Health Consequences of Overexposure to Disinfectants and Self-Medication against SARS-CoV-2: A Cautionary Tale Review
Abstract
1. Introduction
2. Excessive Use of Disinfectants
2.1. Overexposure to Alcoholic Hand Sanitizers
2.1.1. Ethanol and Methanol Poisoning
2.1.2. Effects on Skin
2.1.3. Imbalance of Normal, Symbiotic Microbiota
2.1.4. Developing Alcohol-Resistant Microorganisms
2.2. Overexposure to Household Bleach Products
2.3. Excessive Use of Detergents
2.4. Alcohol Overdoses and Drug Abuse during Quarantines
2.5. Self-Administration of Dietary Supplements and Self-Medication
2.5.1. Dietary Supplements: Vitamins C and D, Zinc, and Selenium
2.5.2. Drugs and Medicinal Products
2.6. Self-Medication by Herbal Remedies
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jairoun, A.A.; Al-Hemyari, S.S.; Shahwan, M. The pandemic of COVID-19 and its implications for the purity and authenticity of alcohol-based hand sanitizers: The health risks associated with falsified sanitizers and recommendations for regulatory and public health bodies. Res. Soc. Adm. Pharm. 2021, 17, 2050–2051. [Google Scholar] [CrossRef]
- Watkins, J. Preventing a COVID-19 pandemic. Br. Med. J. Publ. Group 2020, 368, m810. [Google Scholar] [CrossRef]
- World Health Organization. Coronavirus Disease 2019 (COVID-19): Situation Report, 51; WHO: Geneva, Switzerland, 2020.
- World Health Organization. Water, Sanitation, Hygiene, and Waste Management for SARS-CoV-2, the Virus that Causes COVID-19: Interim Guidance, 29 July 2020; World Health Organization: Geneva, Switzerland, 2020.
- Gao, K.; Nguyen, D.D.; Chen, J.; Wang, R.; Wei, G.-W. Repositioning of 8565 existing drugs for COVID-19. J. Phys. Chem. Lett. 2020, 11, 5373–5382. [Google Scholar] [CrossRef]
- Scavone, C.; Brusco, S.; Bertini, M.; Sportiello, L.; Rafaniello, C.; Zoccoli, A.; Berrino, L.; Racagni, G.; Rossi, F.; Capuano, A. Current pharmacological treatments for COVID-19: What’s next? Br. J. Pharmacol. 2020, 177, 4813–4824. [Google Scholar] [CrossRef]
- Panyod, S.; Ho, C.-T.; Sheen, L.-Y. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. J. Tradit. Complement. Med. 2020, 10, 420–427. [Google Scholar] [CrossRef]
- Golin, A.P.; Choi, D.; Ghahary, A. Hand sanitizers: A review of ingredients, mechanisms of action, modes of delivery, and efficacy against coronaviruses. Am. J. Infect. Control 2020, 48, 1062–1067. [Google Scholar] [CrossRef]
- Gupta, M.K.; Lipner, S.R. Hand hygiene in preventing COVID-19 transmission. J. Am. Acad. Dermatol. 2020, 82, 1215–1216. [Google Scholar]
- Lebin, J.A.; Ma, A.; Mudan, A.; Smollin, C.G. Fatal ingestion of sodium chlorite used as hand sanitizer during the COVID-19 pandemic. Clin. Toxicol. 2021, 59, 265–266. [Google Scholar] [CrossRef]
- Soave, P.M.; Grassi, S.; Oliva, A.; Romanò, B.; Di Stasio, E.; Dominici, L.; Pascali, V.; Antonelli, M. Household disinfectant exposure during the COVID-19 pandemic: A retrospective study of the data from an Italian poison control center. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 1738–1742. [Google Scholar] [CrossRef] [PubMed]
- Overbeek, D.L.; Watson, C.J.; Castañeda, N.R.; Ganetsky, M. A geographically distinct case of fatal methanol toxicity from ingestion of a contaminated hand sanitizer product during the COVID-19 pandemic. J. Med. Toxicol. 2021, 17, 218–221. [Google Scholar] [CrossRef]
- Chary, M.A.; Overbeek, D.L.; Papadimoulis, A.; Sheroff, A.; Burns, M.M. Geospatial correlation between COVID-19 health misinformation and poisoning with household cleaners in the Greater Boston Area. Clin. Toxicol. 2021, 59, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Yip, L.; Bixler, D.; Brooks, D.E.; Clarke, K.R.; Datta, S.D.; Dudley, S., Jr.; Komatsu, K.K.; Lind, J.N.; Mayette, A.; Melgar, M.; et al. Serious adverse health events, including death, associated with ingesting alcohol-based hand sanitizers containing methanol—Arizona and New Mexico, May–June 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 1070. [Google Scholar] [CrossRef] [PubMed]
