Temporal and Spatial Changes of Ecological Environment Quality Based on RSEI: A Case Study in Ulan Mulun River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
2.4. Transition Matrix Analysis
2.5. Spatial Auto-Correlation Analysis
2.6. Flow Chart
3. Results
3.1. RSEI Model Results
3.2. Spatiotemporal Changes in Eco-Environment Quality of Ulan Mulun River Basin
3.3. RSEI Distribution in Ulan Mulun River Basin
3.4. Ecological Environment Quality Change Distribution in the Ulan Mulun River Basin
3.5. Significance of the RSEI Distribution in the Ulan Mulun River Basin
4. Discussion
4.1. Ecological Environment Quality Spatial Auto-Correlation Analysis
4.2. Strengths and Limitations
4.3. Policy Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, B.M.; Grosse, G.; Farquharson, L.M.; Roy-Léveillée, P.; Veremeeva, A.; Kanevskiy, M.Z.; Gaglioti, B.V.; Breen, A.L.; Parsekian, A.D.; Ulrich, M.; et al. Lake and drained lake basin systems in lowland permafrost regions. Nat. Rev. Earth Environ. 2022, 3, 85–98. [Google Scholar] [CrossRef]
- Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Feizizadeh, B.; Lakes, T.; Omarzadeh, D.; Sharifi, A.; Blaschke, T.; Karimzadeh, S. Scenario-based analysis of the impacts of lake drying on food production in the Lake Urmia Basin of Northern Iran. Sci. Rep. 2022, 12, 6237. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, J.; Liang, L. Ecological risk in the Tibetan Plateau and influencing urbanization factors. Environ. Challenges 2022, 6, 100445. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, H.; Ahmad, M.; Xue, C. Analysis of influencing factors of carbon emissions in resource-based cities in the Yellow River basin under carbon neutrality target. Environ. Sci. Pollut. Res. 2021, 29, 23847–23860. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, N.; Wang, H.; Xiu, Y. Study on Influencing Factors and Simulation of Watershed Ecological Compensation Based on Evolutionary Game. Sustainability 2022, 14, 3374. [Google Scholar] [CrossRef]
- Luo, P.; Xu, C.; Kang, S.; Huo, A.; Lyu, J.; Zhou, M.; Nover, D. Heavy metals in water and surface sediments of the Fenghe River Basin, China: Assessment and source analysis. Water Sci. Technol. 2021, 84, 3072–3090. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, P.; Zhao, S.; Kang, S.; Wang, P.; Zhou, M.; Lyu, J. Control and remediation methods for eutrophic lakes in recent 30 years. Water Sci. Technol. 2020, 81, 1099–1113. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, K.; Wang, S.; Wu, T.; Li, X.; Wang, J.; Wang, D.; Zhu, H.; Tan, C.; Ji, Y. Spatiotemporal evolution of ecological vulnerability in the Yellow River Basin under ecological restoration initiatives. Ecol. Indic. 2022, 135, 108586. [Google Scholar] [CrossRef]
- Xiao, Y.; Guo, B.; Lu, Y.; Zhang, R.; Zhang, D.; Zhen, X.; Chen, S.; Wu, H.; Wei, C.; Yang, L.; et al. Spatial–temporal evolution patterns of soil erosion in the Yellow River Basin from 1990 to 2015: Impacts of natural factors and land use change. Geomat. Nat. Hazards Risk 2021, 12, 103–122. [Google Scholar] [CrossRef]
- Cavender-Bares, J.; Schneider, F.D.; Santos, M.J.; Armstrong, A.; Carnaval, A.; Dahlin, K.M.; Fatoyinbo, L.; Hurtt, G.C.; Schimel, D.; Townsend, P.A.; et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat. Ecol. Evol. 2022, 6, 506–519. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Jiang, W.; Huang, Z. Spatiotemporal variations of eco-environment in the Guangxi Beibu Gulf Economic Zone based on remote sensing ecological index and granular computing. J. Geogr. Sci. 2022, 32, 1813–1830. [Google Scholar] [CrossRef]
