The Impact of Fuel Cell Electric Freight Vehicles on Fuel Consumption and CO2 Emissions: The Case of Italy
Abstract
:1. Introduction
2. Estimation of Road Freight Demand in Italy
3. Transportation Supply Model and Freight Traffic Flow Estimation
4. Estimation of Impacts on Fuel Consumption and CO2 Emissions
- zero growth in the penetration rate for the ‘pessimistic’ scenario: the penetration rate remains constant at 7% after 2030;
- constant growth in the penetration rate of 1.16% for the ‘linear’ scenario;
- constant growth in the penetration rate of 1.50% for the ‘optimistic’ scenario.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Commission. NextGenerationEU: Next Steps for RRF. 2020. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_20_1658 (accessed on 7 September 2022).
- European Commission. Guidance to member States Recovery and Resilient Plans. SWD (2021) 12 Final. Available online: https://ec.europa.eu/info/sites/default/files/document_travail_service_part1_v2_en.pdf (accessed on 7 September 2022).
- Italia Domani. Piano Nazionale di Ripresa e Resilienza. 2021. Available online: https://www.governo.it/sites/governo.it/files/PNRR.pdf (accessed on 7 September 2022).
- Amir, M.; Zubair, S. Assessment of renewable energy: Status, challenges, COVID-19 impacts, opportunities, and sustainable energy solutions in Africa. Energy Built Environ. 2022, 3, 348–362. [Google Scholar] [CrossRef]
- Li, K.; Qi, S.; Shi, X. The COVID-19 pandemic and energy transitions: Evidence from low-carbon power generation in China. J. Clean. Prod. 2022, 368, 132994. [Google Scholar] [CrossRef] [PubMed]
- Gürbüz, H.; Söhret, Y.; Ekici, S. Evaluating effects of the COVID-19 pandemic period on energy consumption and enviro-economic indicators of Turkish road transportation. Energy Sources Part A Recovery Util. Environ. Eff. 2021. [Google Scholar] [CrossRef]
- Du, J.; Rakha, H.A.; Filali, F.; Eldardiry, H. COVID-19 pandemic impacts on traffic system delay, fuel consumption and emissions. Int. J. Transp. Sci. 2021, 10, 184–196. [Google Scholar] [CrossRef]
- Ekici, S.; ¸Söhret, Y.; Gürbüz, H. Influence of COVID-19 on air pollution caused by commercial flights in Turkey. Energy Sources Part A Recovery Util. Environ. Eff. 2021. [Google Scholar] [CrossRef]
- Ghiasi, B.; Alisoltani, T.; Jalali, F.; Tahsinpour, H. Effect of COVID-19 on transportation air pollution by moderation and mediation analysis in Queens, New York. Air Qual. Atmos. Health 2022, 15, 289–297. [Google Scholar] [CrossRef]
- International Energy Agency. Advanced Fuel Cells Technology Collaboration Programme—Report on Mobile Fuel Cell Application: Tracking Market Trends. Available online: https://www.ieafuelcell.com/fileadmin/publications/2020_AFCTCP_Mobile_FC_Application_Tracking_Market_Trends_2020.pdf (accessed on 7 September 2022).