- McCulley, L.; Cheng, C.; Mentari, E.; Diak, I.-L.; Michele, T. Alcohol-based hand sanitizer exposures and effects on young children in the US during the COVID-19 pandemic. Clin. Toxicol. 2021, 59, 355–356. [Google Scholar] [CrossRef]
- Mushtaq, S.; Terzi, E.; Recalcati, S.; Salas-Alanis, J.C.; Amin, S.; Faizi, N. Cutaneous adverse effects due to personal protective measures during COVID-19 pandemic: A study of 101 patients. Int. J. Dermatol. 2021, 60, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, G.; Sinno-Tellier, S.; Puskarczyk, E.; Labadie, M.; von Fabeck, K.; Pélissier, F.; Nisse, P.; Paret, N.; Descatha, A.; Vodovar, D.; et al. Poisoning during the COVID-19 outbreak and lockdown: Retrospective analysis of exposures reported to French poison control centres. Clin. Toxicol. 2021, 59, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, G.; Sinno-Tellier, S.; Descatha, A. COVID-19: Home poisoning throughout the containment period. Lancet Public Health 2020, 5, e314. [Google Scholar] [CrossRef]
- Neufeld, M.; Lachenmeier, D.W.; Ferreira-Borges, C.; Rehm, J. Is alcohol an "Essential Good" during COVID-19? Yes, but only as a disinfectant! Alcohol. Clin. Exp. Res. 2020, 44, 1906–1909. [Google Scholar] [CrossRef] [PubMed]
- Shokoohi, M.; Nasiri, N.; Sharifi, H.; Baral, S.; Stranges, S. A syndemic of COVID-19 and methanol poisoning in Iran: Time for Iran to consider alcohol use as a public health challenge? Alcohol 2020, 87, 25–27. [Google Scholar] [CrossRef]
- Delirrad, M.; Mohammadi, A.B. New methanol poisoning outbreaks in Iran following COVID-19 pandemic. Alcohol Alcohol. 2020, 55, 347–348. [Google Scholar] [CrossRef]
- Soltaninejad, K. Methanol mass poisoning outbreak, a consequence of COVID-19 pandemic and misleading messages on social media. Int. J. Occup. Environ. Med. 2020, 11, 148. [Google Scholar] [CrossRef]
- Arasteh, P.; Pakfetrat, M.; Roozbeh, J. A surge in methanol poisoning amid COVID-19 pandemic: Why Is this occurring? Am. J. Med. Sci. 2020, 360, 201. [Google Scholar] [CrossRef] [PubMed]
- Hassanian-Moghaddam, H.; Zamani, N.; Kolahi, A.-A.; McDonald, R.; Hovda, K.E. Double trouble: Methanol outbreak in the wake of the COVID-19 pandemic in Iran—A cross-sectional assessment. Crit. Care 2020, 24, 402. [Google Scholar] [CrossRef] [PubMed]
- Sefidbakht, S.; Lotfi, M.; Jalli, R.; Moghadami, M.; Sabetian, G.; Iranpour, P. Methanol toxicity outbreak: When fear of COVID-19 goes viral. Emerg. Med. J. 2020, 37, 416. [Google Scholar] [CrossRef] [PubMed]
- Dear, K.; Grayson, L.; Nixon, R. Potential methanol toxicity and the importance of using a standardised alcohol-based hand rub formulation in the era of COVID-19. Antimicrob. Resist. Infect. Control 2020, 9, 129. [Google Scholar] [CrossRef]
- Dindarloo, K.; Aghamolaei, T.; Ghanbarnejad, A.; Turki, H.; Hoseinvandtabar, S.; Pasalari, H.; Ghaffari, H.R. Pattern of disinfectants use and their adverse effects on the consumers after COVID-19 outbreak. J. Environ. Health Sci. Eng. 2020, 18, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Babić, Ž.; Turk, R.; Macan, J. Toxicological aspects of increased use of surface and hand disinfectants in Croatia during the COVID-19 pandemic: A preliminary report. Arch. Ind. Hyg. Toxicol. 2020, 71, 261–264. [Google Scholar] [CrossRef]
