Sustainability of Vertical Farming in Comparison with Conventional Farming: A Case Study in Miyagi Prefecture, Japan, on Nitrogen and Phosphorus Footprint
Abstract
:1. Introduction
1.1. Importance of Nutrient Management
1.2. Vertical Farming as an Emerging Technology in Agriculture
1.3. Objective
2. Data and Methods
2.1. Data
2.1.1. Management of Vertical Farming in Japan
2.1.2. Distribution of Vertical Farming in Miyagi Prefecture
2.2. Footprint Calculation
2.3. Comparison Analysis
3. Results
3.1. Prefectural-Level N and P Footprints
3.2. Results of the Scenario Analysis
3.3. Results for N and P Use Efficiency
4. Discussion
4.1. Impact of VF on Averting the Risk of Water Degradation
4.2. Impact of VF on Food Self-Sufficiency and Urban Agriculture
4.3. Potential of VF as a Disaster-Resilient Agriculture
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for Keeping the Food System within Environmental Limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Smith, V.H. Eutrophication of Freshwater and Coastal Marine Ecosystems a Global Problem. Environ. Sci. Pollut. Res. 2003, 10, 126–139. [Google Scholar] [CrossRef]
- Bouwman, L.; Goldewijk, K.K.; van der Hoek, K.W.; Beusen, A.H.; van Vuuren, D.P.; Willems, J.; Rufino, M.C.; Stehfest, E. Exploring Global Changes in Nitrogen and Phosphorus Cycles in Agriculture Induced by Livestock Production over the 1900–2050 Period. Proc. Natl. Acad. Sci. USA 2013, 110, 20882–20887. [Google Scholar] [CrossRef] [Green Version]
- Cordell, D.; Drangert, J.-O.; White, S. The Story of Phosphorus: Global Food Security and Food for Thought. Glob. Environ. Change 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global Analysis of Nitrogen and Phosphorus Limitation of Primary Producers in Freshwater, Marine and Terrestrial Ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Halog, A.; Manik, Y. Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment. Sustainability 2011, 3, 469–499. [Google Scholar] [CrossRef] [Green Version]
- Kalantari, F.; Tahir, O.M.; Joni, R.A.; Fatemi, E. Opportunities and Challenges in Sustainability of Vertical Farming: A Review. J. Landsc. Ecol. 2017, 11, 35–60. [Google Scholar] [CrossRef] [Green Version]
- Despommier, D. The Vertical Farm: Controlled Environment Agriculture Carried out in Tall Buildings Would Create Greater Food Safety and Security for Large Urban Populations. J. Verbrauch. Lebensm. 2010, 6, 233–236. [Google Scholar] [CrossRef]
- Pascual, M.P.; Lorenzo, G.A.; Gabriel, A.G. Vertical Farming Using Hydroponic System: Toward a Sustainable Onion Production in Nueva Ecija, Philippines. Open J. Ecol. 2018, 8, 25–41. [Google Scholar] [CrossRef] [Green Version]
- Harris, Z.M.; Kountouris, Y. Vertical Farming as a Game Changer for Beccs Technology Deployment. Sustainability 2020, 12, 8193. [Google Scholar] [CrossRef]
- Stein, E.W. The Transformative Environmental Effects Large-Scale Indoor Farming May Have on Air, Water, and Soil. Air Soil Water Res. 2021, 14, 1–8. [Google Scholar] [CrossRef]
- Gulati, A.; Minot, N.; Delgado, C.; Bora, S. Growth in high-value agriculture in Asia and the emergence of vertical links with farmers. In Global Supply Chains, Standards and the Poor: How the Globalization of Food Systems and Standards Affects Rural Development and Poverty; CABI: Wallingford, UK, 2007; pp. 91–108. [Google Scholar]
- Kozai, T. The Progress and Development Direction of Plant Factory with Artificial Lighting. Spec. Issue Tech. Improv. Bus. Model. Plant. Fact. Artif. Lighting 2013, 21, 4–18. (In Japanese) [Google Scholar]
