRef] [Green Version]
- Zasada, I. Multifunctional peri-urban agriculture—A review of societal demands and the provision of goods and services by farming. Land Use Policy 2011, 28, 639–648. [Google Scholar] [CrossRef]
- Mougeot, L.J. Urban agriculture: Definition, presence, potentials and risks. Grow. Cities, Grow. Food: Urban Agric. Policy Agenda 2000, 1, 42. [Google Scholar]
- Lakemeyer, G.; Nebel, B. Foundations of Knowledge Representation and Reasoning. In Foundations of Knowledge Representation and Reasoning; Springer: Berlin/Heidelberg, Germany, 1994; pp. 1–12. [Google Scholar]
- Davis, R.; Shrobe, H.; Szolovits, P. What is a knowledge representation? AI Mag. 1993, 14, 17. [Google Scholar] [CrossRef]
- Levesque, H.J. Knowledge representation and reasoning. Annu. Rev. Comput. Sci. 1986, 1, 255–287. [Google Scholar] [CrossRef]
- Lifschitz, V.; Morgenstern, L.; Plaisted, D. Knowledge representation and classical logic. Found. Artif. Intell. 2008, 3, 3–88. [Google Scholar]
- Chein, M.; Mugnier, M.L. Graph-Based Knowledge Representation: Computational Foundations of Conceptual Graphs; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Sowa, J.F. Knowledge Representation: Logical, Philosophical and Computational Foundations; Brooks/Cole Publishing Co.: Pacific Grove, CA, USA, 1999. [Google Scholar]
- Lauser, B.; Sini, M.; Liang, A.; Keizer, J.; Katz, S. From AGROVOC to the agricultural ontology service/concept server. An OWL model for creating ontologies in the agricultural domain. In Proceedings of the Dublin Core Conference, Manzanillo, Mexico, 3–6 October 2006. [Google Scholar]
- Vrandečić, D. Ontology evaluation. In Handbook on Ontologies; Springer: Berlin/Heidelberg, Germany, 2009; pp. 293–313. [Google Scholar]
- Obrst, L.; Ceusters, W.; Mani, I.; Ray, S.; Smith, B. The evaluation of ontologies. In Semantic Web; Springer: Berlin/Heidelberg, Germany, 2007; pp. 139–158. [Google Scholar]
- Gruber, T.R. Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum.-Comput. Stud. 1995, 43, 907–928. [Google Scholar] [CrossRef]
- Holsapple, C.W.; Joshi, K.D. A knowledge management ontology. In Handbook on Knowledge Management 1; Springer: Berlin/Heidelberg, Germany, 2004; pp. 89–124. [Google Scholar]
- Heiler, S. Semantic interoperability. ACM Comput. Surv. (CSUR) 1995, 27, 271–273. [Google Scholar] [CrossRef]
- Heflin, J.; Hendler, J. Semantic Interoperability on the Web; Technical report; Maryland Univ College Park Dept of Computer Science: College Park, MD, USA, 2000. [Google Scholar]
- Sharda, R.; Barr, S.H.; McDonnell, J.C. Decision support system effectiveness: A review and an empirical test. Manag. Sci. 1988, 34, 139–159. [Google Scholar] [CrossRef]
- FAO. AGROVOC: Multilingual Agricultural Thesaurus; FAO: Rome, Italy, 1995. [Google Scholar]
- CAAS. Chinese Academy of Agricultural Sciences, Agricultural Thesaurus; Chinese Agricultural Press: Beijing, China, 1994. [Google Scholar]
- Liang, A.C.; Sini, M. Mapping AGROVOC and the Chinese agricultural thesaurus: Definitions, tools, procedures. New Rev. Hypermedia Multimed. 2006, 12, 51–62. [Google Scholar] [CrossRef]
- Chun, C.; Wenlin, L. The translation of agricultural multilingual thesaurus. In Proceedings of the Third Asian Conference for Information Technology in Agriculture, Beijing, China, 26–28 October 2002; pp. 526–528. [Google Scholar]
- Hu, S.; Wang, H.; She, C.; Wang, J. AgOnt: Ontology for agriculture internet of things. In Proceedings of the International Conference on Computer and Computing Technologies in Agriculture, Nanchang, China, 22–25 October 2010; pp. 131–137. [Google Scholar]
- Rehman, A.u.; Shaikh, Z.A. ONTAgri: Scalable service oriented agriculture ontology for precision farming. In Proceedings of the 2011 International Conference on Agricultural and Biosystems Engineering (ICABE 2011). Advances in Biomedical Engineering, Hong Kong, China, 20–21 February 2011; pp. 411–413. [Google Scholar]
- Jonquet, C. AgroPortal: An ontology repository for agronomy. In Proceedings of the EFITA WCCA Congress, Montpellier, France, 2–6 July 2017. [Google Scholar]
- Matteis, L.; Chibon, P.Y.; Espinosa, H.; Skofic, M.; Finkers, H.; Bruskiewich, R.; Hyman, J.; Arnoud, E. Crop ontology: Vocabulary for crop-related concepts. In Proceedings of the First International Workshop on Semantics for Biodiversity, Montpellier, France, 27 May 2013. [Google Scholar]