- Yasseen Iii, A.; Weiss, D.; Remer, S.; Dobbin, N.; MacNeill, M.; Bogeljic, B.; Leong, D.; Wan, V.; Mosher, L.; Bélair, G.; et al. At-a-glance-Increases in exposure calls related to selected cleaners and disinfectants at the onset of the COVID-19 pandemic: Data from Canadian poison centres. Health Promot. Chronic Dis. Prev. Can. Res. Policy Pract. 2020, 41, 25. [Google Scholar]
- Himabindu, C.S.; Tanish, B.T.; Kumari, N.P.; Nayab, S.N. Hand sanitizers: Is over usage harmful? World J. Curr. Med. Pharm. Res. 2020, 2, 296–300. [Google Scholar] [CrossRef]
- Mahmood, A.; Eqan, M.; Pervez, S.; Alghamdi, H.A.; Tabinda, A.B.; Yasar, A.; Brindhadevi, K.; Pugazhendhi, A. COVID-19 and frequent use of hand sanitizers; human health and environmental hazards by exposure pathways. Sci. Total Environ. 2020, 742, 140561. [Google Scholar] [CrossRef] [PubMed]
- Pressman, P.; Clemens, R.; Sahu, S.; Hayes, A.W. A review of methanol poisoning: A crisis beyond ocular toxicology. Cutan. Ocul. Toxicol. 2020, 39, 173–179. [Google Scholar] [CrossRef]
- Emami, A.; Javanmardi, F.; Keshavarzi, A.; Pirbonyeh, N. Hidden threat lurking behind the alcohol sanitizers in COVID-19 outbreak. Dermatol. Ther. 2020, 33, e13627. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Ualiyeva, D.; Sapkota, S.; Khan, A.; Noor, Z.; Amissah, O.B.; Ahmad, U.; Zaman, N. The Potential Risk to Children Associated with Excessive use of Disinfectant Against Coronavirus Disease (COVID-19). EC Microbiol. 2021, 17, 01–06. [Google Scholar]
- Santos, C.; Kieszak, S.; Wang, A.; Law, R.; Schier, J.; Wolkin, A. Reported adverse health effects in children from ingestion of alcohol-based hand sanitizers—United States, 2011–2014. Morb. Mortal. Wkly. Rep. 2017, 66, 223. [Google Scholar] [CrossRef] [PubMed]
- Heidari, M.; Sayfouri, N. COVID-19 and alcohol poisoning: A fatal competition. Disaster Med. Public Health Prep. 2021, 89, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, S.A.; Kolahi, A.; Akhgari, M.; Gheshlaghi, F.; Gholami, N.; Moshiri, M.; Mohtasham, N.; Ebrahimi, S.; Ziaeefar, P.; McDonald, R.; et al. COVID-19 pandemic and methanol poisoning outbreak in Iranian children and adolescents: A data linkage study. Alcohol. Clin. Exp. Res. 2021, 45, 1853–1863. [Google Scholar] [CrossRef] [PubMed]
- Rostami, M. The coronavirus disease 2019 (COVID-19) and alcohol use disorders in Iran. Am. J. Men Health 2020, 14, 1557988320938610. [Google Scholar] [CrossRef] [PubMed]
- Pirnia, B.; Dezhakam, H.; Pirnia, K.; Malekanmehr, P.; Soleimani, A.A.; Zahiroddin, A.; Eslami, M.R.; Sadeghi, P. COVID-19 pandemic and addiction: Current problems in Iran. Asian J. Psychiatr. 2020, 54, 102313. [Google Scholar] [CrossRef]
- White, A.M.; Castle, I.-J.P.; Powell, P.A.; Hingson, R.W.; Koob, G.F. Alcohol-related deaths during the COVID-19 pandemic. JAMA 2022, 327, 1704–1706. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Ziwei, M.P.; Tao, S.Y.; Ke, P.C.; Shang, M.M. Dysregulation of immune response in patients with COVID-19 in Wuhan, China; Clinical Infectious Diseases; Oxford Academic. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef]
- Goral, J.; Karavitis, J.; Kovacs, E.J. Exposure-dependent effects of ethanol on the innate immune system. Alcohol 2008, 42, 237–247. [Google Scholar] [CrossRef]
- Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef] [PubMed]
- Gevers, D.; Knight, R.; Petrosino, J.F.; Huang, K.; McGuire, A.L.; Birren, B.W.; Nelson, K.E.; White, O.; Methé, B.A.; Huttenhower, C. The Human Microbiome Project: A community resource for the healthy human microbiome. PLoS Biol. 2012, 10, e1001377. [Google Scholar] [CrossRef] [PubMed]
