Smart Water Resource Management Using Artificial Intelligence—A Review
Abstract
:1. Introduction
1.1. Contributions of the Work
- This prescribed work analyzes various water management techniques that provide solution for the harvesting, recycling and conservation of the water resource (Figure 2);
- This work also signifies various water management techniques with detailed analysis and case studies;
- The work uses the contribution of Artificial Intelligence through applications that are supported by the Deep and Machine learning techniques;
- The work also researches various challenges in the deployment of efficient water management system with future directions.
1.2. Organization of the Work
2. Background
2.1. IoT in Water Management
2.2. Usage of IoT and Artificial Intelligence for Effective Water Management
2.3. Applications of IoT and DL in Various Aspects in Water Management
2.3.1. Recent Trends in Waste Water Recycle and Management by Deep Learning
2.3.2. Recent Deep Learning Models for Water Quality Prediction
2.3.3. Recent Trends of Deep Learning on Rainwater Management
2.3.4. Recent Trends in Irrigation Control Using Deep Learning
3. Case Studies
3.1. Using Artificial Intelligence for Smart Water Management Systems
3.2. Smart Water Management—Case Study Report
3.3. Grid Intelligence Water Case Study
3.4. Smart Water Management: The Way to (Artificially) Intelligent Water Management
3.5. Smart Water Management towards Future Water Sustainable Networks
3.6. Moving towards Sustainable and Resilient Smart Water Management
4. Challenges, Open Issues and Future Directions
4.1. Data Quality and Availability in Deep Learning Based Water Management Systems
4.2. Security in Deep-Learning Based Water Management Systems
4.3. Context Aware Data Analysis in Deep-Learning Based Water Management Systems
4.4. Training Efficiency
5. Findings
Advantages of Artificial Intelligence in the Water Management Process
- Feature extraction and dimensionality reduction of the huge attributes;
- Finding the solution to a complex problem through parallel processing capabilities;
- Prediction of the target variables with a desired level of accuracy;
- Working with multiple data points in certain applications;
- Algorithms like RNN is useful for time-series prediction and analysis;
- Algorithms like DNN offers faster prediction and training;
- ANN is used for faster prediction, high arbitrary function and works with multi-dimensional datasets.
6. Conclusions
Funding
Conflicts of Interest
References
- Berthet, A.; Vincent, A.; Fleury, P. Water quality issues and agriculture: An international review of innovative policy schemes. Land Use Policy 2021, 109, 105654. [Google Scholar] [CrossRef]
- Koech, R.; Langat, P. Improving irrigation water use efficiency: A review of advances, challenges and opportunities in the Australian context. Water 2018, 10, 1771. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, K.; Bali, V.; Nawaz, N.; Bali, S.; Mathur, S.; Mishra, R.K.; Rani, S. A Machine-Learning Approach for Prediction of Water Contamination Using Latitude, Longitude, and Elevation. Water 2022, 14, 728. [Google Scholar] [CrossRef]
- Ray, P.; Kaluri, R.; Reddy, T.; Lakshmanna, K. Contemporary Developments and Technologies in Deep Learning–Based IoT. In Deep Learning for Internet of Things Infrastructure; CRC Press: Boca Raton, FL, USA, 2021; pp. 61–82. [Google Scholar]
- Zhao, L.; Dai, T.; Qiao, Z.; Sun, P.; Hao, J.; Yang, Y. Application of artificial intelligence to wastewater treatment: A bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse. Process Saf. Environ. Prot. 2020, 133, 169–182. [Google Scholar] [CrossRef]
- Malviya, A.; Jaspal, D. Artificial intelligence as an upcoming technology in wastewater treatment: A comprehensive review. Environ. Technol. Rev. 2021, 10, 177–187. [Google Scholar] [CrossRef]