- Guo, B.; Yang, F.; Fan, J.; Lu, Y. The Changes of Spatiotemporal Pattern of Rocky Desertification and Its Dominant Driving Factors in Typical Karst Mountainous Areas under the Background of Global Change. Remote Sens. 2022, 14, 2351. [Google Scholar] [CrossRef]
- Guo, B.; Wei, C.; Yu, Y.; Liu, Y.; Li, J.; Meng, C.; Cai, Y. The dominant influencing factors of desertification changes in the source region of Yellow River: Climate change or human activity? Sci. Total Environ. 2021, 813, 152512. [Google Scholar] [CrossRef]
- Liao, W.; Nie, X.; Zhang, Z. Interval association of remote sensing ecological index in China based on concept lattice. Environ. Sci. Pollut. Res. 2022, 29, 34194–34208. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Zhu, W.; He, B.; Qiao, K.; Zhan, P.; Huang, X. A background-free phenology index for improved monitoring of vegetation phenology. Agric. For. Meteorol. 2022, 315, 108826. [Google Scholar] [CrossRef]
- Aboelsoud, H.M.; AbdelRahman, M.A.E.; Kheir, A.M.S.; Eid, M.S.M.; Ammar, K.A.; Khalifa, T.H.; Scopa, A. Quantitative Estimation of Saline-Soil Amelioration Using Remote-Sensing Indices in Arid Land for Better Management. Land 2022, 11, 1041. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G.F. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Kumari, N.; Srivastava, A.; Dumka, U. A Long-Term Spatiotemporal Analysis of Vegetation Greenness over the Himalayan Region Using Google Earth Engine. Climate 2021, 9, 109. [Google Scholar] [CrossRef]
- Sun, G.; Jiao, Z.; Zhang, A.; Li, F.; Fu, H.; Li, Z. Hyperspectral image-based vegetation index (HSVI): A new vegetation index for urban ecological research. Int. J. Appl. earth Obs. Geoinf. ITC J. 2021, 103, 102529. [Google Scholar] [CrossRef]
- Cilek, M.U.; Cilek, A. Analyses of land surface temperature (LST) variability among local climate zones (LCZs) comparing Landsat-8 and ENVI-met model data. Sustain. Cities Soc. 2021, 69, 102877. [Google Scholar] [CrossRef]
- Mondol, A.H.; Zhu, X.; Dunkerley, D.; Henley, B.J. Observed meteorological drought trends in Bangladesh identified with the Effective Drought Index (EDI). Agric. Water Manag. 2021, 255, 107001. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Ali, M.; Sharafati, A.; Al-Ansari, N.; Shahid, S. Forecasting standardized precipitation index using data intelligence models: Regional investigation of Bangladesh. Sci. Rep. 2021, 11, 3435. [Google Scholar] [CrossRef]
- Deyle, E.R.; Bouffard, D.; Frossard, V.; Schwefel, R.; Melack, J.; Sugihara, G. A hybrid empirical and parametric approach for managing ecosystem complexity: Water quality in Lake Geneva under nonstationary futures. Proc. Natl. Acad. Sci. USA 2022, 119, e2102466119. [Google Scholar] [CrossRef]
- Shojaei, S.; Rahimzadegan, M. Improving a comprehensive remote sensing drought index (CRSDI) in the Western part of Iran. Geocarto Int. 2020, 37, 1318–1336. [Google Scholar] [CrossRef]
- Binding, C.; Pizzolato, L.; Zeng, C. EOLakeWatch; delivering a comprehensive suite of remote sensing algal bloom indices for enhanced monitoring of Canadian eutrophic lakes. Ecol. Indic. 2020, 121, 106999. [Google Scholar] [CrossRef]
- Wu, H.; Guo, B.; Fan, J.; Yang, F.; Han, B.; Wei, C.; Lu, Y.; Zang, W.; Zhen, X.; Meng, C. A novel remote sensing ecological vulnerability index on large scale: A case study of the China-Pakistan Economic Corridor region. Ecol. Indic. 2021, 129, 107955. [Google Scholar] [CrossRef]