- De Gottardi, A.; McCoy, K.D. Evaluation of the gut barrier to intestinal bacteria in non-alcoholic fatty liver disease. J. Hepatol. 2011, 55, 1181–1183. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.V.; Wong, M.H.; Thelin, A.; Hansson, L.; Falk, P.G.; Gordon, J.I. Molecular analysis of commensal host-microbial relationships in the intestine. Science 2001, 291, 881–884. [Google Scholar] [CrossRef]
- Thomas, C.M.; Hong, T.; Van Pijkeren, J.P.; Hemarajata, P.; Trinh, D.V.; Hu, W.; Britton, R.A.; Kalkum, M.; Versalovic, J. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS ONE 2012, 7, e31951. [Google Scholar] [CrossRef] [PubMed]
- Burcelin, R.; Serino, M.; Chabo, C.; Blasco-Baque, V.; Amar, J. Gut microbiota and diabetes: From pathogenesis to therapeutic perspective. Acta Diabetol. 2011, 48, 257–273. [Google Scholar] [CrossRef]
- Sherafat, S.J.; Azimirad, M.; Alebouyeh, M.; Amoli, H.A.; Hosseini, P.; Ghasemian-Safaei, H.; Moghim, S. The rate and importance of Clostridium difficile in colorectal cancer patients. Gastroenterol. Hepatol. Bed Bench 2019, 12, 358. [Google Scholar]
- Widmer, A.F. Replace hand washing with use of a waterless alcohol hand rub? Clin. Infect. Dis. 2000, 31, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, A.; Chiew, C.J.; Lee, V.J. Can we contain the COVID-19 outbreak with the same measures as for SARS? Lancet Infect. Dis. 2020, 20, e102–e107. [Google Scholar] [CrossRef]
- Chang, A.; Schnall, A.H.; Law, R.; Bronstein, A.C.; Marraffa, J.M.; Spiller, H.A.; Hays, H.L.; Funk, A.R.; Mercurio-Zappala, M.; Calello, D.P.; et al. Cleaning and disinfectant chemical exposures and temporal associations with COVID-19—National poison data system, United States, January 1, 2020–March 31, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 496. [Google Scholar] [CrossRef]
- Samara, F.; Badran, R.; Dalibalta, S. Are disinfectants for the prevention and control of COVID-19 safe? Health Secur. 2020, 18, 496–498. [Google Scholar] [CrossRef]
- Wilhelm, K.-P. Prevention of surfactant-induced irritant contact dermatitis. Prev. Contact Dermat. 1996, 25, 78–85. [Google Scholar]
- Folletti, I.; Siracusa, A.; Paolocci, G. Update on asthma and cleaning agents. Curr. Opin. Allergy Clin. Immunol. 2017, 17, 90–95. [Google Scholar] [CrossRef]
- Wang, M.; Tan, G.; Eljaszewicz, A.; Meng, Y.; Wawrzyniak, P.; Acharya, S.; Altunbulakli, C.; Westermann, P.; Dreher, A.; Yan, L.; et al. Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells. J. Allergy Clin. Immunol. 2019, 143, 1892–1903. [Google Scholar] [CrossRef]
- Dumas, O. Cleaners and airway diseases. Curr. Opin. Allergy Clin. Immunol. 2021, 21, 101–109. [Google Scholar] [CrossRef]
- Parks, J.; McCandless, L.; Dharma, C.; Brook, J.; Turvey, S.; Mandhane, P.; Becker, A.B.; Kozyrskyj, A.L.; Azad, M.B.; Moraes, T.J.; et al. Association of use of cleaning products with respiratory health in a Canadian birth cohort. Cmaj 2020, 192, E154–E161. [Google Scholar] [CrossRef]
- Rosenman, K.D. Cleaning products-related asthma. Clin. Pulm. Med. 2006, 13, 221–228. [Google Scholar] [CrossRef]
- Suri, V.; Mahi, S.; Bhalla, A.; Sharma, N.; Varma, S. Detergents-uncommon household poisons. Indian J. Med. Sci. 2009, 63, 311–312. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.A.; Genois, R.; Jin, J.; Vigo, D.; Rehm, J.; Rush, B. The early impact of COVID-19 on the incidence, prevalence, and severity of alcohol use and other drugs: A systematic review. Drug Alcohol Depend. 2021, 228, 109065. [Google Scholar] [CrossRef] [PubMed]
- Hanafi, E.; Siste, K.; Limawan, A.P.; Sen, L.T.; Christian, H.; Murtani, B.J.; Adrian; Siswidiani, L.P.; Suwartono, C. Alcohol-and cigarette-use related behaviors during quarantine and physical distancing amid COVID-19 in Indonesia. Front. Psychiatr. 2021, 12, 622917. [Google Scholar] [CrossRef] [PubMed]