- Alvarez-Meaza, I.; Zarrabeitia-Bilbao, E.; Rio-Belver, R.M.; Garechana-Anacabe, G. Fuel-Cell Electric Vehicles: Plotting a Scientific and Technological Knowledge Map. Sustainability 2020, 12, 2334. [Google Scholar] [CrossRef] [Green Version]
- Offer, G.J.; Howey, D.; Contestabile, M.; Clague, R.; Brandon, N.P. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system. Energy Policy 2010, 38, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Fathabadi, H. Fuel cell hybrid electric vehicle (FCHEV): Novel fuel cell/SC hybrid power generation system. Energy Convers. Manag. 2018, 156, 192–201. [Google Scholar] [CrossRef]
- Zhou, D.; Ravey, A.; Al-Durra, A.; Gao, F. A comparative study of extremum seeking methods applied to online energy management strategy of fuel cell hybrid electric vehicles. Energy Convers. Manag. 2017, 151, 778–790. [Google Scholar] [CrossRef]
- Zhou, Y.; Ravey, A.; Péra, M.-C. Multi-objective energy management for fuel cell electric vehicles using online-learning enhanced Markov speed predictor. Energy Convers. Manag. 2020, 213, 112821. [Google Scholar] [CrossRef]
- Koubaa, R.; Bacha, S.; Smaoui, M.; Krichen, L. Robust optimization based energy management of a fuel cell/ultra-capacitor hybrid electric vehicle under uncertainty. Energy 2020, 200, 117530. [Google Scholar] [CrossRef]
- Dash, S.K.; Chakraborty, S.; Roccotelli, M.; Sahu, U.K. Hydrogen Fuel for Future Mobility: Challenges and Future Aspects. Sustainability 2022, 14, 8285. [Google Scholar] [CrossRef]
- Wanniarachchi, S.; Hewage, K.; Wirasinghe, C.; Chhipi-Shrestha, G.; Karunathilake, H.; Sadiq, R. Transforming road freight transportation from fossils to hydrogen: Opportunities and challenges. Int. J. Sustain. Transp. 2022, 1–21. [Google Scholar] [CrossRef]
- Bethoux, O. Hydrogen Fuel Cell Road Vehicles: State of the Art and Perspectives. Energies 2020, 13, 5843. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, F.; Liu, Z.; Hao, H. The impact of fuel cell vehicle deployment on road transport greenhouse gas emissions: The China case. Int. J. Hydrog. Energy 2018, 43, 22604–22621. [Google Scholar] [CrossRef]
- Weger, L.B.; Leitão, J.; Lawrence, M.G. Expected impacts on greenhouse gas and air pollutant emissions due to a possible transition towards a hydrogen economy in German road transport. Int. J. Hydrog. Energy 2021, 46, 5875–5890. [Google Scholar] [CrossRef]
- Meyer, T. Decarbonizing road freight transportation—A bibliometric and network analysis. Transp. Res. D 2020, 89, 102619. [Google Scholar] [CrossRef]
- Breuer, J.L.; Samsun, R.C.; Stolten, D.; Peters, R. How to reduce the greenhouse gas emissions and air pollution caused by light and heavy duty vehicles with battery-electric, fuel cell-electric and catenary trucks. Environ. Int. 2021, 152, 106474. [Google Scholar] [CrossRef]
- Carrara, S.; Longden, T. Freight futures: The potential impact of road freight on climate policy. Transp. Res. D 2017, 55, 359–372. [Google Scholar] [CrossRef]
- Forrest, K.; Kinnon, M.M.; Tarroja, B.; Samuelsen, S. Estimating the technical feasibility of fuel cell and battery electric vehicles for the medium and heavy duty sectors in California. Appl. Energy 2020, 276, 115439. [Google Scholar] [CrossRef]