- Xu, H.Q. A Remote Sensing Index for Assessment of Regional Ecological Changes. China Environ. Sci. 2013, 33, 889–897. [Google Scholar]
- Ren, W.; Zhang, X.; Peng, H. Evaluation of Temporal and Spatial Changes in Ecological Environmental Quality on Jianghan Plain From 1990 to 2021. Front. Environ. Sci. 2022, 10, 77. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, T.; Fan, J.; Man, W.; Liu, M.; Zhao, Y.; Zheng, H.; Liu, Y.; Li, C.; Song, J.; et al. Land Use and Climate Change Altered the Ecological Quality in the Luanhe River Basin. Int. J. Environ. Res. Public Health 2022, 19, 7719. [Google Scholar] [CrossRef]
- Hou, J.; Rusuli, Y. Assessment of Soil Salinization Risk by Remote Sensing-Based Ecological Index (RSEI) in the Bosten Lake Watershed, Xinjiang in Northwest China. Sustainability 2022, 14, 7118. [Google Scholar] [CrossRef]
- Jiang, C.L.; Wu, L.; Liu, D.; Wang, S.M. Dynamic monitoring of eco-environmental quality in arid desert area by remote sensing: Taking the Gurbantunggut Desert China as an example. J. Appl. Ecol. 2019, 30, 877–883. [Google Scholar]
- Shan, W.; Jin, X.; Ren, J.; Wang, Y.; Xu, Z.; Fan, Y.; Gu, Z.; Hong, C.; Lin, J.; Zhou, Y. Ecological environment quality assessment based on remote sensing data for land consolidation. J. Clean. Prod. 2019, 239, 118126. [Google Scholar] [CrossRef]
- An, M.; Xie, P.; He, W.; Wang, B.; Huang, J.; Khanal, R. Spatiotemporal change of ecologic environment quality and human interaction factors in three gorges ecologic economic corridor, based on RSEI. Ecol. Indic. 2022, 141, 109090. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, D.; Wang, X.; Zhang, Z.; Nawaz, Z. Testing Accuracy of Land Cover Classification Algorithms in the Qilian Mountains Based on GEE Cloud Platform. Remote Sens. 2021, 13, 5064. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Rajandran, A.; Tan, M.L.; Samat, N.; Chan, N.W. A review of Google Earth Engine application in mapping aquaculture ponds. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 1064, p. 012011. [Google Scholar]
- Halder, B.; Bandyopadhyay, J. Monitoring the tropical cyclone ‘Yass’ and ‘Amphan’affected flood inundation using Sentinel-1/2 data and Google Earth Engine. Model. Earth Syst. Environ. 2022, 8, 4317–4332. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, Z.; Liu, Q.; Shan, X.; Li, P.; Liang, X. The C–S–Fe system evolution reveals organic matter preservation in lacustrine shales of Yanchang Formation, Ordos Basin, China. Mar. Pet. Geol. 2022, 142, 105734. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, G.; Su, X.; Zhuang, X.; Wang, L.; Fu, H.; Li, L. Geochemical controls on the enrichment of fluoride in the mine water of the Shendong mining area, China. Chemosphere 2021, 284, 131388. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Zhang, W.; Ye, Y.; Lv, X.; Yang, W. Is underground coal mining causing land degradation and significantly damaging ecosystems in semi-arid areas? A study from an Ecological Capital perspective. Land Degrad. Dev. 2020, 31, 1969–1989. [Google Scholar] [CrossRef]
- Guo, Y.; Li, R.; Chen, J.; Chen, G.; Li, B. Driving Analysis of Spatiotemporal Change of Land Use in Production-Living-Ecology Space in Shendong Mining Area. Int. J. Front. Eng. Technol. 2020, 2, 213–221. [Google Scholar] [CrossRef]
- Zeng, Y.; Lian, H.; Du, X.; Tan, X.; Liu, D. An Analog Model Study on Water–Sand Mixture Inrush Mechanisms During the Mining of Shallow Coal Seams. Mine Water Environ. 2022, 41, 428–436. [Google Scholar] [CrossRef]