- Farrow, A. AgTrials—An Example of Open Data and Open Access in the CGIAR Consortium for Spatial Information; International Center for Tropical Agriculture: Cali, Colombia, 2015. [Google Scholar]
- Urkude, G.; Pandey, M. AgriOn: A comprehensive ontology for Green IoT based agriculture. J. Green Eng. 2020, 10, 7078–7101. [Google Scholar]
- Jinhui, X.; Yong, Y.; Zhifeng, Y.; Shuyan, W. An online system for agricultural ontology service. In Proceedings of the 2010 Third International Conference on Intelligent Networks and Intelligent Systems, Shenyang, China, 1–3 November 2010; pp. 479–481. [Google Scholar]
- Alfred, R.; Chin, K.O.; Anthony, P.; San, P.W.; Im, T.L.; Leong, L.C.; Soon, G.K. Ontology-based query expansion for supporting information retrieval in agriculture. In Proceedings of the 8th International Conference on Knowledge Management in Organizations; Springer: Berlin/Heidelberg, Germany, 2014; pp. 299–311. [Google Scholar]
- Kang, J.C.; Gao, J.L. Application of ontology technology in agricultural information retrieval. In Proceedings of the Advanced Materials Research. Trans. Tech. Publ. 2013, 756, 1249–1253. [Google Scholar]
- Naidoo, N.; Lawton, S.; Ramnanan, M.; Fonou-Dombeu, J.V.; Gowda, R. Modelling Climate Smart Agriculture with Ontology. In Proceedings of the 2021 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), Durban, South Africa, 5–6 August 2021; pp. 1–9. [Google Scholar]
- Roy, N.R.; Masud, A.A. An Ontology Based Approach for Information Retrieval in Agriculture; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Samarasinghe, S.; Walisadeera, A.; Goonetillake, M. User-friendly ontology structure maintenance mechanism targeting Sri Lankan agriculture domain. In Proceedings of the International Conference on Computational Science and Its Applications, Beijing, China, 4–7 July 2016; pp. 24–39. [Google Scholar]
- Abrahão, E.; Hirakawa, A.R. Task ontology modeling for technical knowledge representation in agriculture field operations domain. In Proceedings of the 2017 Second International Conference on Information Systems Engineering (ICISE), Charleston, SC, USA, 1–3 April 2017; pp. 12–16. [Google Scholar]
- Patton, E.W.; Seyed, P.; Wang, P.; Fu, L.; Dein, F.J.; Bristol, R.S.; McGuinness, D.L. SemantEco: A semantically powered modular architecture for integrating distributed environmental and ecological data. Future Gener. Comput. Syst. 2014, 36, 430–440. [Google Scholar] [CrossRef]
- Ma, X.; Zheng, J.G.; Goldstein, J.C.; Zednik, S.; Fu, L.; Duggan, B.; Aulenbach, S.M.; West, P.; Tilmes, C.; Fox, P. Ontology engineering in provenance enablement for the National Climate Assessment. Environ. Model. Softw. 2014, 61, 191–205. [Google Scholar] [CrossRef]
- Bonacin, R.; Nabuco, O.F.; Junior, I.P. Ontology models of the impacts of agriculture and climate changes on water resources: Scenarios on interoperability and information recovery. Future Gener. Comput. Syst. 2016, 54, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Goumopoulos, C.; Kameas, A.D.; Cassells, A. An ontology-driven system architecture for precision agriculture applications. Int. J. Metadata, Semant. Ontol. 2009, 4, 72–84. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y. Citrus ontology development based on the eight-point charter of agriculture. Comput. Electron. Agric. 2018, 155, 359–370. [Google Scholar] [CrossRef]
- Lin, L.; Di, L.; Guo, L.; Zhang, C.; Yu, E.; Hao, P.; Zhao, H. Developing a Semantic Irrigation Ontology to Support WaterSmart System: A Demonstration of Reducing Water and Energy Consumption in Nebraska. In Proceedings of the American Geophysical Union, Fall Meeting 2020, San Francisco, DA, USA, 1–17 December 2020; Volume 2020, p. GC053-0004. [Google Scholar]
- Zheng, Y.L.; He, Q.Y.; Ping, Q.; Ze, L. Construction of the ontology-based agricultural knowledge management system. J. Integr. Agric. 2012, 11, 700–709. [Google Scholar] [CrossRef]
- Beck, H.; Papajorgji, P. A Database for Extension Publications. In Proceedings of the World Congress of Computers in Agriculture and Natural Resources, Iguacu Falls, Brazil, 13–15 March 2002; p. 629. [Google Scholar]
- Beck, H.W.; Kim, S.; Hagan, D. A crop-pest ontology for extension publications. In Proceedings of the EFITA/WCCA 2005, Vila Real, Portugal, 25–28 July 2005; pp. 1169–1176. [Google Scholar]
- Damos, P. Modular structure of web-based decision support systems for integrated pest management. A review. Agron. Sustain. Dev. 2015, 35, 1347–1372. [Google Scholar] [CrossRef] [Green Version]