- Kozai, T.; Niu, G. Role of the Plant Factory with Artificial Lighting (Pfal) in Urban Areas. In Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Kozai, T., Niu, G., Takagaki, M., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 7–33. [Google Scholar]
- Kozai, T. Plant Factory in Japan—Current Situation and Perspectives. Chron. Hortic. 2013, 53, 8–11. [Google Scholar]
- Miller, A.; Adhikari, R.; Nemali, K. Recycling Nutrient Solution Can Reduce Growth Due to Nutrient Deficiencies in Hydroponic Production. Front. Plant. Sci. 2020, 11, 607643. [Google Scholar] [CrossRef]
- Despommier, D. The Rise of Vertical Farms. Sci. Am. 2009, 301, 80–87. [Google Scholar] [CrossRef]
- Germer, J.; Sauerborn, J.; Asch, F.; de Boer, J.; Schreiber, J.; Weber, G.; Müller, J. Skyfarming an Ecological Innovation to Enhance Global Food Security. J. Verbrauch. Lebensm. 2011, 6, 237–251. [Google Scholar] [CrossRef]
- Sarkar, A.; Majumder, M. Opportunities and Challenges in Sustainability of Vertical Eco-Farming: A Review. J. Adv. Agric. Technol. 2015, 2, 98–105. [Google Scholar] [CrossRef]
- Gnauer, C.; Pichler, H.; Schmittner, C.; Tauber, M.; Christl, K.; Knapitsch, J.; Parapatits, M. A Recommendation for Suitable Technologies for an Indoor Farming Framework. Elektrotech. Inf. 2020, 137, 370–374. [Google Scholar] [CrossRef]
- Yeşil, V.; Tatar, Ö. An Innovative Approach to Produce Forage Crops: Barley Fodder in Vertical Farming System. Sci. Pap. Ser. A Agron 2020, 63, 723–728. [Google Scholar]
- Despommier, D. The Vertical Farm: Feeding the World in the 21st Century; Picador: New York, NY, USA, 2010. [Google Scholar]
- Niu, G.; Masabni, J. Plant Production in Controlled Environments. Horticulturae 2018, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Orsini, F.; Pennisi, G.; Michelon, N.; Minelli, A.; Bazzocchi, G.; Sanyé-Mengual, E.; Gianquinto, G. Features and Functions of Multifunctional Urban Agriculture in the Global North: A Review. Front. Sustain. Food Syst. 2020, 4, 562513. [Google Scholar] [CrossRef]
- Specht, K.; Zoll, F.; Schümann, H.; Bela, J.; Kachel, J.; Robischon, M. How Will We Eat and Produce in the Cities of the Future? From Edible Insects to Vertical Farming-a Study on the Perception and Acceptability of New Approaches. Sustainability 2019, 11, 4315. [Google Scholar] [CrossRef] [Green Version]
- Taufani, B. Urban Farming Construction Model on the Vertical Building Envelope to Support the Green Buildings Development in Sleman, Indonesia. Procedia Eng. 2017, 171, 258–264. [Google Scholar]
- Tinning, G. The Role of Agriculture in Recovery Following Natural Disasters a Focus on Post-Tsunami Recovery in Aceh Indonesia. Asian J. Agric. Dev. 2011, 8, 19–38. [Google Scholar]
- Martin, M.; Molin, E. Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden. Sustainability 2019, 11, 4124. [Google Scholar] [CrossRef] [Green Version]
- Zaid, S.M.; Perisamy, E.; Hussein, H.; Myeda, N.E.; Zainon, N. Vertical Greenery System in Urban Tropical Climate and Its Carbon Sequestration Potential: A Review. Ecol. Indic. 2018, 91, 57–70. [Google Scholar] [CrossRef]
- Dubbeling, M.; Veenhuizen, R.V.; Halliday, J. Urban Agriculture as a Climate Change and Disaster Risk Reduction Strategy. J. Field Actions 2019, 20, 32–39. [Google Scholar]
- Abdullah, M.J.; Zhang, Z.; Matsubae, K. Potential for Food Self-Sufficiency Improvements through Indoor and Vertical Farming in the Gulf Cooperation Council: Challenges and Opportunities from the Case of Kuwait. Sustainability 2021, 13, 12553. [Google Scholar] [CrossRef]