- Zhang, Y.; Khan, I.; Zafar, M.W. Assessing environmental quality through natural resources, energy resources, and tax revenues. Environ. Sci. Pollut. Res. 2022, 7, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yao, W.; Li, P.; Hu, J.; Latifi, H.; Kang, L.; Wang, N.; Zhang, D. Changes of SOC Content in China’s Shendong Coal Mining Area during 1990–2020 Investigated Using Remote Sensing Techniques. Sustainability 2022, 14, 7374. [Google Scholar] [CrossRef]
- Ambinakudige, S.; Intsiful, A. Estimation of area and volume change in the glaciers of the Columbia Icefield, Canada using machine learning algorithms and Landsat images. Remote Sens. Appl. Soc. Environ. 2022, 26, 100732. [Google Scholar] [CrossRef]
- Kosczor, E.; Forkel, M.; Hernández, J.; Kinalczyk, D.; Pirotti, F.; Kutchartt, E. Assessing land surface phenology in Araucaria-Nothofagus forests in Chile with Landsat 8/Sentinel-2 time series. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102862. [Google Scholar] [CrossRef]
- Xia, X.; Jiao, C.; Song, S.; Zhang, L.; Feng, X.; Huang, Q. Developing a method for assessing environmental sustainability based on the Google Earth Engine platform. Environ. Sci. Pollut. Res. 2022, 29, 57437–57452. [Google Scholar] [CrossRef]
- Cao, R.; Xu, Z.; Chen, Y.; Chen, J.; Shen, M. Reconstructing High-Spatiotemporal-Resolution (30 m and 8-Days) NDVI Time-Series Data for the Qinghai–Tibetan Plateau from 2000–2020. Remote Sens. 2022, 14, 3648. [Google Scholar] [CrossRef]
- Gxokwe, S.; Dube, T.; Mazvimavi, D. Leveraging Google Earth Engine platform to characterize and map small seasonal wetlands in the semi-arid environments of South Africa. Sci. Total Environ. 2021, 803, 150139. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Lu, X.; Peng, S.; Yin, Y. Evaluation of Ecological Environment in Futuanhe Nature Reserve Based on Remote Sensing Ecological Index. In Proceedings of the 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 4–6 March 2022; Volume 6, pp. 1351–1354. [Google Scholar]
- Zeng, Y.; Hao, D.; Huete, A.; Dechant, B.; Berry, J.; Chen, J.M.; Joiner, J.; Frankenberg, C.; Bond-Lamberty, B.; Chen, M.; et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ. 2022, 3, 477–493. [Google Scholar] [CrossRef]
- Ferchichi, A.; Ben Abbes, A.; Barra, V.; Farah, I.R. Forecasting vegetation indices from spatio-temporal remotely sensed data using deep learning-based approaches: A systematic literature review. Ecol. Informatics 2022, 68, 101552. [Google Scholar] [CrossRef]
- Sams, B.; Bramley, R.G.; Sanchez, L.; Dokoozlian, N.; Ford, C.; Pagay, V. Remote Sensing, Yield, Physical Characteristics, and Fruit Composition Variability in Cabernet Sauvignon Vineyards. Am. J. Enol. Vitic. 2022, 73, 93–105. [Google Scholar] [CrossRef]
- Cheng, M.; Jiao, X.; Liu, Y.; Shao, M.; Yu, X.; Bai, Y.; Wang, Z.; Wang, S.; Tuohuti, N.; Liu, S.; et al. Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning. Agric. Water Manag. 2022, 264, 107530. [Google Scholar] [CrossRef]
- Schlüter, S.; Leuther, F.; Albrecht, L.; Hoeschen, C.; Kilian, R.; Surey, R.; Mikutta, R.; Kaiser, K.; Mueller, C.W.; Vogel, H.-J. Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime. Nat. Commun. 2022, 13, 2098. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Liang, J.; Huang, W.; Xu, W.; Li, B.; Wang, J. Extraction of Water Body Information from Remote Sensing Imagery While Considering Greenness and Wetness Based on Tasseled Cap Transformation. Remote Sens. 2022, 14, 3001. [Google Scholar] [CrossRef]