- Chougule, A.; Jha, V.K.; Mukhopadhyay, D. Adaptive ontology construction method for crop pest management. In Proceedings of the International Conference on Data Engineering and Communication Technology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 665–674. [Google Scholar]
- Rodríguez-García, M.Á.; García-Sánchez, F. CropPestO: An Ontology Model for Identifying and Managing Plant Pests and Diseases. In Proceedings of the International Conference on Technologies and Innovation; Springer: Berlin/Heidelberg, Germany, 2020; pp. 18–29. [Google Scholar]
- Lacasta, J.; Lopez-Pellicer, F.J.; Espejo-García, B.; Nogueras-Iso, J.; Zarazaga-Soria, F.J. Agricultural recommendation system for crop protection. Comput. Electron. Agric. 2018, 152, 82–89. [Google Scholar] [CrossRef]
- Lagos-Ortiz, K.; Salas-Zárate, M.d.P.; Paredes-Valverde, M.A.; García-Díaz, J.A.; Valencia-Garcia, R. AgriEnt: A knowledge-based web platform for managing insect pests of field crops. Appl. Sci. 2020, 10, 1040. [Google Scholar] [CrossRef] [Green Version]
- Chougule, A.; Jha, V.K.; Mukhopadhyay, D. Ontology based system for pests and disease management of grapes in India. In Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February 2016; pp. 133–138. [Google Scholar]
- Kumar, A.; Sarkar, S.; Pradhan, C. Recommendation system for crop identification and pest control technique in agriculture. In Proceedings of the 2019 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, Tamil Nadu, India, 4–6 April 2019; pp. 185–189. [Google Scholar]
- Wilson, R.; Indika, W.; Goonetillake, M. Enhanced Agriculture Ontology with Images to Effectively Retrieve Pest and Disease Knowledge. In Proceedings of the 8th Ruhuna International Science & Technology Conference; University of Ruhuna: Matara, Sri Lanka, 2021. [Google Scholar]
- Yue, J.; Wei, Y.; XinMeng, C.; Wen, H.; Zhang, X.; Fu, Z. Ontology based vegetable supply chain knowledge expressing. In Proceedings of the 2005 First International Conference on Semantics, Knowledge and Grid, Beijing, China, 27–29 November 2005; p. 130. [Google Scholar]
- TAO, T.y.; Ming, Z. An ontology-based information retrieval model for vegetables e-commerce. J. Integr. Agric. 2012, 11, 800–807. [Google Scholar] [CrossRef]
- Pizzuti, T.; Mirabelli, G. FTTO: An example of food ontology for traceability purpose. In Proceedings of the 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), Berlin, Germany, 12–14 September 2013; Volume 1, pp. 281–286. [Google Scholar]
- Tian, T.; Liu, Y.; Yan, H.; You, Q.; Yi, X.; Du, Z.; Xu, W.; Su, Z. agriGO v2. 0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017, 45, W122–W129. [Google Scholar] [CrossRef] [Green Version]
- Campbell, H.; Rosin, C. After the ‘organic industrial complex’: An ontological expedition through commercial organic agriculture in New Zealand. J. Rural Stud. 2011, 27, 350–361. [Google Scholar] [CrossRef]
- Sánchez-Alonso, S.; Sicilia, M.A. Using an AGROVOC-based ontology for the description of learning resources on organic agriculture. In Metadata and Semantics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 481–492. [Google Scholar]
- Abayomi-Alli, A.A.; Misra, S.; Akala, M.O.; Ikotun, A.M.; Ojokoh, B.A. An ontology-based information extraction system for organic farming. Int. J. Semant. Web Inf. Syst. 2021, 17, 79–99. [Google Scholar] [CrossRef]
- Sánchez-Alonso, S.; Cáceres, J.; Holm, A.S.; Lieblein, G.; Breland, T.A.; Mills, R.A.; Manouselis, N. Engineering an ontology on organic agriculture and agroecology: The case of the Organic. Edunet project. In Proceedings of the World Conference on Agricultural Information and IT (IAALD AFITA WCCA 2008), Tokyo, Japan, 24–27 August 2008; pp. 24–27. [Google Scholar]
- Manouselis, N.; Kastrantas, K.; Sanchez-Alonso, S.; Cáceres, J.; Ebner, H.; Palmer, M. Architecture of the Organic. Edunet web portal. Int. J. Web Portals 2009, 1, 71–91. [Google Scholar] [CrossRef] [Green Version]
- Pakdeetrakulwong, U.; Hengpraprohm, K. An Ontology-based Knowledge Management for Organic Agriculture and Good Agricultural Practices: A Case Study of Nakhon Pathom Province, Thailand. Interdiscip. Res. Rev. 2018, 13, 26–34. [Google Scholar]
- Pouteau, S. The plantness of the plant: How to address crop ontology in organic agriculture? In Proceedings of the World Congress OWC 2021, Rennes, France, 6–10 September 2021.