- Nourani, V.; Asghari, P.; Sharghi, E. Artificial intelligence based ensemble modeling of wastewater treatment plant using jittered data. J. Clean. Prod. 2021, 291, 125772. [Google Scholar] [CrossRef]
- Bhagat, S.K.; Tung, T.M.; Yaseen, Z.M. Development of artificial intelligence for modeling wastewater heavy metal removal: State of the art, application assessment and possible future research. J. Clean. Prod. 2020, 250, 119473. [Google Scholar] [CrossRef]
- Kamali, M.; Appels, L.; Yu, X.; Aminabhavi, T.M.; Dewil, R. Artificial intelligence as a sustainable tool in wastewater treatment using membrane bioreactors. Chem. Eng. J. 2021, 417, 128070. [Google Scholar] [CrossRef]
- Viet, N.D.; Jang, D.; Yoon, Y.; Jang, A. Enhancement of membrane system performance using artificial intelligence technologies for sustainable water and wastewater treatment: A critical review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 3689–3719. [Google Scholar] [CrossRef]
- Manu, D.; Thalla, A.K. Artificial intelligence models for predicting the performance of biological wastewater treatment plant in the removal of Kjeldahl Nitrogen from wastewater. Appl. Water Sci. 2017, 7, 3783–3791. [Google Scholar] [CrossRef]
- Soltani, S.R.K.; Mostafaeipour, A.; Almutairi, K.; Dehshiri, S.J.H.; Dehshiri, S.S.H.; Techato, K. Predicting effect of floating photovoltaic power plant on water loss through surface evaporation for wastewater pond using artificial intelligence: A case study. Sustain. Energy Technol. Assess. 2022, 50, 101849. [Google Scholar]
- Mahmoud, A.S.; Farag, R.S.; Elshfai, M.M. Reduction of organic matter from municipal wastewater at low cost using green synthesis nano iron extracted from black tea: Artificial intelligence with regression analysis. Egypt. J. Pet. 2020, 29, 9–20. [Google Scholar] [CrossRef]
- Mahmoud, M.; Mahmoud, A.S. Wastewater treatment using nano bimetallic iron/copper, adsorption isotherm, kinetic studies, and artificial intelligence neural networks. Emergent Mater. 2021, 4, 1455–1463. [Google Scholar] [CrossRef]
- Jenny, H.; Alonso, E.G.; Wang, Y.; Minguez, R. Using Artificial Intelligence for Smart Water Management Systems; Asian Development Bank: Mandaluyong, Philippines, 2020. [Google Scholar]
- Alam, G.; Ihsanullah, I.; Naushad, M.; Sillanpää, M. Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: Recent advances and prospects. Chem. Eng. J. 2022, 427, 130011. [Google Scholar] [CrossRef]
- Nasser, A.A.; Rashad, M.Z.; Hussein, S.E. A two-layer water demand prediction system in urban areas based on micro-services and LSTM neural networks. IEEE Access 2020, 8, 147647–147661. [Google Scholar] [CrossRef]
- Lowe, M.; Qin, R.; Mao, X. A review on machine learning, artificial intelligence, and smart technology in water treatment and monitoring. Water 2022, 14, 1384. [Google Scholar] [CrossRef]
- Akhund, T.M.; Ullah, N.; Newaz, N.T.; Zaman, Z.; Sultana, A.; Barros, A.; Whaiduzzaman, M. Iot-based low-cost automated irrigation system for smart farming. In Intelligent Sustainable Systems; Springer: Berlin/Heidelberg, Germany, 2022; pp. 83–91. [Google Scholar]
- Jain, H.; Buch, M.; Babu, P. Water management system using machine learning. In Data Engineering and Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2021; pp. 481–492. [Google Scholar]
- Gaya, M.; Zango, M.; Yusuf, L.; Mustapha, M.; Muhammad, B.; Sani, A.; Tijjani, A.; Wahab, N.; Khairi, M. Estimation of turbidity in water treatment plant using Hammerstein-Wiener and neural network technique. Indones. J. Electr. Eng. Comput. Sci. 2017, 5, 666–672. [Google Scholar] [CrossRef]