- Napoli, G.; Micari, S.; Dispenza, G.; Andaloro, L.; Antonucci, V.; Polimeni, A. Freight distribution with electric vehicles: A case study in Sicily. RES, infrastructures and vehicle routing. Transp. Eng. 2021, 3, 100047. [Google Scholar] [CrossRef]
- Gonzalez Palencia, J.C.; Araki, M.; Shiga, S. Energy consumption and CO2 emissions reduction potential of electric-drive vehicle diffusion in a road freight vehicle fleet. Energy Procedia 2017, 142, 2936–2941. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Prospects for hydrogen as a transport fuel. Int. J. Hydrog. Energy 2019, 44, 16029–16037. [Google Scholar] [CrossRef]
- De las Nieves Camacho, M.; Jurburg, D.; Tanco, M. Hydrogen fuel cell heavy-duty trucks: Review of main research topics. Int. J. Hydrog. Energy 2022, 47, 29505–29525. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Jenn, A.; Fulton, L. Low carbon scenario analysis of a hydrogen-based energy transition for on-road transportation in California. Energies 2021, 14, 7163. [Google Scholar] [CrossRef]
- Çabukoglu, E.; Georges, G.; Küng, L.; Pareschi, G.; Boulouchos, K. Fuel cell electric vehicles: An option to decarbonize heavy-duty transport? Results from a Swiss case-study. Transp. Res. D 2019, 70, 35–48. [Google Scholar] [CrossRef]
- Liu, F.; Maurezall, D.L.; Zhao, F.; Hao, H. Deployment of fuel cell vehicles in China: Greenhouse gas emission reductions from converting the heavy-duty truck fleet from diesel and natural gas to hydrogen. Int. J. Hydrog. Energy 2021, 46, 17982–17997. [Google Scholar] [CrossRef]
- Nugroho, R.; Rose, P.K.; Gnann, T.; Wei, M. Cost of a potential hydrogen-refueling network for heavy-duty vehicles with long-haul application in Germany 2050. Int. J. Hydrog. Energy 2021, 46, 35459–35478. [Google Scholar] [CrossRef]
- Noll, B.; del Val, S.; Schmidt, T.S.; Steffen, B. Analyzing the competitiveness of low-carbon drive-technologies in road-freight: A total cost of ownership analysis in Europe. Appl. Energy 2022, 306, 118079. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, J. Willingness to pay for heavy-duty hydrogen fuel cell trucks and factors affecting the purchase choices in China. Int. J. Hydrog. Energy 2022, 47, 24619–24634. [Google Scholar] [CrossRef]
- Yan, J.; Wang, G.; Chen, S.; Zhang, H.; Qian, J.; Mao, Y. Harnessing freight platforms to promote the penetration of long-haul heavy-duty hydrogen fuel-cell trucks. Energy 2022, 254, 124225. [Google Scholar] [CrossRef]
- ISTAT. Confini delle Unità Amministrative a Fini Statistici al 1° Gennaio 2022. Available online: https://www.istat.it/it/archivio/222527 (accessed on 7 September 2022).
- ISTAT. Matrice Trasporto Merci su Strada 2019. Available online: http://dati.istat.it/ (accessed on 7 September 2022).
- Istituto Poligrafico Zecca dello Stato. Conto Nazionale delle Infrastrutture e dei Trasporti—Anni 2018–2019; Istituto Poligrafico Zecca dello Stato: Rome, Italy, 2021. [Google Scholar]
- Geofabrik. OpenStreetMap Data, Italy. Available online: http://download.geofabrik.de/europe/italy.html (accessed on 7 September 2022).
- ISPRA. Serie Storiche delle Emissioni Nazionali di Inquinanti Atmosferici 1990–2019. Available online: http://emissioni.sina.isprambiente.it/serie-storiche-emissioni/ (accessed on 7 September 2022).
- EMEP/EEA. Air Pollutant Emission Inventory Guidebook 2019. Available online: https://www.eea.europa.eu//publications/emep-eea-guidebook-2019 (accessed on 7 September 2022).