- Bhuyan, B.P.; Tomar, R.; Gupta, M.; Ramdane-Cherif, A. An Ontological Knowledge Representation for Smart Agriculture. In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021; pp. 3400–3406. [Google Scholar]
- Titiya, M.D.; Shah, V.A. Ontology based expert system for pests and disease management of cotton crop in India. Int. J. Web Portals 2018, 10, 32–49. [Google Scholar] [CrossRef]
- Shankhdhar, G.K.; Sharma, R.; Darbari, M. SAGRO-Lite: A Light Weight Agent Based Semantic Model for the Internet of Things for Smart Agriculture in Developing Countries. In Semantic IoT: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 265–302. [Google Scholar]
- Soergel, D.; Lauser, B.; Liang, A.; Fisseha, F.; Keizer, J.; Katz, S. Reengineering thesauri for new applications: The AGROVOC example. J. Digit. Inf. 2004, 4, 1–23. [Google Scholar]
- Fergerson, R.W.; Alexander, P.R.; Dorf, M.; Gonçalves, R.S.; Salvadores, M.; Skrenchuk, A.; Vendetti, J.; Musen, M.A. NCBO BioPortal version 4. In Proceedings of the ICBO, Lisbon, Portugal, 27–30 July 2015. [Google Scholar]
- Tomic, D.; Drenjanac, D.; Hoermann, S.; Auer, W. Experiences with creating a precision dairy farming ontology (DFO) and a knowledge graph for the data integration platform in agriOpenLink. J. Agric. Inform. 2015, 6, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Saraswathi, D.; Manibharathy, P.; Gokulnath, R.; Sureshkumar, E.; Karthikeyan, K. Automation of hydroponics green house farming using IoT. In Proceedings of the 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA), Pondicherry, India, 6–7 July 2018; pp. 1–4. [Google Scholar]
- Lenord Melvix, J.S.M.; Sridevi, C. Design of efficient hydroponic nutrient solution control system using soft computing based solution grading. In Proceedings of the 2014 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), Chennai, India, 16–17 April 2014; pp. 148–154. [Google Scholar]
- Phutthisathian, A.; Pantasen, N.; Maneerat, N. Ontology-based nutrient solution control system for hydroponics. In Proceedings of the 2011 First International Conference on Instrumentation, Measurement, Computer, Communication and Control; IEEE Computer Society: Washington, DC, USA, 2011; pp. 258–261. [Google Scholar]
- Trejo-Téllez, L.I.; Gómez-Merino, F.C. Nutrient solutions for hydroponic systems. In Hydroponics—A Standard Methodology for Plant Biological Researches; InTech: Rijeka, Croatia, 2012; pp. 1–22. [Google Scholar]
- Sonneveld, C.; Voogt, W. Plant nutrition in future greenhouse production. In Plant Nutrition of Greenhouse Crops; Springer: Berlin/Heidelberg, Germany, 2009; pp. 393–403. [Google Scholar]
- Ferentinos, K.; Albright, L. Predictive neural network modeling of pH and electrical conductivity in deep–trough hydroponics. Trans. ASAE 2002, 45, 2007. [Google Scholar] [CrossRef] [Green Version]
- Samarakoon, U.; Weerasinghe, P.; Weerakkody, W. Effect of electrical conductivity (EC) of the nutrient solution on nutrient uptake, growth and yield of leaf lettuce (Lactuca sativa L.) in stationary culture. Trop. Agric. Res. 2006, 18, 13–21. [Google Scholar]
- Jäger, M.; Nadschläger, S.; Phan, T.N.; Küng, J. Data, information & knowledge sources in the agricultural domain. In Proceedings of the 2015 26th International Workshop on Database and Expert Systems Applications (DEXA), Valencia, Spain, 1–4 September 2015; pp. 115–119. [Google Scholar]
- Wu, Z. The Development of Socialist Agriculture in China. Technical Report. 1979. Available online: https://ideas.repec.org/p/ags/iaae79/182390.html (accessed on 8 September 2022).
- Tudorache, T.; Vendetti, J.; Noy, N.F. Web-Protege: A Lightweight OWL Ontology Editor for the Web. In Proceedings of the OWLED, Karlsruhe, Germany, 26–27 October 2008; Volume 432, p. 2009. [Google Scholar]
- Glimm, B.; Horrocks, I.; Motik, B.; Stoilos, G.; Wang, Z. HermiT: An OWL 2 reasoner. J. Autom. Reason. 2014, 53, 245–269. [Google Scholar] [CrossRef]
- Musen, M.A. The protégé project: A look back and a look forward. AI Matters 2015, 1, 4–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thunkijjanukij, A.; Kawtrakul, A.; Panichsakpatana, S.; Veesommai, U. Ontology development: A case study for thai rice. Agric. Nat. Resour. 2009, 43, 594–604. [Google Scholar]
- Afzal, H.; Kasi, M.K. Ontology-based knowledge modeling for rice crop production. In Proceedings of the 2019 7th International Conference on Future Internet of Things and Cloud (FiCloud), Istanbul, Turkey, 26–28 August 2019; pp. 343–350. [Google Scholar]
- Afzal, H.; Kasi, M.K.; Kasi, B.; Naeem, B.; Sami, S.K. An Ontology-Driven Decision Support System for Rice Crop Production. J. Appl. Emerg. Sci. 2021, 11, 85. [Google Scholar]
- Friedman-Hill, E. Jess, the Rule Engine for the Java Platform. Sandia National Laboratories. 2008. Available online: http://alvarestech.com/temp/fuzzyjess/Jess60/Jess70b7/docs/index.html (accessed on 8 September 2022).