- Sallie, S.N.; Ritou, V.; Bowden-Jones, H.; Voon, V. Assessing international alcohol consumption patterns during isolation from the COVID-19 pandemic using an online survey: Highlighting negative emotionality mechanisms. BMJ Open 2020, 10, e044276. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, S.; Guirguis, A.; John, A.; Corkery, J.M.; Schifano, F. COVID-19: The hidden impact on mental health and drug addiction. Front. Psychiatr. 2020, 11, 767. [Google Scholar] [CrossRef] [PubMed]
- Carrico, A.W.; Horvath, K.J.; Grov, C.; Moskowitz, J.T.; Pahwa, S.; Pallikkuth, S.; Hirshfield, S. Double jeopardy: Methamphetamine use and HIV as risk factors for COVID-19. AIDS Behav. 2020, 24, 3020–3023. [Google Scholar] [CrossRef] [PubMed]
- Clay, J.M.; Parker, M.O. Alcohol use and misuse during the COVID-19 pandemic: A potential public health crisis? Lancet Public Health 2020, 5, e259. [Google Scholar] [CrossRef]
- Shigemura, J.; Ursano, R.J.; Morganstein, J.C.; Kurosawa, M.; Benedek, D.M. Public responses to the novel 2019 coronavirus (2019-nCoV) in Japan: Mental health consequences and target populations. Psychiatr. Clin. Neurosci. 2020, 74, 281. [Google Scholar] [CrossRef]
- Wang, Y.; Di, Y.; Ye, J.; Wei, W. Study on the public psychological states and its related factors during the outbreak of coronavirus disease 2019 (COVID-19) in some regions of China. Psychol. Health Med. 2021, 26, 13–22. [Google Scholar] [CrossRef]
- Chevance, A.; Gourion, D.; Hoertel, N.; Llorca, P.M.; Thomas, P.; Bocher, R.; Moro, M.R.; Laprévote, V.; Benyamina, A.; Fossati, P.; et al. Ensuring mental health care during the SARS-CoV-2 epidemic in France: A narrative review. L’encephale 2020, 46, 193–201. [Google Scholar] [CrossRef]
- Mousavi-Roknabadi, R.S.; Arzhangzadeh, M.; Safaei-Firouzabadi, H.; Sharifi, M.; Fathi, N.; Jelyani, N.Z.; Mokdad, M. Methanol poisoning during COVID-19 pandemic; A systematic scoping review. Am. J. Emerg. Med. 2022, 52, 69–84. [Google Scholar] [CrossRef]
- Iranpour, P.; Firoozi, H.; Haseli, S. Methanol poisoning emerging as the result of COVID-19 outbreak; radiologic perspective. Acad. Radiol. 2020, 27, 755–756. [Google Scholar] [CrossRef]
- Simani, L.; Ramezani, M.; Roozbeh, M.; Shadnia, S.; Pakdaman, H. The outbreak of methanol intoxication during COVID-19 pandemic: Prevalence of brain lesions and its predisposing factors. Drug Chem. Toxicol. 2022, 45, 1500–1503. [Google Scholar] [CrossRef]
- Jothimani, D.; Kailasam, E.; Danielraj, S.; Nallathambi, B.; Ramachandran, H.; Sekar, P.; Manoharan, S.; Ramani, V.; Narasimhan, G.; Kaliamoorthy, I.; et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int. J. Infect. Dis. 2020, 100, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.; Tahir, M.J.; Jabbar, R.; Ahmed, A.; Hussain, R. Self-medication during COVID-19 pandemic: Challenges and opportunities. Drugs Ther. Perspect. 2020, 36, 565–567. [Google Scholar] [CrossRef] [PubMed]
- Rugole, V.; Pucarin-Cvetković, J.; Milošević, M. Food supplements in healthcare professionals’ diet during COVID-19 pandemic. Sestrin. Glas. 2021, 26, 82–91. [Google Scholar] [CrossRef]
- Keshavarz Shahbaz, S.; Naderi, Y.; Aali, E. A Promising Approach to Improving COVID-19 Symptoms: Using Antioxidant Supplements. J. Inflamm. Dis. 2021, 25, 105–126. [Google Scholar] [CrossRef]
- Ağagündüz, D.; Çelik, M.N.; Çıtar Dazıroğlu, M.E.; Capasso, R. Emergent drug and nutrition interactions in COVID-19: A comprehensive narrative review. Nutrients 2021, 13, 1550. [Google Scholar] [CrossRef]
- Younis, N.K.; Zareef, R.O.; Fakhri, G.; Bitar, F.; Eid, A.H.; Arabi, M. COVID-19: Potential therapeutics for pediatric patients. Pharmacol. Rep. 2021, 73, 1520–1538. [Google Scholar] [CrossRef]
- Clinicaltrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 6 August 2022).
