A Robust Artificial Bee Colony-Based Load Frequency Control for Hydro-Thermal Interconnected Power System
Abstract
:1. Introduction
2. Model of Interconnected Hydro-Thermal System
3. Artificial Bee Colony Approach Overview
- Initialize the food sources for all bees;
- The following steps are repeated:
- Each onlooker bee goes to a food source and saves it in her memory and evaluates a neighbor source;
- The other onlookers watch the waggle dance and go to that source and choose a neighbor around it;
- The disused food sources are evaluated and replaced by the new food sources discovered by scouts;
- The best food source found so far is registered.
- Until the best food source is obtained,
- End.
4. The Proposed Problem Formulation
Algorithm 1 Pseudo code of ABC-based methodology |
1: Input the ABC parameters (NF, , tmax, and nrun), where tmax and nrun are the maximum iteration and number of runs. |
2: Define the parameters of the hydro-thermal power system. |
3: Define the lower and upper bounds of PID controller (Lb and Ub). |
4: Formulate an initial population using Lb and Ub. |
5: Evaluate the initial fitness function Fi(xi0) via Equation (10). |
6: Assign run = 1. |
7: Assign t = 1. |
8: while run > nrun do |
9: while t > tmax do |
10: for j = 1:NF |
11: Compute the fitness value (Fn) using Equation (8). |
12: Calculate the food source probability using Equation (7). |
13: Select the food source by the onlookers. |
14: Calculate the food position using Equation (9). |
15: Update the food positions using (xi,newt = xit). |
16: Calculate the new fitness value (Fi,new(xi,newt)) using Equation (10). |
17: if Fi,new(xi,newt) > Fi(xit) |
18: Update the food position and the fitness value |
19: end if |
20: end for |
21: Save the best minimum value of fitness function as the best. |
22: t = t + 1 |
23: end while |
24: run = run + 1 |
25: end while |
26: Print the optimal parameters of LFC. |
5. Digital Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shayeghi, H.; Shayanfar, H.A.; Jalili, A. Load frequency control strategies: A state-of-the-art survey for the researcher. Energy Convers. Manag. 2009, 50, 344–353. [Google Scholar] [CrossRef]
- Shivaie, M.; Kazemi, M.G.; Ameli, M.T. A modified harmony search algorithm for solving load-frequency control of non-linear interconnected hydrothermal power systems. Sustain. Energy Technol. Assess. 2015, 10, 53–62. [Google Scholar] [CrossRef]
- Sahu, R.K.; Panda, S.; Padhan, S. Optimal gravitational search algorithm for automatic generation control of interconnected power systems. Ain Shams Eng. J. 2014, 5, 721–733. [Google Scholar] [CrossRef] [Green Version]
- Yousef, A.M.; Khamaj, J.A.; Oshaba, A.S. Steam-hydraulic turbines load frequency controller based on fuzzy logic control. Res. J. Appl. Sci. Eng. Technol. 2012, 4, 2375–2381. [Google Scholar]
- Mohamed, A.F.; Elarini, M.M.; Othman, A.M. A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system. J. Adv. Res. 2014, 5, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Kassem, A.M. Neural predictive controller of a two-area load frequency control for interconnected power system. Ain Shams Eng. J. 2010, 1, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Khuntia, S.R.; Panda, S. Simulation study for automatic generation control of a multi-area power system by ANFIS approach. Appl. Soft Comput. 2012, 12, 333–341. [Google Scholar] [CrossRef]