- Luo, H.; Ming, D.; Xu, L. Time series calculation of remote sensing ecological index based on GEE. Remote Sens. Nat. Resour. 2022, 34, 271–277. [Google Scholar]
- Awad, M.; Aldaood, A.; Alkiki, I. Development of a Compressibility Prediction Model Based on Soil Index Properties and Area Under/Bounded by Consolidation and Rebound Curves. Geotech. Geol. Eng. 2022, 40, 4787–4807. [Google Scholar] [CrossRef]
- Permatasari, A.D.; Prasetyo, S.Y.J. Identifikasi Wilayah Resiko Kerusakan Lahan Terbangun Sebagai Dampak Tsunami Berdasarkan Analisis Building Indices. J. Transform. 2022, 20, 13–21. [Google Scholar] [CrossRef]
- Yang, J.; Duan, S.-B.; Zhang, X.; Wu, P.; Huang, C.; Leng, P.; Gao, M. Evaluation of Seven Atmospheric Profiles from Reanalysis and Satellite-Derived Products: Implication for Single-Channel Land Surface Temperature Retrieval. Remote Sens. 2020, 12, 791. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Zhang, S.; Rao, X.; Lin, X.; Li, R. Landsat TM/OLI-Based Ecological and Environmental Quality Survey of Yellow River Basin, Inner Mongolia Section. Remote Sens. 2021, 13, 4477. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, J.; Zhou, C.; Li, Y. An ecological assessment process based on integrated remote sensing model: A case from Kaikukang-Walagan District, Greater Khingan Range, China. Ecol. Inform. 2022, 70, 101699. [Google Scholar] [CrossRef]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Eco-environmental quality assessment based on pressure-state-response framework by remote sensing and GIS. Remote Sens. Appl. Soc. Environ. 2021, 23, 100530. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, W. Monitoring and Evaluation of Eco-Environment Quality Based on Remote Sensing-Based Ecological Index (RSEI) in Taihu Lake Basin, China. Sustainability 2022, 14, 5642. [Google Scholar] [CrossRef]
- Wen, X.; Ming, Y.; Gao, Y.; Hu, X. Dynamic Monitoring and Analysis of Ecological Quality of Pingtan Comprehensive Experimental Zone, a New Type of Sea Island City, Based on RSEI. Sustainability 2019, 12, 21. [Google Scholar] [CrossRef] [Green Version]
- Visser, I.; Speekenbrink, M. Hidden Markov Models. In Mixture and Hidden Markov Models with R; Springer: Cham, Switzerland, 2022; pp. 125–172. [Google Scholar]
- Zhou, Z.; Feng, Q.; Zhu, C.; Luo, W.; Wang, L.; Zhao, X.; Zhang, L. The Spatial and Temporal Evolution of Ecological Environment Quality in Karst Ecologically Fragile Areas Driven by Poverty Alleviation Resettlement. Land 2022, 11, 1150. [Google Scholar] [CrossRef]
- Le, K.G.; Liu, P.; Lin, L.-T. Traffic accident hotspot identification by integrating kernel density estimation and spatial autocorrelation analysis: A case study. Int. J. Crashworthiness 2020, 27, 543–553. [Google Scholar] [CrossRef]
- Hu, X.; Ma, C.; Huang, P.; Guo, X. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection—A case of Weifang City, China. Ecol. Indic. 2021, 125, 107464. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, F.; He, Y.; Kung, H.-T.; Johnson, V.C.; Arikena, M. Assessment of spatial and temporal variation of ecological environment quality in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Ecol. Indic. 2019, 110, 105874. [Google Scholar] [CrossRef]
- Fangfeng, L.; Jieping, C.; Zicen, L. Comprehensive Evaluation and Analysis of Spatial Dynamic Transition of Air Pollution. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 676, p. 012009. [Google Scholar]