- Marcinowska-Suchowierska, E.; Kupisz-Urbańska, M.; Łukaszkiewicz, J.; Płudowski, P.; Jones, G. Vitamin D toxicity–a clinical perspective. Front. Endocrinol. 2018, 9, 550. [Google Scholar] [CrossRef]
- Wimalawansa, S. Causes, benefits and consequences of vitamin D deficiency. J. Community Med. Health Res. 2019, 2, 122. [Google Scholar]
- Boreskie, K.F.; Hay, J.; Duhamel, T. Preventing frailty progression during the COVID-19 pandemic. J. Frailty Aging 2020, 9, 130–131. [Google Scholar] [CrossRef]
- Cannell, J.J.; Vieth, R.; Umhau, J.C.; Holick, M.F.; Grant, W.B.; Madronich, S.; Garland, C.F.; Giovannucci, E. Epidemic influenza and vitamin D. Epidemiol. Infect. 2006, 134, 1129–1140. [Google Scholar] [CrossRef]
- Azmi, H.; Hassou, N.; Ennaji, M.M. Vitamin D immunomodulatory role in chronic and acute viral diseases. In Emerging and Reemerging Viral Pathogens; Elsevier: Amsterdam, The Netherlands, 2020; pp. 489–506. [Google Scholar]
- Hadizadeh, F. Supplementation with vitamin D in the COVID-19 pandemic? Nutr. Rev. 2021, 79, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.N.; Davies, J.S. A review of the growing risk of vitamin D toxicity from inappropriate practice. Br. J. Clin. Pharmacol. 2018, 84, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Millán-Oñate, J.; Rodriguez-Morales, A.J.; Camacho-Moreno, G.; Mendoza-Ramírez, H.; Rodríguez-Sabogal, I.A.; Álvarez-Moreno, C. A new emerging zoonotic virus of concern: The 2019 novel Coronavirus (SARS-CoV-2). Infectio 2020, 24, 187–192. [Google Scholar] [CrossRef]
- Han, Q.; Lin, Q.; Jin, S.; You, L. Coronavirus 2019-nCoV: A brief perspective from the front line. J. Infect. 2020, 80, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Milani, G.P.; Macchi, M.; Guz-Mark, A. Vitamin C in the Treatment of COVID-19. Nutrients 2021, 13, 1172. [Google Scholar] [CrossRef]
- Sunkara, V.; Pelkowski, T.D.; Dreyfus, D.; Satoskar, A. Acute kidney disease due to excessive vitamin C ingestion and remote roux-en-y gastric bypass surgery superimposed on CKD. Am. J. Kidney Dis. 2015, 66, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Hambidge, M. Human zinc deficiency. J. Nutr. 2000, 130, 1344S–1349S. [Google Scholar] [CrossRef]
- Lemire, J.; Mailloux, R.; Appanna, V.D. Zinc toxicity alters mitochondrial metabolism and leads to decreased ATP production in hepatocytes. J. Appl. Toxicol. Int. J. 2008, 28, 175–182. [Google Scholar] [CrossRef]
- Piao, F.; Yokoyama, K.; Ma, N.; Yamauchi, T. Subacute toxic effects of zinc on various tissues and organs of rats. Toxicol. Lett. 2003, 145, 28–35. [Google Scholar] [CrossRef]
- Kieliszek, M.; Lipinski, B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med. Hypotheses 2020, 143, 109878. [Google Scholar] [CrossRef]
- Jayawardena, R.; Sooriyaarachchi, P.; Chourdakis, M.; Jeewandara, C.; Ranasinghe, P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 367–382. [Google Scholar] [CrossRef] [PubMed]
- Fogarty, H.; Townsend, L.; Ni Cheallaigh, C.; Bergin, C.; Martin-Loeches, I.; Browne, P.; Bacon, C.L.; Gaule, R.; Gillett, A.; Byrne, M.; et al. COVID-19 coagulopathy in Caucasian patients. Br. J. Haematol. 2020, 189, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Risher, J. Toxicological Profile for Selenium; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2003.