- Okoji, C.N.; Okoji, A.I.; Ibrahim, M.S.; Obinna, O. Comparative analysis of adaptive neuro-fuzzy inference system (ANFIS) and RSRM models to predict DBP (trihalomethanes) levels in the water treatment plant. Arab. J. Chem. 2022, 15, 103794. [Google Scholar] [CrossRef]
- Zanfei, A.; Brentan, B.M.; Menapace, A.; Righetti, M.; Herrera, M. Graph convolutional recurrent neural networks for water demand forecasting. Water Resour. Res. 2022, 58, e2022WR032299. [Google Scholar] [CrossRef]
- Phasinam, K.; Kassanuk, T.; Shinde, P.P.; Thakar, C.M.; Sharma, D.K.; Mohiddin, M.; Rahmani, A.W. Application of IoT and cloud computing in automation of agriculture irrigation. J. Food Qual. 2022, 2022. [Google Scholar] [CrossRef]
- Roshni, T.; Mirzania, E.; Hasanpour Kashani, M.; Bui, Q.A.T.; Shamshirband, S. Hybrid support vector regression models with algorithm of innovative gunner for the simulation of groundwater level. Acta Geophys. 2022, 70, 1885–1898. [Google Scholar] [CrossRef]
- Liu, H. Agricultural water management based on the Internet of Things and data analysis. Acta Agric. Scand. Sect. B Soil Plant Sci. 2022, 72, 300–311. [Google Scholar] [CrossRef]
- Maroli, A.A.; Narwane, V.S.; Raut, R.D.; Narkhede, B.E. Framework for the implementation of an Internet of Things (IoT)-based water distribution and management system. Clean Technol. Environ. Policy 2021, 23, 271–283. [Google Scholar] [CrossRef]
- Radhakrishnan, V.; Wu, W. IoT technology for smart water system. 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City. In Proceedings of the IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Exeter, UK, 28–30 June 2018; pp. 1491–1496. [Google Scholar]
- Mohseni, U.; Pathan, A.I.; Agnihotri, P.; Patidar, N.; Zareer, S.A.; Saran, V.; Rana, V. Design and Analysis of Water Distribution Network Using Watergems–A Case Study of Narangi Village. In Proceedings of the International Conference on Intelligent Computing & Optimization, Shenzhen, China, 12–15 August 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 695–706. [Google Scholar]
- Navarathna, P.J.; Malagi, V.P. Artificial intelligence in smart city analysis. In Proceedings of the 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 13–14 December 2018; pp. 44–47. [Google Scholar]
- Mishra, K.N.; Chakraborty, C. A novel approach toward enhancing the quality of life in smart cities using clouds and IoT-based technologies. In Digital Twin Technologies and Smart Cities; Springer: Berlin/Heidelberg, Germany, 2020; pp. 19–35. [Google Scholar]
- Kamienski, C.; Soininen, J.P.; Taumberger, M.; Dantas, R.; Toscano, A.; Salmon Cinotti, T.; Filev Maia, R.; Torre Neto, A. Smart Water Management Platform: IoT-Based Precision Irrigation for Agriculture. Sensors 2019, 19, 276. [Google Scholar] [CrossRef] [Green Version]
- López-Riquelme, J.; Pavón-Pulido, N.; Navarro-Hellín, H.; Soto-Valles, F.; Torres-Sánchez, R. A software architecture based on FIWARE cloud for Precision Agriculture. Agric. Water Manag. 2017, 183, 123–135. [Google Scholar] [CrossRef]
- Podder, A.K.; Bukhari, A.A.; Islam, S.; Mia, S.; Mohammed, M.A.; Kumar, N.M.; Cengiz, K.; Abdulkareem, K.H. IoT based smart agrotech system for verification of Urban farming parameters. Microprocess. Microsyst. 2021, 82, 104025. [Google Scholar] [CrossRef]
- Oberascher, M.; Kinzel, C.; Kastlunger, U.; Kleidorfer, M.; Zingerle, C.; Rauch, W.; Sitzenfrei, R. Integrated urban water management with micro storages developed as an IoT-based solution—The smart rain barrel. Environ. Model. Softw. 2021, 139, 105028. [Google Scholar] [CrossRef]
- Gautam, G.; Sharma, G.; Magar, B.T.; Shrestha, B.; Cho, S.; Seo, C. Usage of IoT Framework in Water Supply Management for Smart City in Nepal. Appl. Sci. 2021, 11, 5662. [Google Scholar] [CrossRef]
- Bamurigire, P.; Vodacek, A.; Valko, A.; Rutabayiro Ngoga, S. Simulation of Internet of Things Water Management for Efficient Rice Irrigation in Rwanda. Agriculture 2020, 10, 431. [Google Scholar] [CrossRef]