- Hou, R.; Li, S.; Chen, H.; Ren, G.; Gao, W.; Liu, L. Coupling mechanism and development prospect of innovative ecosystem of clean energy in smart agriculture based on blockchain. J. Clean. Prod. 2021, 319, 128466. [Google Scholar] [CrossRef]
- Coca, O.; Ricaurte-Villota, C. Regional Patterns of Coastal Erosion and Sedimentation Derived from Spatial Autocorrelation Analysis: Pacific and Colombian Caribbean. Coasts 2022, 2, 125–151. [Google Scholar] [CrossRef]
- Boudou, M.; Cleary, E.; ÓhAiseadha, C.; Garvey, P.; McKeown, P.; O’Dwyer, J.; Hynds, P. Spatiotemporal epidemiology of cryptosporidiosis in the Republic of Ireland, 2008–2017: Development of a space–time “cluster recurrence” index. BMC Infect. Dis. 2021, 21, 880. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Han, J.; Hu, Z. Assessment of Spatial Temporal Changes of Ecological Environment Quality: A Case Study in Huaibei City, China. Land 2022, 11, 944. [Google Scholar] [CrossRef]
- Lian, Z.; Hao, H.; Zhao, J.; Cao, K.; Wang, H.; He, Z. Evaluation of Remote Sensing Ecological Index Based on Soil and Water Conservation on the Effectiveness of Management of Abandoned Mine Landscaping Transformation. Int. J. Environ. Res. Public Health 2022, 19, 9750. [Google Scholar] [CrossRef] [PubMed]
- Ye, H. Analysis on Ecological Environment Change of Kalajun-Kurdening World Natural Heritage Site from 2006 to 2019. Pol. J. Environ. Stud. 2021, 31, 915–927. [Google Scholar] [CrossRef]
- Liu, J.; Xin, Z.; Huang, Y.; Yu, J. Climate suitability assessment on the Qinghai-Tibet Plateau. Sci. Total Environ. 2021, 816, 151653. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, W.; Lu, N.; Huang, S.; Wu, C.; Wang, L.; Dai, F.; Kou, W. Assessment of spatial–temporal changes of ecological environment quality based on RSEI and GEE: A case study in Erhai Lake Basin, Yunnan province, China. Ecol. Indic. 2021, 125, 107518. [Google Scholar] [CrossRef]
- Kassouri, Y.; Okunlola, O.A. Analysis of spatio-temporal drivers and convergence characteristics of urban development in Africa. Land Use Policy 2021, 112, 105868. [Google Scholar] [CrossRef]
- Anselin, L. A Local Indicator of Multivariate Spatial Association: Extending Geary’s c. Geogr. Anal. 2019, 51, 133–150. [Google Scholar] [CrossRef]
- Li, Y.Q.; Chen, Y.; Cao, W.J.; Wang, X.Y.; Niu, Y.Y. Theoretical basis of ecology for the influence of global change on resources, environment, and ecosystems. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2022, 33, 603–612. [Google Scholar]
- Feng, J.; Wang, N.; Sun, G. Measurement of Innovation-Driven Development Performance of Large-Scale Environmental Protection Enterprises Investing in Public–Private Partnership Projects Based on the Hybrid Method. Sustainability 2022, 14, 5096. [Google Scholar] [CrossRef]
- Zhao, L.; Shen, Y.; Gu, N.; Dai, J. Development Mode of Recreation Belt around the City: Ecological Authenticity or Fashion Creativity? Bioinorg. Chem. Appl. 2022, 2022, 9292668. [Google Scholar] [CrossRef] [PubMed]
- Wang, M. Land Classification in Chang Tang Nature Reserve Supported by GEE Cloud Platform. World Sci. Res. J. 2022, 8, 548–554. [Google Scholar]
- Shuning, D. Patterns of Rational Development and Utilization of Water Resources in the Study Area. In Study on the Optimal Allocation of Water Resources Systems and the Comprehensive Utilization of Water Resources in Arid-Semiarid Multiple Mining Areas; Springer: Cham, Switzerland, 2016; pp. 219–242. [Google Scholar]
- Shi, L.; Yang, L. Study on treatment technology of industrial and mining wasteland in Shenmu City. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 804, p. 042011. [Google Scholar]