Region | Generated Goods [t/Year] | Attracted Goods [t/Year] | Employees in Manufacturing Activities |
---|---|---|---|
Piemonte | 92,171,837 | 91,943,760 | 359,056 |
Valle d’Aosta | 1,117,068 | 1,374,407 | 9316 |
Liguria | 31,968,665 | 33,122,971 | 59,139 |
Lombardia | 204,170,787 | 204,251,818 | 903,826 |
Trentino Alto Adige | 32,391,364 | 34,206,166 | 69,943 |
Veneto | 151,512,857 | 147,635,451 | 537,797 |
Friuli-Venezia Giulia | 24,120,398 | 24,578,484 | 106,808 |
Emilia-Romagna | 117,100,836 | 115,411,530 | 452,621 |
Toscana | 67,444,868 | 66,024,129 | 303,266 |
Umbria | 16,718,504 | 14,908,460 | 57,678 |
Marche | 19,834,810 | 20,630,934 | 154,771 |
Lazio | 45,733,494 | 49,006,578 | 9182 |
Abruzzo | 16,733,577 | 16,237,471 | 3439 |
Molise | 3,550,801 | 3,815,597 | 77,509 |
Campania | 39,982,681 | 40,426,876 | 24,540 |
Puglia | 29,949,807 | 28,541,964 | 28,952 |
Basilicata | 7,294,685 | 6,552,522 | 81,727 |
Calabria | 7,736,544 | 10,085,013 | 9330 |
Sicilia | 27,832,117 | 28,222,311 | 2829 |
Sardegna | 16,348,194 | 16,737,452 | 26,001 |
Coefficient | 243.09 | 241.52 | |
Statistical tests | |||
R2 | 0.981 | 0.980 | |
F | ≅0 | ≅0 | |
t-student | 31.04 | 30.61 |
Links | Number | km |
---|---|---|
Sea links | 6 | 480 |
Motorways | 4242 | 22,677 |
Primary roads | 14,495 | 15,641 |
Ramps | 4130 | 1027 |
Trunk roads | 2726 | 9741 |
Total | 25,599 | 49,566 |
Link | Average Speed [km/h] |
---|---|
Motorway | 85 |
Primary road | 65 |
Ramp | 30 |
Trunk road | 70 |
Connector | 10 |
Links | Million Veh-km/Year |
---|---|
Motorways | 11,882 |
Primary roads | 2036 |
Ramps | 209 |
Trunk roads | 1339 |
Total | 15,506 |
Year | No-FCEV [t/Year] | Pessimistic [t/Year] | Linear [t/Year] | Optimistic [t/Year] |
---|---|---|---|---|
2025 | 10,426,590 | 10,301,470 | 10,301,470 | 10,301,470 |
2026 | 10,313,305 | 10,069,911 | 10,069,911 | 10,069,911 |
2027 | 10,200,021 | 9,840,980 | 9,840,980 | 9,840,980 |
2028 | 10,086,737 | 9,614,678 | 9,614,678 | 9,614,678 |
2029 | 9,973,453 | 9,391,003 | 9,391,003 | 9,391,003 |
2030 | 9,860,169 | 9,169,957 | 9,169,957 | 9,169,957 |
2031 | 9,746,884 | 9,064,602 | 8,951,539 | 8,918,399 |
2032 | 9,633,600 | 8,959,248 | 8,735,749 | 8,670,240 |
2033 | 9,520,316 | 8,853,894 | 8,522,587 | 8,425,480 |
2034 | 9,407,032 | 8,748,539 | 8,312,053 | 8,184,118 |
2035 | 9,293,747 | 8,643,185 | 8,104,148 | 7,946,154 |
2036 | 9,180,463 | 8,537,831 | 7,898,871 | 7,711,589 |
2037 | 9,067,179 | 8,432,477 | 7,696,222 | 7,480,423 |
2038 | 8,953,895 | 8,327,122 | 7,496,201 | 7,252,655 |
2039 | 8,840,611 | 8,221,768 | 7,298,808 | 7,028,285 |
2040 | 8,727,326 | 8,116,414 | 7,104,044 | 6,807,315 |
Year | Pessimistic [t/Year] | Linear [t/Year] | Optimistic [t/Year] |
---|---|---|---|
2025 | 125,119 | 125,119 | 125,119 |
2026 | 243,394 | 243,394 | 243,394 |
2027 | 359,041 | 359,041 | 359,041 |
2028 | 472,059 | 472,059 | 472,059 |
2029 | 582,450 | 582,450 | 582,450 |