- Bamurigire, P.; Vodacek, A.; Jayavel, K.; Ngoga, S.R. A Decision-making Module for Fertilization and Irrigation Control System in Rice Farming Using Markov Chain Process and SARSA Algorithms. In Proceedings of the 2021 The 11th International Workshop on Computer Science and Engineering (WCSE 2021), Shanghai, China, 19–21 June 2021; pp. 367–372. [Google Scholar]
- Nie, X.; Fan, T.; Wang, B.; Li, Z.; Shankar, A.; Manickam, A. Big Data analytics and IoT in Operation safety management in Under Water Management. Comput. Commun. 2020, 154, 188–196. [Google Scholar] [CrossRef]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Gonçalves, R.; Soares, J.J.M.; Lima, R.M.F. An IoT-Based Framework for Smart Water Supply Systems Management. Future Internet 2020, 12, 114. [Google Scholar] [CrossRef]
- Goedertier, S.; Vanthienen, J.; Caron, F. Declarative business process modelling: Principles and modelling languages. Enterp. Inf. Syst. 2015, 9, 161–185. [Google Scholar] [CrossRef] [Green Version]
- Flouris, I.; Giatrakos, N.; Deligiannakis, A.; Garofalakis, M.; Kamp, M.; Mock, M. Issues in complex event processing: Status and prospects in the big data era. J. Syst. Softw. 2017, 127, 217–236. [Google Scholar] [CrossRef]
- Obaideen, K.; Yousef, B.A.; AlMallahi, M.N.; Tan, Y.C.; Mahmoud, M.; Jaber, H.; Ramadan, M. An Overview of Smart Irrigation Systems Using IoT. Energy Nexus 2022, 7, 100124. [Google Scholar] [CrossRef]
- Senožetnik, M.; Herga, Z.; Šubic, T.; Bradeško, L.; Kenda, K.; Klemen, K.; Pergar, P.; Mladenić, D. IoT Middleware for Water Management. Proceedings 2018, 2, 696. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, S.N.; Asnawi, A.; Abdul Malik, N.; Mohd Azmin, N.; Jusoh, A.; Mohd Isa, F. Web based Water Turbidity Monitoring and Automated Filtration System: IoT Application in Water Management. Int. J. Electr. Comput. Eng. 2018, 8, 2088–8708. [Google Scholar] [CrossRef] [Green Version]
- Vijayakumar, J. Turmeric Farm Monitoring System using Wireless Sensor Network with ESP32 Module. In Proceedings of the 2021 Smart Technologies, Communication and Robotics (STCR), Sathyamangalam, India, 9–10 October 2021; pp. 1–5. [Google Scholar]
- Chellaswamy, C.; Nisha, J.; Sivakumar, K.; Kaviya, R. An IoT based dam water management system for agriculture. In Proceedings of the 2018 International Conference on Recent Trends in Electrical, Control and Communication (RTECC), Johor, Malaysia, 20–22 March 2018; pp. 51–56. [Google Scholar]
- Nandhini, R.; Poovizhi, S.; Jose, P.; Ranjitha, R.; Anila, S. Arduino based smart irrigation system using IoT. In Proceedings of the 3rd National Conference on Intelligent Information and Computing Technologies (IICT ‘17), Paris, France, 16–17 March 2017; pp. 1–5. [Google Scholar]
- Li, E.Y.; Wang, W.H.; Hsu, Y.S. Adopting IoT technology to optimize intelligent water management. In Proceedings of the International Conference on Electronic Business (ICEB), Dubai, United Arab Emirates, 4–8 December 2017; pp. 38–46. [Google Scholar]
- Shevale, R.; Karad, S.; Merchant, M.; Kardile, A.; Mishra, V. IOT based real time water monitoring system for smart city. Int. J. Innov. Res. Technol. 2018, 3, 246–251. [Google Scholar]
- Baek, S.S.; Pyo, J.; Chun, J.A. Prediction of water level and water quality using a CNN-LSTM combined deep learning approach. Water 2020, 12, 3399. [Google Scholar] [CrossRef]
- Jan, F.; Min-Allah, N.; Düştegör, D. IoT Based Smart Water Quality Monitoring: Recent Techniques, Trends and Challenges for Domestic Applications. Water 2021, 13, 1729. [Google Scholar] [CrossRef]