- Aruni, Y.; Reyes, M.E.L.; Zwagers, W.; Ibrahim, A.R. Sustainable Innovation and Transitions Final Report: Vertical Farming in Tokyo; Delft University of Technology: Delft, The Netherlands, 2019. [Google Scholar]
- Ichinose, Y. Disaster of Agriculture and Rehabilitation Problem Due to the Great East Japan Earthquake in 2011. Financ. Agric. For. 2011, 8, 504–516. (In Japanese) [Google Scholar]
- Guo, H.; Chen, Y.; Feng, Q.; Lin, Q.; Wang, F. Assessment of Damage to Buildings and Farms During the 2011 M 9.0 Earthquake and Tsunami in Japan from Remote Sensing Data. Chin. Sci. Bull. 2011, 56, 2138–2144. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, S.; Yamamoto, S.; Saito, S.; Ochiai, Y.; Tsubota, S.; Inazumi, H. Role of Movable Bench System for Strawberries in Reconstruction Project in Miyagi Prefecture. Acta Hortic. 2014, 1037, 311–316. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Forestry and Fisheries. “New Tohoku” Growing at Disaster Areas and Approach for Reestablish and Restructure by Farmers; Ministry of Agriculture, Forestry and Fisheries: Tokyo, Japan, 2014. (In Japanese)
- Kajima: The Largest Vf around the World with Artificial Lighting by Led Was Built in Miyagi. Available online: https://www.kajima.co.jp/news/press/201407/2e1-j.htm (accessed on 12 January 2021). (In Japanese).
- Monma, T.; Goto, I.; Hayashi, T.; Tachiya, H.; Ohsawa, K. Agricultural and Forestry Reconstruction after the Great East Japan Earthquake; Tsunami, Radioactive, and Reputational Damages; Springer Nature: Berlin, Germany, 2015. [Google Scholar]
- Haq, Z.; Meilke, K. The Role of Income in Trading-Differentiatedagri-Food Products the Case of Canada, Theunited States, and Selected Eu Countries. Can. J. Agric. Econ. 2009, 57, 343–363. [Google Scholar] [CrossRef]
- Edwards-Jones, G.; Plassmann, K.; York, E.H.; Hounsome, B.; Jones, D.L.; Milà i Canals, L. Vulnerability of Exporting Nations to the Development of a Carbon Label in the United Kingdom. Environ. Sci. Policy 2009, 12, 479–490. [Google Scholar] [CrossRef]
- FAO. Trends and Challenges 2017; FAO: Rome, Italy, 2017. [Google Scholar]
- Liu, C.; Hotta, Y.; Santo, A.; Hengesbaugh, M.; Watabe, A.; Totoki, Y.; Allen, D.; Bengtsson, M. Food Waste in Japan: Trends, Current Practices and Key Challenges. J. Clean. Prod. 2016, 133, 557–564. [Google Scholar] [CrossRef]
- Munesue, Y.; Masui, T. The Impacts of Japanese Food Losses and Food Waste on Global Natural Resources and Greenhouse Gas Emissions. J. Ind. Ecol. 2019, 23, 1196–1210. [Google Scholar] [CrossRef]
- MAFF. Food Self-Sufficiency Based on Calorie and Production by Crops. 2019. Available online: https://www.maff.go.jp/j/zyukyu/zikyu_ritu/attach/pdf/012-15.pdf (accessed on 12 January 2021). (In Japanese)
- Oita, A.; Malik, A.; Kanemoto, K.; Geschke, A.; Nishijima, S.; Lenzen, M. Substantial Nitrogen Pollution Embedded Ininternational Trade. Nat. Geosci. 2016, 9, 111–115. [Google Scholar] [CrossRef]
- Watson, R. Agriculture and Food Security. In Environment and Development Challenges: The Imperative to Act; Watson, R., Ed.; University of Tokyo Press: Tokyo, Japan, 2015; Volume 2, pp. 97–99. (In Japanese) [Google Scholar]
- MAFF The Food Self-Sufficiency Object and Food Self-Supply Ablity Indicator. 2018. Available online: https://www.maff.go.jp/j/keikaku/k_aratana/attach/pdf/index-10.pdf (accessed on 12 January 2021). (In Japanese).