- Panda, S.; Mohanty, B.; Hota, P.K. Hybrid BFOA–PSO algorithm for automatic generation control of linear and nonlinear interconnected power systems. Appl. Soft Comput. 2013, 13, 4718–4730. [Google Scholar] [CrossRef]
- Prakash, S.; Sinha, S.K. Simulation based neuro-fuzzy hybrid intelligent PI control approach in four-area load frequency control of interconnected power system. Appl. Soft Comput. 2014, 23, 152–164. [Google Scholar] [CrossRef]
- Sahu, B.K.; Pati, S.; Mohanty, P.K.; Panda, S. Teaching–learning based optimization algorithm based fuzzy-PID controller for automatic generation control of multi-area power system. Appl. Soft Comput. 2015, 27, 240–249. [Google Scholar] [CrossRef]
- Sahu, B.K.; Pati, S.; Panda, S. Hybrid differential evolution particle swarm optimisation optimised fuzzy proportional–integral derivative controller for automatic generation control of interconnected power system. IET Gener. Transm. Distrib. 2014, 8, 1789–1800. [Google Scholar] [CrossRef]
- Khodabakhshian, A.; Hooshmand, R. A new PID controller design for automatic generation control of hydro power systems. Int. J. Electr. Power Energy Syst. 2010, 32, 375–382. [Google Scholar] [CrossRef]
- Ali, R.; Mohamed, T.H.; Qudaih, Y.S.; Mitani, Y. A new load frequency control approach in an isolated small power systems using coefficient diagram method. Int. J. Electr. Power Energy Syst. 2014, 56, 110–116. [Google Scholar] [CrossRef]
- Aditya, S.K.; Das, D. Load-frequency control of an interconnected hydro-thermal power system with new area control error considering battery energy storage facility. Int. J. Energy Res. 2000, 24, 525–538. [Google Scholar] [CrossRef]
- Sahu, R.K.; Panda, S.; Padhan, S. A hybrid firefly algorithm and pattern search technique for automatic generation control of multi area power systems. Int. J. Electr. Power Energy Syst. 2015, 64, 9–23. [Google Scholar] [CrossRef]
- Jagatheesan, K.; Anand, B.; Dey, N.; Omar, M.; Balas, V.E. AGC of multi-area interconnected power systems by considering different cost functions and Ant Colony Optimization technique based PID controller. Intell. Decis. Technol. 2017, 11, 29–38. [Google Scholar] [CrossRef]
- Farshi, H. Design and Analysis of Hybrid PSO-GA-FA Technique for Load Frequency Control of Two-Area Power System. Int. J. Mechatron. Electr. Comput. Technol 2019, 9, 4287–4301. [Google Scholar]
- Ateş, A.; Alagöz, B.B.; Yeroğlu, C.; Alisoy, H. Sigmoid based PID controller implementation for rotor control. In Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 15–17 July 2015; IEEE: New York, NY, USA, 2015; pp. 458–463. [Google Scholar]
- Asgharnia, A.; Jamali, A.; Shahnazi, R.; Maheri, A. Load mitigation of a class of 5-MW wind turbine with RBF neural network based fractional-order PID controller. ISA Trans. 2020, 96, 272–286. [Google Scholar] [CrossRef]
- Hanif, M.I.F.M.; Suid, M.H.; Ahmad, M.A. A piecewise affine PI controller for buck converter generated DC motor. Int. J. Power Electron. Drive Syst. 2019, 10, 1419. [Google Scholar] [CrossRef]