- Chang, L.C.; Chang, F.J.; Yang, S.N.; Kao, I.F.; Ku, Y.Y.; Kuo, C.L.; Amin, I.M.Z.b.M. Building an intelligent hydroinformatics integration platform for regional flood inundation warning systems. Water 2019, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Sayari, S.; Mahdavi-Meymand, A.; Zounemat-Kermani, M. Irrigation water infiltration modeling using machine learning. Comput. Electron. Agric. 2021, 180, 105921. [Google Scholar] [CrossRef]
- Jadhav, S.B.; Pingle, N.S. Automatic Measurement and Reporting System of Water Quality Based On GSM. Imp. J. Interdiscip. Res 2016, 2, 657–662. [Google Scholar]
- Shah, J. An internet of things based model for smart water distribution with quality monitoring. Int. J. Innov. Res. Sci. Eng. Technol 2017, 6, 3446–3451. [Google Scholar]
- Yang, L.I.U.; Lei, Z.B.; Wu, K.H.; Hua, C.A.I.; Xuan, L.I.; Zhao, X.Y.; Tang, Z.M. Edge-centric Computing for Smart Water Supply: Management and Service. Destech Trans. Mater. Sci. Eng. 2016, 1, 1–8. [Google Scholar]
- Allen, M.; Preis, A.; Iqbal, M.; Whittle, A.J. Water distribution system monitoring and decision support using a wireless sensor network. In Proceedings of the 2013 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Honolulu, HI, USA, 1–3 July 2013; pp. 641–646. [Google Scholar]
- Marjani, M.; Nasaruddin, F.; Gani, A.; Karim, A.; Hashem, I.A.T.; Siddiqa, A.; Yaqoob, I. Big IoT data analytics: Architecture, opportunities, and open research challenges. IEEE Access 2017, 5, 5247–5261. [Google Scholar]
- Wu, Y.; Kim, K.; Henry, M.F.; Youcef-Toumi, K. Design of a leak sensor for operating water pipe systems. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 6075–6082. [Google Scholar]
- Saraiva, M.; Protas, É.; Salgado, M.; Souza, C. Automatic mapping of center pivot irrigation systems from satellite images using deep learning. Remote Sens. 2020, 12, 558. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, I.; Esteves, P.; Cabrita, P. Water wise—A digital water solution for smart cities and water management entities. Procedia Comput. Sci. 2021, 181, 897–904. [Google Scholar] [CrossRef]
- Ktari, J.; Frikha, T.; Hamdi, M.; Elmannai, H.; Hmam, H. Lightweight AI Framework for Industry 4.0 Case Study: Water Meter Recognition. Big Data Cogn. Comput. 2022, 6, 72. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Rafiee, S.; Mohtasebi, S.S.; Hosseinzadeh-Bandbafha, H.; Wing Chau, K. Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production. Sci. Total Environ. 2018, 631–632, 1279–1294. [Google Scholar] [CrossRef]
- Yadav, A.; Joshi, D.; Kumar, V.; Mohapatra, H.; Iwendi, C.; Gadekallu, T.R. Capability and Robustness of Novel Hybridized Artificial Intelligence Technique for Sediment Yield Modeling in Godavari River, India. Water 2022, 14, 1917. [Google Scholar] [CrossRef]
- Dawood, T.; Elwakil, E.; Novoa, H.M.; Delgado, J.F.G. Artificial intelligence for the modeling of water pipes deterioration mechanisms. Autom. Constr. 2020, 120, 103398. [Google Scholar] [CrossRef]
- Xiang, X.; Li, Q.; Khan, S.; Khalaf, O.I. Urban water resource management for sustainable environment planning using artificial intelligence techniques. Environ. Impact Assess. Rev. 2021, 86, 106515. [Google Scholar] [CrossRef]
- Mercier-Laurent, E. Can Artificial Intelligence Effectively Support Sustainable Development? In IFIP International Workshop on Artificial Intelligence for Knowledge Management; Springer: Berlin/Heidelberg, Germany, 2021; pp. 144–159. [Google Scholar]
- Chang, C.C.; Wang, J.H.; Wu, J.L.; Hsieh, Y.Z.; Wu, T.D.; Cheng, S.C.; Chang, C.C.; Juang, J.G.; Liou, C.H.; Hsu, T.H.; et al. Applying artificial intelligence (AI) techniques to implement a practical smart cage aquaculture management system. J. Med Biol. Eng. 2021, 41, 652–658. [Google Scholar] [CrossRef]