- MAFF. Survey on Local Vegetables Production of Region in Japan. Available online: https://www.maff.go.jp/j/tokei/kouhyou/tokusan_yasai/ (accessed on 12 January 2021). (In Japanese)
- MAFF. The Statistical Data of Crops Production (Vegetables) in Japan. 2018. Available online: https://www.maff.go.jp/j/tokei/kouhyou/sakumotu/sakkyou_yasai/index.html (accessed on 12 January 2021). (In Japanese)
- MOF. Trade Statistics of Japan. Available online: https://www.customs.go.jp/toukei/info/index.htm (accessed on 12 January 2021). (In Japanese)
- MAFF The Situation of Import and Export on Agricultural, Forest and Fishery Products. Available online: https://www.maff.go.jp/j/tokei/kouhyou/kokusai/houkoku_gaikyou.html (accessed on 12 January 2021).
- MAFF Report on Wholesale Market of Fruit and Vegetables. 2018. Available online: https://www.maff.go.jp/j/tokei/kouhyou/seika_orosi/index.html (accessed on 12 January 2021). (In Japanese).
- MAFF. Action Program for Increasing Food Self-Sufficiency 2007; MAFF: Tokyo, Japan, 2008. (In Japanese)
- MAFF. White Paper of Food, Agriculture and Country 2009; MAFF: Tokyo, Japan, 2010. (In Japanese)
- Delgadillo-Vargas, O.; Garcia-Ruiz, R.; Forero-Álvarez, J. Fertilising Techniques and Nutrient Balances in the Agriculture Industrialization Transition: The Case of Sugarcane in the Cauca River Valley (Colombia), 1943–2010. Agric. Ecosyst. Environ. 2016, 218, 150–162. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, A.; Yan, S.; Rafay, L.; Du, K.; Wang, D.; Ge, Y.; Li, J. Available Soil Nutrients and Water Content Affect Leaf Nutrient Concentrations and Stoichiometry at Different Ages of Leucaena Leucocephala Forests in Dry-Hot Valley. J. Soils Sediments 2018, 19, 511–521. [Google Scholar] [CrossRef]
- Leach, A.M.; Galloway, J.N.; Bleeker, A.; Erisman, J.W.; Kohn, R.; Kitzes, J. A Nitrogen Footprint Model to Help Consumers Understand Their Role in Nitrogen Losses to the Environment. Environ. Dev. 2012, 1, 40–66. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Sims, J.T.; Ma, L.; Ma, W.; Dou, Z.; Zhang, F. The Phosphorus Footprint of China’s Food Chain: Implications for Food Security, Natural Resource Management, and Environmental Quality. J. Env. Qual 2011, 40, 1081–1089. [Google Scholar] [CrossRef]
- Oita, A.; Wirasenjaya, F.; Liu, J.; Webeck, E.; Matsubae, K. Trends in the Food Nitrogen and Phosphorus Footprints for Asia’s Giants: China, India, and Japan. Resour. Conserv. Recycl. 2020, 157, 104752. [Google Scholar] [CrossRef]
- Meena, V.S.; Meena, S.K.; Verma, J.P.; Kumar, A.; Aeron, A.; Mishra, P.K.; Bisht, J.K.; Pattanayak, A.; Naveed, M.; Dotaniya, M.L. Plant Beneficial Rhizospheric Microorganism (Pbrm) Strategies to Improve Nutrients Use Efficiency: A Review. Ecol. Eng. 2017, 107, 8–32. [Google Scholar] [CrossRef]