- Manning, C.D.; Surdeanu, M.; Bauer, J.; Finkel, J.R.; Bethard, S.; McClosky, D. The Stanford CoreNLP natural language processing toolkit. In Proceedings of the 52nd annual meeting of the association for computational linguistics: System demonstrations, Baltimore, MD, USA, 23–24 June 2014; pp. 55–60. [Google Scholar]
- Finlayson, M. Java libraries for accessing the princeton wordnet: Comparison and evaluation. In Proceedings of the Seventh Global Wordnet Conference, Tartu, Estonia, 25–29 January 2014; pp. 78–85. [Google Scholar]
- Nousala, S.; Galindo, K.B.; Romero, D.; Feng, X.; Aibeo, P. Systemic preconditions and ontological modeling for peri-urban communities. J. Cult. Herit. Manag. Sustain. Dev. 2020, 11, 3. [Google Scholar] [CrossRef]
- Vergara-Lozano, V.; Medina-Moreira, J.; Rochina, C.; Garzón-Goya, M.; Sinche-Guzmán, A.; Bucaram-Leverone, M. An ontology-based decision support system for the management of home gardens. In Proceedings of the International Conference on Technologies and Innovation; Springer: Berlin/Heidelberg, Germany, 2017; pp. 47–59. [Google Scholar]
- Bougnom, B.P.; Zongo, C.; McNally, A.; Ricci, V.; Etoa, F.X.; Thiele-Bruhn, S.; Piddock, L.J. Wastewater used for urban agriculture in West Africa as a reservoir for antibacterial resistance dissemination. Environ. Res. 2019, 168, 14–24. [Google Scholar] [CrossRef]
- Farhangi, M.; Farhangi, S.; van de Vlasakker, P.C.; Carsjens, G.J. The role of urban agriculture technologies in transformation toward participatory local urban planning in rafsanjan. Land 2021, 10, 830. [Google Scholar] [CrossRef]
- Barramou, F.; Mansouri, K.; Addou, M. Toward a Multi-Dimensional Ontology Model for Urban Planning. J. Geogr. Inf. Syst. 2020, 12, 697–715. [Google Scholar] [CrossRef]
- Lyytinen, K.; Yoo, Y. Ubiquitous computing. Commun. ACM 2002, 45, 63–96. [Google Scholar]
- Sivamani, S.; Bae, N.J.; Shin, C.S.; Park, J.W.; Cho, Y.Y. An OWL-based ontology model for intelligent service in vertical farm. In Advances in Computer Science and Its Applications; Springer: Berlin/Heidelberg, Germany, 2014; pp. 327–332. [Google Scholar]
- Sivamani, S.; Bae, N.; Cho, Y. A smart service model based on ubiquitous sensor networks using vertical farm ontology. Int. J. Distrib. Sens. Netw. 2013, 9, 161495. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Bae, N.; Lee, M.; Shin, C.; Park, J.; Cho, Y. A study of an agricultural ontology model for an intelligent service in a vertical farm. Int. J. Smart Homes 2013, 7, 117–125. [Google Scholar]
- Liu, Q. Construction of Urban Agriculture Ontology Oriented to Digital Humanities. Libr. J. 2019, 38, 53–58. [Google Scholar]
- Shamshiri, R.; Kalantari, F.; Ting, K.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Shad, Z.M. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 1–22. [Google Scholar] [CrossRef]
- Farhangi, M.H.; Turvani, M.E.; van der Valk, A.; Carsjens, G.J. High-tech urban agriculture in Amsterdam: An actor network analysis. Sustainability 2020, 12, 3955. [Google Scholar] [CrossRef]
- Borghini, A.; Piras, N.; Serini, B. Ontological frameworks for food utopias. Riv. Estet. 2020, 75, 120–142. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Wang, J.; Yuan, Y.; Zhang, Z. An ontology-based approach to integration of hilly citrus production knowledge. Comput. Electron. Agric. 2015, 113, 24–43. [Google Scholar] [CrossRef]
- Yang, N.; Choi, H.S.; Rhee, W.S. Development of the Cross-vertical Ontology for Context Aware Service in Various IoT Environment. J. Korea Contents Assoc. 2015, 15, 58–73. [Google Scholar] [CrossRef] [Green Version]
- Mazzetto, F.; Gallo, R.; Riedl, M.; Sacco, P. Proposal of an ontological approach to design and analyse farm information systems to support Precision Agriculture techniques. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 275, p. 012008. [Google Scholar]
- Mazac, R.; Tuomisto, H.L. The post-anthropocene diet: Navigating future diets for sustainable food systems. Sustainability 2020, 12, 2355. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, R.; Martinez, P.; Ahmad, R. An ontology model to support the automated design of aquaponic grow beds. Procedia CIRP 2021, 100, 55–60. [Google Scholar] [CrossRef]
- Sreedevi, T.; Kumar, M.S. Digital Twin in Smart Farming: A categorical literature review and exploring possibilities in hydroponics. In Proceedings of the 2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), Kerala, India, 2–4 July 2020; pp. 120–124. [Google Scholar]
- Sunguroğlu Hensel, D. Ecological prototypes: Initiating design innovation in green construction. Sustainability 2020, 12, 5865. [Google Scholar] [CrossRef]
- Hosseinifarhangi, M.; Turvani, M.E.; van der Valk, A.; Carsjens, G.J. Technology-driven transition in urban food production practices: A case study of Shanghai. Sustainability 2019, 11, 6070. [Google Scholar] [CrossRef] [Green Version]