- Victor, N.C.R.; Alazab, M.; Bhattacharya, S.; Magnusson, S.; Maddikunta, P.K.R.; Ramana, K.; Gadekallu, T.R. Federated Learning for IoUT: Concepts, Applications, Challenges and Opportunities. arXiv 2022, arXiv:2207.13976. [Google Scholar]
- Glória, A.; Dionisio, C.; Simões, G.; Cardoso, J.; Sebastião, P. Water management for sustainable irrigation systems using internet-of-things. Sensors 2020, 20, 1402. [Google Scholar] [CrossRef] [Green Version]
- Apaydin, H.; Feizi, H.; Sattari, M.T.; Colak, M.S.; Shamshirband, S.; Chau, K.W. Comparative analysis of recurrent neural network architectures for reservoir inflow forecasting. Water 2020, 12, 1500. [Google Scholar] [CrossRef]
- Vij, A.; Vijendra, S.; Jain, A.; Bajaj, S.; Bassi, A.; Sharma, A. IoT and machine learning approaches for automation of farm irrigation system. Procedia Comput. Sci. 2020, 167, 1250–1257. [Google Scholar] [CrossRef]
- Chowdury, M.S.U.; Emran, T.B.; Ghosh, S.; Pathak, A.; Alam, M.M.; Absar, N.; Andersson, K.; Hossain, M.S. IoT based real-time river water quality monitoring system. Procedia Comput. Sci. 2019, 155, 161–168. [Google Scholar] [CrossRef]
- Karamoutsou, L.; Psilovikos, A. Deep Learning in Water Resources Management: The Case Study of Kastoria Lake in Greece. Water 2021, 13, 3364. [Google Scholar] [CrossRef]
- Thai-Nghe, N.; Thanh-Hai, N.; Chi Ngon, N. Deep learning approach for forecasting water quality in IoT systems. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 686–693. [Google Scholar] [CrossRef]
- AlZubi, A.A. IoT based Automated Water Pollution Treatment using Machine Learning classifiers. Environ. Technol. 2022, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zeng, W.; Shen, Y.; Guo, Z.; Yang, J.; Cheng, X.; Hua, Q.; Yu, K. Integrated Deep Neural Networks-Based Complex System for Urban Water Management. Complexity 2020, 2020, 8848324. [Google Scholar] [CrossRef]
- Li, G.; Ji, J.; Ni, J.; Wang, S.; Guo, Y.; Hu, Y.; Liu, S.; Huang, S.F.; Li, Y.Y. Application of deep learning for predicting the treatment performance of real municipal wastewater based on one-year operation of two anaerobic mem-brane bioreactors. Sci. Total Environ. 2022, 813, 151920. [Google Scholar] [CrossRef]
- Badeti, U.; Pathak, N.K.; Volpin, F.; Dorji, U.; Freguia, S.; Shon, H.K.; Phuntsho, S. Impact of source-separation of urine on effluent quality, energy consumption and greenhouse gas emissions of a decentralized wastewater treatment plant. Process Saf. Environ. Prot. 2021, 150, 298–304. [Google Scholar] [CrossRef]
- Moreno-Rodenas, A.M.; Duinmeijer, A.; Clemens, F.H. Deep-learning based monitoring of FOG layer dynamics in wastewater pumping stations. Water Res. 2021, 202, 117482. [Google Scholar] [CrossRef]
- Nieuwenhuis, E.; Post, J.; Duinmeijer, A.; Langeveld, J.; Clemens, F. Statistical modelling of Fat, Oil and Grease (FOG) deposits in wastewater pump sumps. Water Res. 2018, 135, 155–167. [Google Scholar] [CrossRef]
- Chen, K.; Wang, H.; Valverde-Pérez, B.; Zhai, S.; Vezzaro, L.; Wang, A. Optimal control towards sustainable wastewater treatment plants based on multi-agent reinforcement learning. Chemosphere 2021, 279, 130498. [Google Scholar] [CrossRef]
- Khullar, S.; Singh, N. Water quality assessment of a river using deep learning Bi-LSTM methodology: Forecasting and validation. Environ. Sci. Pollut. Res. 2022, 29, 12875–12889. [Google Scholar] [CrossRef]
- Nemade, B.; Shah, D. An efficient IoT based prediction system for classification of water using novel adaptive incremental learning framework. J. King Saud-Univ.-Comput. Inf. Sci. 2022, 34, 5121–5131. [Google Scholar] [CrossRef]
- Prasad, D.V.V.; Venkataramana, L.Y.; Kumar, P.S.; Prasannamedha, G.; Harshana, S.; Srividya, S.J.; Harrinei, K.; Indraganti, S. Analysis and prediction of water quality using deep learning and auto deep learning techniques. Sci. Total. Environ. 2022, 821, 153311. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Swathi, K.; Rao, N.T.; Ku-mari, N.M.J. Long term prediction of rainfall in Andhra Pradesh with Deep learning. J. Med Pharm. Allied Sci. 2021, 10, 3132–3137. [Google Scholar] [CrossRef]