- Fan, A.; Kizer, K. Selenium. Nutritional, toxicologic, and clinical aspects. West. J. Med. 1990, 153, 160. [Google Scholar] [PubMed]
- Sun, H.-J.; Rathinasabapathi, B.; Wu, B.; Luo, J.; Pu, L.-P.; Ma, L.Q. Arsenic and selenium toxicity and their interactive effects in humans. Environ. Int. 2014, 69, 148–158. [Google Scholar] [CrossRef]
- Busari, S.; Adebayo, B. Nigeria Records Chloroquine Poisoning after Trump Endorses it for Coronavirus Treatment. CNN. 2020. Available online: https://www.cnn.com/2020/03/23/africa/chloroquine-trump-nigeria-intl/index.html (accessed on 24 July 2020).
- Erickson, T.; Chai, P.; Boyer, E. Chloroquine, hydroxychloroquine and COVID-19. Toxicol. Commun. 2020, 4, 40–42. [Google Scholar] [CrossRef]
- Popp, M.; Stegemann, M.; Metzendorf, M.I.; Gould, S.; Kranke, P.; Meybohm, P.; Skoetz, N.; Weibel, S. Ivermectin for preventing and treating COVID-19. Cochrane Database Syst. Rev. 2021, 7, 1465–1858. [Google Scholar]
- Heidary, F.; Gharebaghi, R. Ivermectin: A systematic review from antiviral effects to COVID-19 complementary regimen. J. Antibiot. 2020, 73, 593–602. [Google Scholar] [CrossRef]
- Temple, C.; Hoang, R.; Hendrickson, R.G. Toxic effects from ivermectin use associated with prevention and treatment of COVID-19. N. Engl. J. Med. 2021, 385, 2197–2198. [Google Scholar] [CrossRef]
- Singh, A.K.; Majumdar, S.; Singh, R.; Misra, A. Role of corticosteroid in the management of COVID-19: A systemic review and a Clinician’s perspective. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 971–978. [Google Scholar] [CrossRef]
- Isidori, A.; Arnaldi, G.; Boscaro, M.; Falorni, A.; Giordano, C.; Giordano, R.; Pivonello, R.; Pofi, R.; Hasenmajer, V.; Venneri, M.A.; et al. COVID-19 infection and glucocorticoids: Update from the Italian Society of Endocrinology Expert Opinion on steroid replacement in adrenal insufficiency. J. Endocrinol. Investig. 2020, 43, 1141–1147. [Google Scholar] [CrossRef]
- Theoharides, T.; Conti, P. Dexamethasone for COVID-19? Not so fast. J. Biol. Regul. Homeost Agents. 2020, 34, 1241–1243. [Google Scholar] [PubMed]
- Srivastava, A.; Chaurasia, J.; Khan, R.; Dhand, C.; Verma, S. Role of medicinal plants of traditional use in recuperating devastating COVID-19 situation. Med. Aromat Plants 2020, 9, 2167-0412. [Google Scholar]
- Jahan, I.; Ahmet, O. Potentials of plant-based substance to inhabit and probable cure for the COVID-19. Turk. J. Biol. 2020, 44, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Villena-Tejada, M.; Vera-Ferchau, I.; Cardona-Rivero, A.; Zamalloa-Cornejo, R.; Quispe-Florez, M.; Frisancho-Triveño, Z.; Abarca-Meléndez, R.C.; Alvarez-Sucari, S.G.; Mejia, C.R.; Yañez, J.A. Use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic in Cusco, Peru: A cross-sectional survey. PLoS ONE 2021, 16, e0257165. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, H.; Ghareghani, S.; Nasimi, N.; Shahbazi, M. A review of poisonings originating from self-administration of common preventative substances during COVID-19 pandemic. Am. J. Emerg. Med. 2022. epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Chrubasik, S.; Pittler, M.; Roufogalis, B. Zingiberis rhizoma: A comprehensive review on the ginger effect and efficacy profiles. Phytomedicine 2005, 12, 684–701. [Google Scholar] [CrossRef] [PubMed]
- Stojanović-Radić, Z.; Pejčić, M.; Dimitrijević, M.; Aleksić, A.; Kumar, N.V.A.; Salehi, B.; Cho, W.C.; Sharifi-Rad, J. Piperine-A Major Principle of Black Pepper: A review of its bioactivity and studies. Appl. Sci. 2019, 9, 4270. [Google Scholar] [CrossRef]
- Khan, T.; Khan, M.A.; Ullah, N.; Nadhman, A. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. Biocatal. Agric. Biotechnol. 2021, 31, 101890. [Google Scholar] [CrossRef]