- Sun, C.; Li, X.; Zhang, W.; Li, X. Evolution of ecological security in the tableland region of the Chinese loess plateau using a remote-sensing-based index. Sustainability 2020, 12, 3489. [Google Scholar] [CrossRef]
- Xia, Q.-Q.; Chen, Y.-N.; Zhang, X.-Q.; Ding, J.-L. Spatiotemporal Changes in Ecological Quality and Its Associated Driving Factors in Central Asia. Remote Sens. 2022, 14, 3500. [Google Scholar] [CrossRef]
- Norberg, J.; Blenckner, T.; Cornell, S.E.; Petchey, O.L.; Hillebrand, H. Failures to disagree are essential for environmental science to effectively influence policy development. Ecol. Lett. 2022, 25, 1075–1093. [Google Scholar] [CrossRef]
- Vakhitov, D.R.; Uryadnikova, M.V.; Nashirvanova, Y.F.; Makarova, E.S.; Kirillova, L.G. Environmental aspects of the industrial policy of modern municipalities. In Cooperation and Sustainable Development; Springer: Cham, Switzerland, 2022; pp. 1387–1393. [Google Scholar]
- Ding, W.; Jimoh, S.O.; Hou, X.; Shu, X.; Dong, H.; Bolormaa, D.; Wang, D. Grassland Ecological Subsidy Policy and Livestock Reduction Behavior: A Case Study of Herdsmen in Northern China. Rangel. Ecol. Manag. 2022, 81, 78–85. [Google Scholar] [CrossRef]
- Awan, U. Industrial ecology in support of sustainable development goals. In Responsible Consumption and Production; Springer International Publishing: Cham, Switzerland, 2022; pp. 370–380. [Google Scholar]
- Liu, S.; Shao, Q.; Ning, J.; Niu, L.; Zhang, X.; Liu, G.; Huang, H. Remote-Sensing-Based Assessment of the Ecological Restoration Degree and Restoration Potential of Ecosystems in the Upper Yellow River over the Past 20 Years. Remote Sens. 2022, 14, 3550. [Google Scholar] [CrossRef]
2000 | 2005 | 2010 | 2015 | 2020 | |
---|---|---|---|---|---|
Water | 1.38% | 1.16% | 1.96% | 1.87% | 2.1% |
Forest | 0.96% | 0.21% | 0.22% | 0.23% | 0.51% |
Grassland | 52.17% | 52.77% | 56.11% | 66.92% | 62.89% |
Bare soil | 30.05% | 31.77% | 26.23% | 11.77% | 14.42% |
Urban | 3% | 3.2% | 4.66% | 9.01% | 9.76% |
Industrial | 0.98% | 0.98% | 2.21% | 2.36% | 2.25% |
Farmland | 11.44% | 9.9% | 8.63% | 7.83% | 8.06% |
Index | Formula | Explanation |
---|---|---|
NDVI | (Bnir − Bred)/(Bnir + Bred) | Bblue, Bgreen, Bred, Bnir, Bswir1, Bswir2 represent reflectance in Landsat 5/8 band, respectively; βi are parameters of Landsat 5/8 bands. SI and IBI represent soil index and building index, respectively T indicates the bright surface temperature. K1 and K2 are calibration parameters for surface temperature. |
WET | β1Bblue + β2Bgreen + β3Bred + β4Bnir + β5Bswir1 + β6Bswir2 | |
NDBSI | (SI + IBI)/2 | |
SI | [(Bnir + Bred) − (Bnir + Bblue)]/[(Bnir + Bred) + (Bnir + Bblue)] | |
IBI | {2Bswir2/(Bswir1 + Bnir) − [Bnir/(Bred + Bnir) + Bgreen/(Bswir1 + Bgreen)]/{2Bswir2/(Bswir1 + Bnir) + [Bnir/(Bred + Bnir) + Bgreen/(Bswir1 + Bgreen)] | |
LST | T/[1 + (λT/ρ)Lnε]] − 273.15 | |
T | K2/ln(K1/Bswir1+1) |
T2 | Pi* | Decrement | ||||
---|---|---|---|---|---|---|
A1 | A2 | An | ||||
T1 | A1 | P11 | P12 | P1n | P1* | P1*–P11 |
A2 | P21 | P22 | P2n | P2* | P2*–P22 | |
An | Pn1 | Pn2 | Pnn | Pn* | Pn*–Pnn | |
P*j | P*1 | P*2 | P*n | 1 | ||
Increment | P*1–P11 | P*2–P21 | P*2–P22 |
Year | Indicator | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|---|
2000 | NDVI | 0.4767 | −0.4905 | 0.1117 | 0.7209 |
WET | 0.3465 | −0.7544 | −0.0881 | −0.0721 | |
LST | −0.3595 | 0.3314 | −0.6638 | 0.5660 | |
NDBSI | −0.4750 | 0.2837 | 0.7343 | 0.3933 | |
Eigenvalue | 0.0221 | 0.0161 | 0.0036 | 0.0012 | |