- Modu, F.; Adam, A.; Aliyu, F.; Mabu, A.; Musa, M. A survey of smart hydroponic systems. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 233–248. [Google Scholar] [CrossRef] [Green Version]
- Adjali, O.; Ramdane-Cherif, A. Knowledge processing using ekrl for robotic applications. Int. J. Cogn. Inform. Nat. Intell. 2017, 11, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.; Ramdane-Cherif, A. Semantic framework to enhance human-robot interaction using EKRL. In Proceedings of the 2017 IEEE 16th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Oxford, UK, 26–28 July 2017; pp. 503–512. [Google Scholar]
- Fortune, S.; Leivant, D.; O’Donnell, M. The expressiveness of simple and second-order type structures. J. ACM 1983, 30, 151–185. [Google Scholar] [CrossRef]
- Adjali, O. Dynamic Architecture for Multimodal Applications to reinforce Robot-Environment Interaction. Ph.D. Thesis, Université Paris-Saclay (ComUE), Gif-sur-Yvette, France, 2017. [Google Scholar]
- Gerevini, A.; Nebel, B. Qualitative spatio-temporal reasoning with RCC-8 and Allen’s interval calculus: Computational complexity. In Proceedings of the ECAI, Lyon, France, 21–26 July 2002; Volume 2, pp. 312–316. [Google Scholar]
Papers | Geo | Domain | Method | Space–Time | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Go | Co | G | W | A | P | F | Pe | Fr | V | O | C | SV | KE | I | DS | S | T | |
AGROVOC [47] | x | x | x | x | x | x | ||||||||||||
CAT [48] | x | x | x | x | ||||||||||||||
AGROVOC + CAT [49,50] | x | x | x | x | x | x | ||||||||||||
AgOnt [51] | x | x | x | x | x | x | ||||||||||||
ONTAgri [52] | x | x | x | x | x | x | ||||||||||||
Agroportal [53] | x | x | x | x | x | x | ||||||||||||
Crop Ontology [54] | x | x | x | x | ||||||||||||||
AgTrials [55] | x | x | x | x | ||||||||||||||
AgriOn [56] | x | x | x | x | x | x | ||||||||||||
AOS [57] | x | x | x | x | ||||||||||||||
Alfred et al. [58] | x | x | x | |||||||||||||||
Kang et al. [59] | x | x | x | |||||||||||||||
Naidoo et al. [60] | x | x | x | |||||||||||||||
Roy et al. [61] | x | x | x | x | ||||||||||||||
Samarasinghe et al. [62] | x | x | x | x | x | x | ||||||||||||
Hirakawa et al. [63] | x | x | x | x | x | |||||||||||||
SemantEco [64] | x | x | x | x | ||||||||||||||
Ma et al. [65] | x | x | x | x | ||||||||||||||
OntoAgroHidro [66] | x | x | x | x | x | x | x | |||||||||||
PLANTS [67] | x | x | x | x | x | |||||||||||||
Wang et al. [68] | x | x | x | |||||||||||||||
Lin et al. [69] | x | x | x | |||||||||||||||
Zheng et al. [70] | x | x | x | |||||||||||||||
EDIS [71] | x | x | x | x | ||||||||||||||
Beck et al. [72] | x | x | x | x | x | |||||||||||||
Damos et al. [73] | x | x | x | x | x | |||||||||||||
Chougule et al. [74] | x | x | x | |||||||||||||||
CropPestO [75] | x | x | x | |||||||||||||||
PCT-O [76] | x | x | x | |||||||||||||||
AgriEnt [77] | x | x | x | x | ||||||||||||||
Jha et al. [78] | x | x | x | x | x | |||||||||||||
Kumar et al. [79] | x | x | x | x | ||||||||||||||
Wilson et al. [80] | x | x | x | x | x | x | x | |||||||||||
Yue et al. [81] | x | x | x | |||||||||||||||
TAO et al. [82] | x | x | x | x | ||||||||||||||
FTTO [83] | x | x | x | |||||||||||||||
Samarasinghe et al. [62] | x | x | x | |||||||||||||||
AgriGO [84] | x | x | x | x | ||||||||||||||
Campbell et al. [85] | x | x | ||||||||||||||||
Sicilia et al. [86] | x | x | x | x | ||||||||||||||
Abayomi et al. [87] | x | x | x | x | x | |||||||||||||
Alonso et al. [88] | x | x | ||||||||||||||||
Manouselis et al. [89] | x | x | x | |||||||||||||||
Pakdeetrakul et al. [90] | x | x | x | |||||||||||||||
Pouteau et al. [91] | x | x | x | |||||||||||||||
Bhuyan et al. [92] | x | x | x | x | x | x | ||||||||||||
Titiya et al. [93] | x | x | x | x | ||||||||||||||
SAGRO-Lite [94] | x | x | x | x |
Authors (Ref.) | Year | Results |
---|---|---|
AGROVOC [47] | 1995 | Produced by FAO, it is the largest semantic resource, with a collection of 40,000 concepts and 931,700 words available in a total of 41 other languages. |
AGROVOC + CAT [49,50] | 2006 | Combination of the two resulted in creating 40 classes for crop classification decision making procedures, with more than 63,000 concepts created in the process. |
AgOnt [51] | 2010 | Sensor-transmitted data vocabulary, which provides a strong basis for the integration of disparate agricultural information systems. |
ONTAgri [52] | 2011 | Service-oriented ontology with the help of System and Domain ontologies, which are farther divided into various concepts. |
Agroportal [53] | 2017 | Defines not only where food comes from, but also how it is packaged and preserved, among other meta-properties. |