- Ismayil, C.; Kumar, R.S.; Sindhu, T.K. Optimal fractional order PID controller for automatic generation control of two-area power systems. Int. Trans. Electr. Energy Syst. 2015, 25, 3329–3348. [Google Scholar] [CrossRef]
- Guha, D.; Roy, P.K.; Banerjee, S. Load frequency control of interconnected power system using grey wolf optimization. Swarm Evol. Comput. 2016, 27, 97–115. [Google Scholar] [CrossRef]
- Gheisarnejad, M. An effective hybrid harmony search and cuckoo optimization algorithm based fuzzy PID controller for load frequency control. Appl. Soft Comput. 2018, 65, 121–138. [Google Scholar] [CrossRef]
- Fathy, A.; Kassem, A.M.; Abdelaziz, A.Y. Optimal design of fuzzy PID controller for deregulated LFC of multi-area power system via mine blast algorithm. Neural Comput. Appl. 2020, 32, 4531–4551. [Google Scholar] [CrossRef]
- Sahu, R.K.; Panda, S.; Biswal, A.; Sekhar, G.C. Design and analysis of tilt integral derivative controller with filter for load frequency control of multi-area interconnected power systems. ISA Trans. 2016, 61, 251–264. [Google Scholar] [CrossRef]
- Ghazali, M.R.; Ahmad, M.A.; Raja Ismail, R.M.T. A Multiple-node Hormone Regulation of Neuroendocrine-PID (MnHR-NEPID) Control for Nonlinear MIMO Systems. IETE J. Res. 2020, 1–16. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Sun, L.; Chen, T.; Zhang, Q. An artificial bee colony algorithm with random location updating. Sci. Program. 2018, 2018, 2767546. [Google Scholar] [CrossRef]
- Fathy, A.; Alharbi, A.G. Recent approach based movable damped wave algorithm for designing fractional-order PID load frequency control installed in multi-interconnected plants with renewable energy. IEEE Access 2021, 9, 71072–71089. [Google Scholar] [CrossRef]
- Trojovská, E.; Dehghani, M. A new human-based metahurestic optimization method based on mimicking cooking training. Sci. Rep. 2022, 12, 14861. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl.-Based Syst. 2019, 165, 169–196. [Google Scholar] [CrossRef]
- Elkasem, A.H.; Kamel, S.; Korashy, A.; Nasrat, L. Load Frequency Control Design of Two Area Interconnected Power System Using GWO. In Proceedings of the 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE), Aswan, Egypt, 23–25 October 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
Item | Proposed Setting |
---|---|
Number of colony size | 50 |
Number of Food | 20 |
limit | 100 |
Maximum Cycle | 3000 |
CBOA | SOA | SCA [32] | ABC | |
---|---|---|---|---|
KP1 | 2.000 | 2.000 | 2.000 | 2.000 |
KI1 | 2.000 | 2.000 | 0.335 | 0.531 |
Kd1 | 0.305 | 0.440 | 1.889 | 0.832 |
KP1 | 0.211 | 0.040 | 1.741 | 0.287 |
KI1 | 0.104 | 0.010 | 0.016 | 0.172 |
Kd1 | 1.666 | 2.000 | 0.088 | 0.482 |
Fitness value | 2.137 | 1.897 | 2.296 | 1.809 |
IAE | 5.276 | 7.554 | 3.958 | 3.148 |
SSE | 0.303 | 0.449 | 0.309 | 0.179 |
ΔF1 | Tr (s) | Ts (s) | Ts,min (s) | Ts,max (s) | MOs (pu) | Us (pu) | Tp (s) | |
CBOA | 28.188 | 45.992 | 0.032 | 0.036 | 0.000 | 256.588 | 0.508 | |
SOA | 0.027 | 44.563 | −0.087 | −0.009 | 768.777 | 0.000 | 0.501 | |
SCA | 23.869 | 44.453 | 0.015 | 0.016 | 0.000 | 479.681 | 2.148 | |
ABC | 0.002 | 37.042 | −0.101 | 0.051 | 13,692.480 | 6968.317 | 2.249 | |