Percent eigenvalue | 51.44% | 37.43% | 8.35% | 2.78% | |
2005 | NDVI | 0.8025 | 0.5764 | 0.0501 | 0.1461 |
WET | 0.4684 | −0.4624 | 0.0118 | −0.7524 | |
LST | −0.0267 | 0.0163 | 0.0054 | 0.0024 | |
NDBSI | −0.2828 | 0.4403 | 0.7328 | −0.4349 | |
Eigenvalue | 0.0267 | 0.0163 | 0.0054 | 0.0024 | |
Percent eigenvalue | 52.51% | 32.05% | 10.68% | 4.77% | |
2010 | NDVI | 0.5968 | 0.7828 | 0.1744 | −0.0251 |
WET | 0.5272 | −0.2768 | −0.4675 | 0.6533 | |
LST | −0.4159 | 0.2423 | 0.4439 | 0.7558 | |
NDBSI | −0.4393 | 0.5018 | −0.7443 | 0.0344 | |
Eigenvalue | 0.0242 | 0.0163 | 0.0062 | 0.0041 | |
Percent eigenvalue | 47.6% | 31.98% | 12.28% | 8.14% | |
2015 | NDVI | 0.5459 | 0.1882 | −0.4229 | −0.6988 |
WET | 0.5078 | −0.7981 | 0.3241 | −0.0141 | |
LST | −0.3644 | 0.0439 | 0.6499 | −0.6655 | |
NDBSI | −0.5580 | −0.5707 | −0.5425 | −0.2620 | |
Eigenvalue | 0.0357 | 0.0137 | 0.0053 | 0.0014 | |
Percent eigenvalue | 63.71% | 24.35% | 9.4% | 2.53% | |
2020 | NDVI | 0.6125 | 0.2511 | −0.2292 | −0.7136 |
WET | 0.4515 | −0.8412 | 0.2974 | −0.0040 | |
LST | −0.4198 | 0.0251 | 0.7006 | −0.5765 | |
NDBSI | −0.4947 | −0.4782 | −0.6067 | −0.3987 | |
Eigenvalue | 0.0354 | 0.0138 | 0.0052 | 0.0010 | |
Percent eigenvalue | 63.81% | 24.97% | 9.43% | 1.79% |
Year | Indicator | Minimum | Maximum | Mean | Std Dev |
---|---|---|---|---|---|
2000 | NDVI | −0.177 | 0.771 | 0.179 | 0.060 |
WET | −0.272 | 0.268 | 0.106 | 0.042 | |
LST | 27.242 | 34.370 | 31.436 | 0.965 | |
NDBSI | −0.508 | 0.293 | 0.106 | 0.038 | |
RSEI | 0 | 1 | 0.418 | 0.176 | |
2005 | NDVI | −0.372 | 0.779 | 0.206 | 0.053 |
WET | −0.242 | 0.144 | 0.115 | 0.041 | |
LST | 27.612 | 34.680 | 31.086 | 1.065 | |
NDBSI | −0.390 | 0.399 | 0.112 | 0.031 | |
RSEI | 0 | 1 | 0.421 | 0.144 | |
2010 | NDVI | −0.430 | 0.669 | 0.219 | 0.057 |
WET | −0.290 | 0.241 | 0.212 | 0.040 | |
LST | 27.526 | 34.281 | 30.796 | 0.924 | |
NDBSI | −0.518 | 0.453 | 0.117 | 0.036 | |
RSEI | 0 | 1 | 0.443 | 0.154 | |
2015 | NDVI | −0.177 | 0.869 | 0.309 | 0.093 |
WET | −0.266 | 0.235 | 0.218 | 0.030 | |
LST | 25.467 | 33.087 | 30.042 | 1.033 | |
NDBSI | −0.512 | 0.520 | 0.082 | 0.051 | |
RSEI | 0 | 1 | 0.456 | 0.185 | |
2020 | NDVI | −0.281 | 0.859 | 0.353 | 0.104 |
WET | −0.357 | 0.255 | 0.220 | 0.029 | |
LST | 24.107 | 33.223 | 29.922 | 1.090 | |
NDBSI | −0.555 | 1.321 | 0.058 | 0.057 | |
RSEI | 0 | 1 | 0.507 | 0.191 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, M.; Zhang, S.; Huang, L.; Liu, Z.; Yang, L.; Li, R.; Lin, X. Temporal and Spatial Changes of Ecological Environment Quality Based on RSEI: A Case Study in Ulan Mulun River Basin, China. Sustainability 2022, 14, 13232. https://doi.org/10.3390/su142013232
Luo M, Zhang S, Huang L, Liu Z, Yang L, Li R, Lin X. Temporal and Spatial Changes of Ecological Environment Quality Based on RSEI: A Case Study in Ulan Mulun River Basin, China. Sustainability. 2022; 14(20):13232. https://doi.org/10.3390/su142013232
Chicago/Turabian StyleLuo, Meng, Shengwei Zhang, Lei Huang, Zhiqiang Liu, Lin Yang, Ruishen Li, and Xi Lin. 2022. "Temporal and Spatial Changes of Ecological Environment Quality Based on RSEI: A Case Study in Ulan Mulun River Basin, China" Sustainability 14, no. 20: 13232. https://doi.org/10.3390/su142013232
APA StyleLuo, M., Zhang, S., Huang, L., Liu, Z., Yang, L., Li, R., & Lin, X. (2022). Temporal and Spatial Changes of Ecological Environment Quality Based on RSEI: A Case Study in Ulan Mulun River Basin, China. Sustainability, 14(20), 13232. https://doi.org/10.3390/su142013232