Crop Ontology [54] | 2013 | Developed by CGIAR, used in combination with the Gene Ontology and the Trait Ontology. |
AgTrials [55] | 2015 | Depends on the Crop Ontology initiative to standardise and interoperate data in order to deliver open trial data. World’s first multi-crop platform for freely storing, organising, and enabling access to crop trial data. |
AOS [57] | 2010 | Organising and supplying agricultural vocabulary, nomenclature, and information transfer standards in many languages for use by a variety of systems. |
Alfred et al. [58] | 2014 | Examines a wide range of research on query extension and ontologies for agricultural applications, as well as their implications. |
Kang et al. [59] | 2013 | Presents the field of agricultural ontology and information retrieval research, as well as the research object, which is agricultural domain knowledge. |
Naidoo et al. [60] | 2021 | Climate-smart agriculture to reduce the effect of global warming on the environment. |
Roy et al. [61] | 2020 | Collect semantically connected information that matches the expectations of the user while assisting in dealing with a variety of data sources and addressing the information retrieval concerns. |
Hirakawa et al. [63] | 2017 | Combined with the domain ontology, the model is used to build an agricultural application ontology. A case study was utilised to evaluate the model’s consistency for sugar cane harvesting. |
SemantEco [64] | 2014 | Possible for data managers to add or remove modules to fit their individual data requirements, which means that the system may expand and adapt as their requirements change. |
OntoAgroHidro [66] | 2016 | This study is concerned with the establishment of a network for the sharing and retrieval of information on the impact of climate change and agriculture on water resources. |
PLANTS [67] | 2009 | Presented an ontology-driven framework for creating precision agriculture applications. It employs ontology alignment to make the system more accessible and flexible to other systems created for different environments and needs. |
Wang et al. [68] | 2018 | Based on the Chinese Eight-Point Charter of Agriculture. The ontology is validated using the 110-question competency test, which was 88% accurate. |
Zheng et al. [70] | 2012 | Ontology-based agricultural information management system to enable the exchange and administration of knowledge in the areas of business intelligence and simulation. |
EDIS [71] | 2002 | Developing, distributing, and preserving an extensive library of extension publications using an automated method. |
Beck et al. [72] | 2005 | Used to provide a classification mechanism for articles inside the EDIS system. |
Damos et al. [73] | 2015 | Integrated pest management is being investigated for web-based decision support systems. |
CropPestO [75] | 2020 | Describes the processes that must be followed when developing an ontology in the area of plant pests and diseases applications. |
PCT-O [76] | 2018 | In order to make pest detection and treatment selection information more accessible, recommendation systems for pest detection and treatment selection are being developed. |
AgriEnt [77] | 2020 | Knowledge-based Web platform designed to assist farmers in the identification and control of agricultural insect pests. |
Kumar et al. [79] | 2019 | Recommendation system for crop identification and pest control. |
Yue et al. [81] | 2005 | Ontology as a technique of representing information in the vegetable supply chain, as well as a data representation framework for expressing data. |
TAO et al. [82] | 2012 | Information retrieval model based on the veggies e-commerce ontology that may be utilised to improve the recall ratio and precision radio of information retrieval engines that are used in online vegetable sales. |
FTTO [83] | 2013 | Food ontology developed for the traceability domain. In order to examine and validate ontologies, it has been feasible to utilise the Pellet reasoner from Protégé as an external plug-in. |
Sicilia et al. [86] | 2009 | With the help of AGROVOC, the authors tried to give an ontological structure to cases in organic agriculture, namely fertilisers. |
Abayomi et al. [87] | 2021 | Using the protégé editor, a knowledge base of ontologies was created, as well as a high-level application programming language for developing a web-based ontology language application programme interface. The ontology knowledge base was created using the Java programming language (OWL API). |
Alonso et al. [88] | 2008 | Organic agriculture and agroecology are handled, which address the ontology needs of the Organic project for these fields. |
Manouselis et al. [89] | 2009 | This research looks at the use of Semantic Web technologies to aid the sharing and reuse of learning materials for organic use case. |