- Pacheco, F.S.; Ometto, J.; Gomes, L.; Tosto, K.; Miranda, M.; Loverde-Oliveira, S.; Pessi, D.D.; Cox, C. Nutrient Balance and Use Efficiency in Agricultural Lands in the Vermelho River Watershed, Upper Pantanal, Brazil. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005673. [Google Scholar] [CrossRef]
- Shen, J.; Li, C.; Mi, G.; Li, L.; Yuan, L.; Jiang, R.; Zhang, F. Maximizing Root/Rhizosphere Efficiency to Improve Crop Productivity and Nutrient Use Efficiency in Intensive Agriculture of China. J. Exp. Bot. 2013, 64, 1181–1192. [Google Scholar] [CrossRef]
- Weih, M.; Asplund, L.; Bergkvist, G. Assessment of Nutrient Use in Annual and Perennial Crops: A Functional Concept for Analyzing Nitrogen Use Efficiency. Plant. Soil 2010, 339, 513–520. [Google Scholar] [CrossRef] [Green Version]
- JGHA Report on the Project for Promotion of the Next Generation Facility Horticulture Area Development in Fiscal. Available online: https://jgha.com/wp-content/uploads/2020/01/TM06-1-30jigyouhoukokusho.pdf (accessed on 12 January 2021). (In Japanese).
- JGHA Actual Condition Survey of Large-Scale Horticulture and Plant Factory in 2019. Available online: https://jgha.com/wp-content/uploads/2020/04/31bessatsu1.pdf (accessed on 12 January 2021). (In Japanese).
- MIC, Population, Movement, and Households Survey Based on Basic Resident Register 2019; Ministry of Internal Affairs and Communications: Tokyo, Japan, 2019. (In Japanese)
- Iwasaki, Y.; Sugeno, W.; Goto, N.; Honnma, Y.; Yusa, M.; Yamane, H.; Ito, M.; Goto, C.; Takayama, S.; Takano, I.; et al. Reconstruction Support for the Greenhouse Strawberry Production Area in Miyagi Prefecture Damaged by the Great East Japan Earthquake. Hortic. J. 2019, 88, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, A.; Yamamoto, T.; Kadota, A.; Matsuo, K.; Sawasato, A.; Endo, R.; Ito, K.; Suzuki, S.; Kawamura, H.; Yashiro, M.; et al. A Project to Reconstruct a Food Production Area Following the Adverse Impacts of the Great East Japan Earthquake and Tsunami of 2011: Open Field Vegetables. Hortic. J. 2019, 88, 3–12. [Google Scholar] [CrossRef]
- Benke, K.; Tomkins, B. Future Food-Production Systems: Vertical Farming and Controlled-Environment Agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Murase, H. Disaster Prevention and Vertical Farming. Acad. Trends 2012, 17, 74–81. (In Japanese) [Google Scholar]
- NARO. Database of Standard with Fertilization and Reducing Fertilizer; National Agriculture and Food Research Organization: Tsukuba, Japan, 2012; Volume 2021. (In Japanese) [Google Scholar]
- Agricultural Engineering Research Institute in NARO. Design and Evaluation of Biomass Utilization System; Systematization Sub-Team of Study on Agriculture, Forestry and Fisheries Biorecycling: Tsukuba, Japan, 2006. (In Japanese) [Google Scholar]
- MEXT Standard Tables of Food Composition in Japan 2005 (Ver.7) Supplement in 2018. Available online: https://www.mext.go.jp/a_menu/syokuhinseibun/1411578.htm (accessed on 12 January 2021). (In Japanese).