- Nazari, S.; Rameshrad, M.; Hosseinzadeh, H. Toxicological effects of Glycyrrhiza glabra (licorice): A review. Phytother. Res. 2017, 31, 1635–1650. [Google Scholar] [CrossRef]
- Omar, H.R.; Komarova, I.; El-Ghonemi, M.; Fathy, A.; Rashad, R.; Abdelmalak, H.D.; Yerramadha, M.R.; Ali, Y.; Helal, E.; Camporesi, E.M. Licorice abuse: Time to send a warning message. Ther. Adv. Endocrinol. Metab. 2012, 3, 125–138. [Google Scholar] [CrossRef]
- Salem, M.A.; Ezzat, S.M. The use of aromatic plants and their therapeutic potential as antiviral agents: A hope for finding anti-COVID 19 essential oils. J. Essent. Oil Res. 2021, 33, 105–113. [Google Scholar] [CrossRef]
- Basch, E.; Ulbricht, C.; Hammerness, P.; Bevins, A.; Sollars, D. Thyme (Thymus vulgaris L.), thymol. J. Herb. Pharmacother. 2004, 4, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Feng, R.; Xiang, F.; Song, X.; Yin, Z.; Zhang, C.; Zhao, X.; Jia, R.; Chen, Z.; Li, L.; et al. Acute and subchronic toxicity as well as evaluation of safety pharmacology of eucalyptus oil-water emulsions. Int. J. Clin. Exp. Med. 2014, 7, 4835. [Google Scholar] [PubMed]
Herbs | Ref. | English Name | Possible Toxic Effects of High Dose Consumption | Ref. |
---|---|---|---|---|
Alium stivum. L. | [110] | garlic | Vacuolation of liver cells of treated rats near the organ surface. RBCs and WBCs aggregation and alveoli thickening at very high doses. Significant edema in several places of the lung. | [111] |
Zingiber officinalis Roscoe | [108,110] | Ginger | Cytotoxic effects against the promyelocytic leukemia cells might be possible. Mutagenic effects have been seen over pregnancy. Negative reproductive effects on male rats also have been reported. | [112] |
Piper nigrum L. | [108] | Black Pepper | Increase in serum aspartate aminotransferase and ALP and decrease in serum protein led to liver damage. Increase in aflatoxin B1 binding to calf thymus. Damage to sperm function. | [113] |
Glycyrrhiza glabra | [114] | Licorice | Based on consumption dose and time Hypertension, visual problems, pseudo -hyperaldosteronism, cardiovascular disorders, neurological syndrome can occur. Capability of causing mutagenicity, carcinogenicity, and genotoxicity has been reported. | [115,116] |
Thymus vulgaris L. | [117] | Thyme | Nausea and vomiting, tachypnea, hypotension, allergy, headache and dizziness, heartburn, antityrotropic effects, liver toxicity, and bradycardia. | [118] |
Eucalyptus polybractea | [110] | Eucalyptus | Irritation of the nasopharyngeal and lung epithelial cells, Because of its strong odor. Skin irritation, ataxia, muscle weakness, seizure, and slurred speech may occur in high doses. | [119] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashemi, H.; Ghareghani, S.; Nasimi, N.; Shahbazi, M.; Derakhshan, Z.; Sarkodie, S.A. Health Consequences of Overexposure to Disinfectants and Self-Medication against SARS-CoV-2: A Cautionary Tale Review. Sustainability 2022, 14, 13614. https://doi.org/10.3390/su142013614
Hashemi H, Ghareghani S, Nasimi N, Shahbazi M, Derakhshan Z, Sarkodie SA. Health Consequences of Overexposure to Disinfectants and Self-Medication against SARS-CoV-2: A Cautionary Tale Review. Sustainability. 2022; 14(20):13614. https://doi.org/10.3390/su142013614
Chicago/Turabian StyleHashemi, Hassan, Shiva Ghareghani, Nasrin Nasimi, Mohammad Shahbazi, Zahra Derakhshan, and Samuel Asumadu Sarkodie. 2022. "Health Consequences of Overexposure to Disinfectants and Self-Medication against SARS-CoV-2: A Cautionary Tale Review" Sustainability 14, no. 20: 13614. https://doi.org/10.3390/su142013614
APA StyleHashemi, H., Ghareghani, S., Nasimi, N., Shahbazi, M., Derakhshan, Z., & Sarkodie, S. A. (2022). Health Consequences of Overexposure to Disinfectants and Self-Medication against SARS-CoV-2: A Cautionary Tale Review. Sustainability, 14(20), 13614. https://doi.org/10.3390/su142013614