Bhuyan et al. [92] | 2021 | Use of a lattice structure for knowledge representation of data acquired from Internet of Things devices is being considered. Spatial–temporal data are utilised to construct a lattice structure. |
Authors (Ref.) | Year | Results |
---|---|---|
CAT [48] | 1994 | Thesaurus for agricultural terms in Chinese. |
AgriOn [56] | 2020 | Developed in context to building up agricultural knowledge via the concept of reuse for a particular region. |
Samarasinghe et al. [62] | 2016 | Purpose is to update the ontology structure while still retaining its real-time consistency in Sri Lankan agriculture. |
Ma et al. [65] | 2014 | Increase understanding, credibility, and trust in climate change research. |
Lin et al. [69] | 2020 | Collects data from a number of sources in order to aid farmers in making better irrigation choices |
Chougule et al. [74] | 2017 | Extract keywords from text files by using keyphrase extraction procedures and AGROVOC thesaurus comparisons, among other techniques. |
Jha et al. [78] | 2016 | Current weather conditions at a grape field are extracted, preserving it as an OWL document results in the creation of a knowledge base for pests and illnesses. |
Wilson et al. [80] | 2021 | User-centred ontology for Sri Lanka, which represented domain knowledge such as crop types and pests, diseases, and fertilisers was developed with accompanying meta-information such as images, videos, and notes included. |
Samarasinghe et al. [62] | 2016 | Simple approach for adding new information into ontologies. |
AgriGO [84] | 2017 | Analysis toolkit for the agricultural community. |
Campbell et al. [85] | 2011 | Using two New Zealand research programmes’ expanding understandings of commercial organic agriculture, three problematic claims and framings supporting the study of commercial organic agriculture are examined. |
Pakdeetrakul et al. [90] | 2018 | Ontology-based knowledge management approach used in the agricultural sector in order to facilitate the integration of heterogeneous data on organic agriculture in Nakhon Pathom Province. |
Pouteau et al. [91] | 2021 | Principles of plant labour as an effective method to establish a shared vocabulary and to include community participation into an overarching organic agriculture. |
Titiya et al. [93] | 2018 | These are the three key components: Cotton Ontology, Web services, and mobile application development. |
SAGRO-Lite [94] | 2021 | Low-weight ontology created for particular agricultural traits in disadvantaged countries |
Papers | Year | Geography | Method | Space-Time | |||||
---|---|---|---|---|---|---|---|---|---|
Go | Co | SV | KE | I | DS | S | T | ||
Qianning et al. [125] | 2019 | x | |||||||
Nousala et al. [116] | 2020 | x | |||||||
Nyman et al. [116] | 2019 | x | |||||||
Shamshiri et al. [126] | 2018 | x | |||||||
Farhangi et al. [127] | 2020 | x | x | x | |||||
Vergara et al. [117] | 2017 | x | x | x | |||||
Bougnom et al. [118] | 2019 | x | x | x | |||||
Farhangi et al. [119] | 2021 | x | x | x | |||||
Barramou et al. [120] | 2020 | x | x | ||||||
Sivamani et al. [122] | 2014 | x | x | ||||||
VFO [123] | 2013 | x | x | x | |||||
AquaONT [122] | 2021 | x | x | x | |||||
Kim et al. [124] | 2013 | x | x | x | |||||
Borghini et al. [128] | 2020 | x | x | ||||||
Sivamani et al. [122] | 2014 | x | x | x | |||||
Afzal et al. [111] | 2014 | x | x | x | x | ||||
Afzal et al. [112] | 2021 | x | x | x | x | x | |||
Wang et al. [129] | 2015 | x | x | x | x | ||||
Tomic et al. [97] | 2015 | x | x | x | x | x | |||
Yang et al. [130] | 2015 | x | |||||||
Mazzetto et al. [131] | 2019 | x | |||||||
Mazac et al. [132] | 2020 | x | |||||||
Abbasi et al. [133] | 2021 | x | x | x | x | ||||
Sreedevi et al. [134] | 2021 | x | |||||||
Sunguroğlu et al. [135] | 2020 | x | |||||||
Hosseinifarhangi et al. [136] | 2019 | x | |||||||
Modu et al. [137] | 2020 | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhuyan, B.P.; Tomar, R.; Cherif, A.R. A Systematic Review of Knowledge Representation Techniques in Smart Agriculture (Urban). Sustainability 2022, 14, 15249. https://doi.org/10.3390/su142215249
Bhuyan BP, Tomar R, Cherif AR. A Systematic Review of Knowledge Representation Techniques in Smart Agriculture (Urban). Sustainability. 2022; 14(22):15249. https://doi.org/10.3390/su142215249
Chicago/Turabian StyleBhuyan, Bikram Pratim, Ravi Tomar, and Amar Ramdane Cherif. 2022. "A Systematic Review of Knowledge Representation Techniques in Smart Agriculture (Urban)" Sustainability 14, no. 22: 15249. https://doi.org/10.3390/su142215249
APA StyleBhuyan, B. P., Tomar, R., & Cherif, A. R. (2022). A Systematic Review of Knowledge Representation Techniques in Smart Agriculture (Urban). Sustainability, 14(22), 15249. https://doi.org/10.3390/su142215249