- Hafizi Md Lani, N.; Yusop, Z.; Syafiuddin, A. A review of rainwater harvesting in Malaysia: Prospects and challenges. Water 2018, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Gaurav, V.; Vinod, V.; Singh, S.K.; Sharma, T.; Pradyumna, K.; Choudhary, S. RainRoof: Automated Shared Rainwater Harvesting Prediction. In Sustainable Communication Networks and Application; Springer: Berlin/Heidelberg, Germany, 2021; pp. 105–122. [Google Scholar]
- Ding, L.; Yang, Q.; Yang, Y.; Ma, H.; Martin, J.D. Potential risk assessment of groundwater to address the agricultural and domestic challenges in Ordos Basin. Environ. Geochem. Health 2021, 43, 717–732. [Google Scholar] [CrossRef]
- Kurtulmuş, E.; Arslan, B.; Kurtulmuş, F. Deep learning for proximal soil sensor development towards smart irri-gation. Expert Syst. Appl. 2022, 198, 116812. [Google Scholar] [CrossRef]
- Raei, E.; Asanjan, A.A.; Nikoo, M.R.; Sadegh, M.; Pourshahabi, S.; Adamowski, J.F. A deep learning image segmentation model for agricultural irrigation system classification. Comput. Electron. Agric. 2022, 198, 106977. [Google Scholar] [CrossRef]
- Li, S.; Liu, H.; Wang, S.; Zhou, Y.; Zhou, B.; Han, Y. Study on flow distribution of irrigation canal system based on image velocimetry. Comput. Electron. Agric. 2022, 195, 106828. [Google Scholar] [CrossRef]
- Jayasinghe, W.L.P.; Deo, R.C.; Ghahramani, A.; Ghimire, S.; Raj, N. Development and evaluation of hybrid deep learning long short-term memory network model for pan evaporation estimation trained with satellite and ground-based data. J. Hydrol. 2022, 607, 127534. [Google Scholar] [CrossRef]
- Rocher, V. Smart Water Management—Case Study Report; K-Water: Deajeon, Korea, 2018. [Google Scholar]
- Grid Intelligence Water Case Study. 2018. Available online: https://www.verizon.com/business/resources/articles/grid-intelligence-water-case-study/ (accessed on 5 September 2022).
- Nickum, J.E.; Kuisma, S.; Bjornlund, H.; Stephan, R.M. Smart Water Management: The way to (artificially) intelligent water management, or just another pretty name? Water Int. 2020, 45, 515–519. [Google Scholar] [CrossRef]
- Ramos, H.M.; McNabola, A.; López-Jiménez, P.A.; Pérez-Sánchez, M. Smart Water Management towards Future Water Sustainable Networks. Water 2020, 12, 58. [Google Scholar] [CrossRef] [Green Version]
- Mutchek, M.; Williams, E. Moving towards sustainable and resilient smart water grids. Challenges 2014, 5, 123–137. [Google Scholar] [CrossRef]
References | Method | Advantages | Disadvantages | Outcomes |
---|---|---|---|---|
[73] | ANN- Artificial Neural Networks RNN- Recurrent Neural Networks Bi-LSTM- Bidirectional long short-term memory LSTM- Long short-term memory GRU- Gated Recurrent Unit | Effective and efficient model for stream flow | Low accuracy Further to help experts, mangers and officials | Correlation Coefficient (CC): 0.85% Mean Absolute Error (MAE): 13.4% Root Mean Square Error (RMSE): 21.16% Nash–Sutcliffe Efficiency Coefficient (NS): 0.65 |
[52] | Hybrid model Convolutional Neural Network (CNN) Long Short-Term Memory (LSTM) | CNN for predicting the water level LSTM for monitoring the water quality Considered three water quality parameters such as, Total Nitrogen (TN), Total Organic Carbon (TOC), and Total Phosphorus (TP) | Used limited data set Not concentrated on parameters like chlorophyll, algae, dissolved oxygen, and fecal bacteria | NS: 0.75 MSE: 0.055 TOC: 0.832 TN: 0.987 TP: 0.899 |