ΔF2 | Tr (s) | Ts (s) | Ts,min (s) | Ts,max (s) | MOs (pu) | Us (pu) | Tp (s) | |
CBOA | 28.791 | 45.184 | 0.033 | 0.036 | 0.000 | 324.430 | 1.206 | |
SOA | 0.173 | 42.859 | −0.112 | −0.009 | 1024.841 | 0.000 | 1.166 | |
SCA | 24.358 | 43.676 | 0.015 | 0.016 | 0.000 | 548.549 | 1.624 | |
ABC | 0.100 | 36.486 | −0.112 | 0.054 | 11,221.720 | 5452.029 | 1.645 | |
ΔPtie | Tr (s) | Ts (s) | Ts,min (s) | Ts,max (s) | MOs (pu) | Us (pu) | Tp (s) | |
CBOA | 0.413 | 47.405 | −0.019 | 0.005 | 9.663 | 28.237 | 0.784 | |
SOA | 0.257 | 46.787 | −0.018 | 0.002 | 85.673 | 23.283 | 0.7454 | |
SCA | 32.446 | 44.523 | −0.019 | −0.018 | 0.000 | 13.884 | 50.000 | |
ABC | 0.043 | 41.034 | −0.023 | 0.009 | 6144.497 | 2577.785 | 5.809 |
CBOA | SOA | SCA [32] | ABC | |
---|---|---|---|---|
KP1 | 1.325 | 0.258 | 0.108 | 1.888 |
KI1 | 0.590 | 0.053 | 0.133 | 0.954 |
Kd1 | 1.126 | 1.809 | 1.895 | 1.059 |
KP1 | 1.245 | 2.000 | 2.000 | 1.004 |
KI1 | 0.454 | 2.000 | 1.975 | 0.549 |
Kd1 | 0.564 | 0.044 | 1.256 | 0.745 |
Fitness value | 3.445 | 7.213 | 7.636 | 3.433 |
IAE | 3.714 | 21.577 | 15.045 | 3.631 |
ISE | 0.539 | 4.209 | 1.831 | 0.524 |
ΔF1 | Tr (s) | Ts (s) | Ts,min (s) | Ts,max (s) | MOs (pu) | Us (pu) | Tp (s) | |
CBOA | 0.107 | 37.353 | −0.228 | 0.018 | 10,152.84 | 794.062 | 1.642788 | |
SOA | 0.454 | 49.964 | −0.211 | 0.073 | 143.3863 | 84.50683 | 1.743954 | |
SCA | 0.312 | 38.127 | −0.194 | −0.010 | 299.3158 | 0 | 1.537866 | |
ABC | 0.092 | 30.634 | −0.224 | 0.021 | 14912.33 | 1415.597 | 1.59846 | |
ΔF2 | Tr (s) | Ts (s) | Ts,min (s) | Ts,max (s) | MOs (pu) | Us (pu) | Tp (s) | |
CBOA | 0.006 | 36.177 | −0.236 | 0.018 | 10,604.770 | 808.635 | 1.080 | |
SOA | 0.182 | 49.969 | −0.221 | 0.077 | 225.189 | 113.105 | 1.147 | |
SCA | 0.120 | 37.915 | −0.214 | −0.009 | 342.317 | 0.000 | 0.922 | |
ABC | 0.003 | 29.267 | −0.237 | 0.022 | 18,603.110 | 1715.785 | 1.036 | |
ΔPtie | Tr (s) | Ts (s) | Ts,min (s) | Ts,max (s) | MOs (pu) | Us (pu) | Tp (s) | |
CBOA | 0.074 | 39.874 | −0.009 | 0.065 | 5479.407 | 758.447 | 1.404 | |
SOA | 0.362 | 49.9197 | 0.0026 | 0.062 | 186.192 | 0.000 | 1.484 | |
SCA | 0.321 | 43.054 | 0.019 | 0.058 | 187.901 | 0.000 | 1.281 | |
ABC | 0.061 | 32.409 | −0.010 | 0.064 | 8156.232 | 1322.503 | 1.361 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fathy, A.; Kassem, A.; Zaki, Z.A. A Robust Artificial Bee Colony-Based Load Frequency Control for Hydro-Thermal Interconnected Power System. Sustainability 2022, 14, 13569. https://doi.org/10.3390/su142013569
Fathy A, Kassem A, Zaki ZA. A Robust Artificial Bee Colony-Based Load Frequency Control for Hydro-Thermal Interconnected Power System. Sustainability. 2022; 14(20):13569. https://doi.org/10.3390/su142013569
Chicago/Turabian StyleFathy, Ahmed, Ahmed Kassem, and Zaki A. Zaki. 2022. "A Robust Artificial Bee Colony-Based Load Frequency Control for Hydro-Thermal Interconnected Power System" Sustainability 14, no. 20: 13569. https://doi.org/10.3390/su142013569
APA StyleFathy, A., Kassem, A., & Zaki, Z. A. (2022). A Robust Artificial Bee Colony-Based Load Frequency Control for Hydro-Thermal Interconnected Power System. Sustainability, 14(20), 13569. https://doi.org/10.3390/su142013569