- NARO. Inorganic substance. In National Agriculture and Food Research Organization; Japan Livestock Industry Association: Tokyo, Japan, 2001; Volume 2-2. [Google Scholar]
- GIO; MOEJ. National Greenhouse Gas Inventory Report of Japan 2020; Center for Global Environmental Research in National Institute for Environmental Studies: Tsukuba, Japan, 2020; pp. 5-44~52 & 61~62. [Google Scholar]
- Owa, N. Nutrient Balance of Agricultural Products in Japan. Environ. Conserv. Agric. Res. Liaison Comm. News 1996, 33, 431–435. [Google Scholar]
- Sutton, M.A.; Bleeker, A.; Howard, C.M.; Bekunda, M.; Grizzetti, B.; de Vries, W. Our Nutrient World—The Challenge to Produce More Food and Energy with Less Pollution; Centre for Ecology and Hydrology: Edburgh, UK, 2013. [Google Scholar]
- Glaser, B.; Lehr, V.I. Biochar Effects on Phosphorus Availability in Agricultural Soils: A Meta-Analysis. Sci. Rep. 2019, 9, 9338. [Google Scholar] [CrossRef] [Green Version]
- Sadek, I.I.; Aboud, F.S.; Ahmed, N.M.; Moursy, F.S. Response of Growth, Productivity and Economic Potential of Cultivated Pumpkin Plants Substrate Culture. Egypt. J. Agric. Res. 2018, 96, 255–265. [Google Scholar]
- Ikeda, H.; Tagami, K.; Fukuda, N. A Study on a Simple Passive Hydroponic System for Melon Production. J. Japan. Soc. Hort. Sci. 1996, 64, 839–844. [Google Scholar] [CrossRef] [Green Version]
- Gichana, Z.; Liti, D.; Wakibia, J.; Ogello, E.; Drexler, S.; Meulenbroek, P.; Ondiba, R.; Zollitsch, W.; Waidbacher, H. Efficiency of Pumpkin (Cucurbita Pepo), Sweet Wormwood (Artemisia Annua) and Amaranth (Amaranthus Dubius) in Removing Nutrients from a Smallscale Recirculating Aquaponic System. Aquac. Int. 2019, 27, 1767–1786. [Google Scholar] [CrossRef] [Green Version]
- Paulo Roberto Gomes Pereira, P.C.R.F.; Silva Arruda, R.D.; Iglesias Barrera, G.A.; Nascimento Silva, B.D.; Da Silva, J.M. Shoot Nutrient Contents and Vegetative Melon Plants Growth at Different Ph Levels of the Nutrient Solution. Emir. J. Food Agric. 2019. [Google Scholar] [CrossRef]
- Cosme, C.R.; Dias, N.D.S.; Silva, K.M.P.; Fonteles, J.L.V.; Gurgel, M.T.; Fernandes, C.D.S. Growth of Melon Cultivated in Coconut Fiber under Different Concentrations of Nutrient Solution. Comun. Sci. 2018, 9, 381–392. [Google Scholar] [CrossRef]
- Schröder, J.J.; Scholefield, D.; Cabral, F.; Hofman, G. The Effects of Nutrient Losses from Agriculture on Ground and Surface Water Quality: The Position of Science in Developing Indicators for Regulation. Environ. Sci. Policy 2004, 7, 15–23. [Google Scholar] [CrossRef]
- Mahmud, K.; Panday, D.; Mergoum, A.; Missaoui, A. Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem. Sustainability 2021, 13, 2400. [Google Scholar] [CrossRef]
- Maharjan, B.; Venterea, R.T.; Rosen, C. Fertilizer and Irrigation Management Effects on Nitrous Oxide Emissions and Nitrate Leaching. Agron. J. 2014, 106, 703–714. [Google Scholar] [CrossRef] [Green Version]
- Mosier, A.; Kroeze, C.; Nevison, C.; Oenema, O.; Seitzinger, S.; Cleemput, O.V. Closing the Global N2o Budget: Nitrous Oxide Emissions through the Agricultural Nitrogen Cycle. Nutr. Cycl. Agroecosyst. 1998, 52, 225–248. [Google Scholar] [CrossRef]
- FAO. Water Pollution from Agriculture: A Global Review; FAO: Rome, Italy, 2017. [Google Scholar]
- Chislock, M.F.; Doster, E.; Zitomer, R.A.; Wilsond, A.E. Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems. Nat. Educ. Knowl. 2013, 4, 10. [Google Scholar]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling Eutrophication: Nitrogen and Phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef]