[62] | U-Net, Tensor Flow Libraries CNN | The proposed method determines the center pivot irrigation systems efficiently | The proposed model is deployed on short area and consumes more time | Accuracy: 99% Precision: 99% Recall: 88% |
[74] | SVM (Support Vector Machine) SVR (Support Vector Regression) Radial Basis Function Kernel Random Forest Regression | Proposed IoT smart system for automating the agriculture industry | It does not support dynamic systems Limited Data set Low Accuracy | Accuracy: 81.6% |
[75] | Deep learning neural network models Belief Rule Based Model (BRDM) | low power consumption, low-cost and high detection accuracy | It works for only small area Not considered parameters such as Dissolved Solid, Dissolved Oxygen Chemical Oxygen Demand | Temperature: 46.19 celsius Ph Value: 4.28 |
[76] | Deep Neural Networks (DNNs) Feed-Forward Deep Neural Networks (FF-DNNs) RMSprop optimization algorithm | Proposed real-time water quality and monitoring model | Used limited data set Need to improve the accuracy | NSE: 0.89 MSE: 0.52 |
[77] | SVM, Long-Short Term Memory (LSTM) | Efficient water quality monitor for aquaculture and fisheries | Implemented on limited data set Not dynamic systems Simple LSTM Deployed | RMSE: 4.197 |
[78] | K-Nearest Neighbour (KNN) SVM | Proposed automated water quality monitoring system | Uses different sensors such as pH, temperature, turbidity, and conductivity | Accuracy: 94% |
[79] | Principal Component Analysis (PCA) Random forest | Efficient for Urban Water Management | Limited data set Quality Parameters not considered | MAE: 0.046 RMSE: 0.061 |
Application | Technical Aspect | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ref. | Description | Waste Water Recycle and Management | Rain Water Management | Irrigation Control | Water quality Measurement | CNN | Auto DL | LCA | SVM | LR | ARIMA | Visual DL | LSTM | MDLNN |
[80] | Application of CNN on anaerobic membrane bioreactors (AnMBRs). | ✔ | ✔ | |||||||||||
[82] | Application of multi-agent deep enforcement learning (MADRL) with LCA optimization in waste water treatment plants | ✔ | ✔ | |||||||||||
[83] | FOG estimation on waste water pumping stations | ✔ | ✔ | |||||||||||
[90] | Seasonal auto regressive moving average (SARIMA) with R-CNN enhanced with canny edge algorithm with contour mapping | ✔ | ✔ | ✔ | ||||||||||
[92] | Smart irrigation system based on computer vision and deep learning. Alex Net, Google Net, Res Net, VGG16 and Squeeze net are the deep learning applications used. | ✔ | ✔ | |||||||||||
[93] | Irrigation segmentation using U-Net and Resnet-34 applications. | ✔ | ✔ | |||||||||||
[94] | UAV Velocity measurement system and YOLOV5 algorithm in deep learning with a hybrid Long Short-Term Memory (LSTM) model employed to monitor the Ep. | ✔ | ✔ | ✔ | ||||||||||
[85] | Bi-LSTM with COD and BOD analysis. | ✔ | ✔ | |||||||||||
[86] | IoT based G-SMOTE technique with MDLNN | ✔ | ✔ | |||||||||||
[87] | Application of AutoDL in quality measurement | ✔ | ✔ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishnan, S.R.; Nallakaruppan, M.K.; Chengoden, R.; Koppu, S.; Iyapparaja, M.; Sadhasivam, J.; Sethuraman, S. Smart Water Resource Management Using Artificial Intelligence—A Review. Sustainability 2022, 14, 13384. https://doi.org/10.3390/su142013384
Krishnan SR, Nallakaruppan MK, Chengoden R, Koppu S, Iyapparaja M, Sadhasivam J, Sethuraman S. Smart Water Resource Management Using Artificial Intelligence—A Review. Sustainability. 2022; 14(20):13384. https://doi.org/10.3390/su142013384
Chicago/Turabian StyleKrishnan, Siva Rama, M. K. Nallakaruppan, Rajeswari Chengoden, Srinivas Koppu, M. Iyapparaja, Jayakumar Sadhasivam, and Sankaran Sethuraman. 2022. "Smart Water Resource Management Using Artificial Intelligence—A Review" Sustainability 14, no. 20: 13384. https://doi.org/10.3390/su142013384