2030 | 690,212 | 690,212 | 690,212 |
2031 | 682,282 | 795,346 | 828,485 |
2032 | 674,352 | 897,852 | 963,360 |
2033 | 666,422 | 997,729 | 1,094,836 |
2034 | 658,492 | 1,094,978 | 1,222,914 |
2035 | 650,562 | 1,189,600 | 1,347,593 |
2036 | 642,632 | 1,281,593 | 1,468,874 |
2037 | 634,703 | 1,370,957 | 1,586,756 |
2038 | 626,773 | 1,457,694 | 1,701,240 |
2039 | 618,843 | 1,541,802 | 1,812,325 |
2040 | 610,913 | 1,623,283 | 1,920,012 |
Total | 8,938,248 | 14,723,109 | 16,418,671 |
Vehicle Category | Technology | Fuel Consumption [g/Vehicle-km] | Fuel Consumption [L/Vehicle-km] | Vehicle-km Share |
---|---|---|---|---|
7.5–16 tons | Conventional | 182 | 0.219 | 0.44% |
EURO 1 and following | 155 | 0.187 | 15.02% | |
16–32 tons | Conventional | 251 | 0.302 | 1.81% |
EURO 1 and following | 210 | 0.253 | 82.28% | |
>32 tons | Conventional | 297 | 0.358 | 0.03% |
EURO 1 and following | 251 | 0.302 | 0.43% | |
Average consumption [l/vehicle-km] | 0.244 |
Year | No-FCEV [Million L/Year] | Pessimistic [Million L/Year] | Linear [Million L/Year] | Optimistic [Million L/Year] |
---|---|---|---|---|
2025 | 3543 | 3501 | 3501 | 3501 |
2026 | 3505 | 3422 | 3422 | 3422 |
2027 | 3466 | 3344 | 3344 | 3344 |
2028 | 3428 | 3267 | 3267 | 3267 |
2029 | 3389 | 3191 | 3191 | 3191 |
2030 | 3351 | 3116 | 3116 | 3116 |
2031 | 3312 | 3080 | 3042 | 3031 |
2032 | 3274 | 3045 | 2969 | 2946 |
2033 | 3235 | 3009 | 2896 | 2863 |
2034 | 3197 | 2973 | 2825 | 2781 |
2035 | 3158 | 2937 | 2754 | 2700 |
2036 | 3120 | 2901 | 2684 | 2621 |
2037 | 3081 | 2866 | 2615 | 2542 |
2038 | 3043 | 2830 | 2547 | 2465 |
2039 | 3004 | 2794 | 2480 | 2388 |
2040 | 2966 | 2758 | 2414 | 2313 |
Year | Pessimistic [Million L/Year] | Linear [Million L/Year] | Optimistic [Million L/Year] |
---|---|---|---|
2025 | 43 | 43 | 43 |
2026 | 83 | 83 | 83 |
2027 | 122 | 122 | 122 |
2028 | 160 | 160 | 160 |
2029 | 198 | 198 | 198 |
2030 | 235 | 235 | 235 |
2031 | 232 | 270 | 282 |
2032 | 229 | 305 | 327 |
2033 | 226 | 339 | 372 |
2034 | 224 | 372 | 416 |
2035 | 221 | 404 | 458 |
2036 | 218 | 436 | 499 |
2037 | 216 | 466 | 539 |
2038 | 213 | 495 | 578 |
2039 | 210 | 524 | 616 |
2040 | 208 | 552 | 652 |
Total | 3038 | 5003 | 5580 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallo, M.; Marinelli, M. The Impact of Fuel Cell Electric Freight Vehicles on Fuel Consumption and CO2 Emissions: The Case of Italy. Sustainability 2022, 14, 13455. https://doi.org/10.3390/su142013455
Gallo M, Marinelli M. The Impact of Fuel Cell Electric Freight Vehicles on Fuel Consumption and CO2 Emissions: The Case of Italy. Sustainability. 2022; 14(20):13455. https://doi.org/10.3390/su142013455
Chicago/Turabian StyleGallo, Mariano, and Mario Marinelli. 2022. "The Impact of Fuel Cell Electric Freight Vehicles on Fuel Consumption and CO2 Emissions: The Case of Italy" Sustainability 14, no. 20: 13455. https://doi.org/10.3390/su142013455