- Ngatia, L.; III, J.M.G.; Moriasi, D.; Taylor, R. Nitrogen and phosphorus eutrophication in marine ecosystems. In Monitoring of Marine Pollution; Fouzia, H.B., Ed.; BoD—Books on Demand: Norderstedt, Germany, 2018. [Google Scholar]
- Zaręba, A.; Krzemińska, A.; Kozik, R. Urban Vertical Farming as an Example of Nature-Based Solutions Supporting a Healthy Society Living in the Urban Environment. Resources 2021, 10, 109. [Google Scholar] [CrossRef]
- Chen, G.; Huang, J.; Fang, Y.; Zhao, Y.; Tian, X.; Jin, Y.; Zhao, H. Microbial Community Succession and Pollutants Removal of a Novel Carriers Enhanced Duckweed Treatment System for Rural Wastewater in Dianchi Lake Basin. Bioresour. Technol. 2019, 276, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Yin, Z.; Xia, D.; Zhao, Q.; Kang, Y. Combination of Heterotrophic Nitrifying Bacterium and Duckweed (Lemna Gibba, L.) Enhances Ammonium Nitrogen Removal Efficiency in Aquaculture Water Via Mutual Growth Promotion. J. Gen. Appl. Microbiol. 2019, 65, 151–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mok, W.K.; Tan, Y.X.; Chen, W.N. Technology Innovations for Food Security in Singapore: A Case Study of Future Food Systems for an Increasingly Natural Resource-Scarce World. Trends Food Sci. Technol. 2020, 102, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Avgoustaki, D.D.; Li, J.; Xydis, G. Basil Plants Grown under Intermittent Light Stress in a Small-Scale Indoor Environment: Introducing Energy Demand Reduction Intelligent Technologies. Food Control. 2020, 118, 107389. [Google Scholar] [CrossRef]
- Teng, P.; Montesclaros, J. Singapore’s ‘30 by 30’ Food Production Target: Is It Feasible? Available online: https://www.todayonline.com/commentary/singapores-30-30-food-production-target-it-feasible (accessed on 11 July 2021).
- Romeo, D.; Vea, E.B.; Thomsen, M. Environmental Impacts of Urban Hydroponics in Europe: A Case Study in Lyon. Procedia CIRP 2018, 69, 540–545. [Google Scholar] [CrossRef]
- Africa Needs Its Own Version of the Vertical Farm to Feed Growing Cities. Available online: https://theconversation.com/africa-needs-its-own-version-of-the-vertical-farm-to-feed-growing-cities-74929 (accessed on 12 January 2021).
- CRED. The International Disaster Database; Centre of Research on the Epidemiology of Disasters: Brussels, Belgium, 2021. [Google Scholar]
- Japan Agricultural Communication: The Damaged Value on Agricultural, Forest and Fishery Products Are 16 Billion Yen by Rainstorm in July 2020. Available online: https://www.jacom.or.jp/nousei/news/2020/07/200714-45333.php (accessed on 12 January 2021).
- Zhang, S.; Liu, Y. Purification and Clarification of Aquicultural Vegetable on Turtle-Pond Effluent. Agro Environ. Prot. 2002, 21, 129–131. (In Chinese) [Google Scholar]
- Zhu, J.; Cheng, K.; Sun, L. Contribution of Different Roles on Total Nitrogen and Total Phosphorus Removal in Aquatic Plants Purification System. Environ. Sci. Technol. 2011, 34, 175–178. (In Chinese) [Google Scholar]
- Fan, P.; Gao, Y.; Yang, J.; Jiang, H.; Zhu, J. A Comparison of Removal Efficiency of Nitrogen and Phosphorus of the Hydroponic Mater Convolvulus Purification System and the Hydroponic Asparagus Lettuce Purification System Oil Domestic Sewage. J. Southwest Univ. Sci. Technol. 2017, 32, 43–48. (In Chinese) [Google Scholar]
- Banerjee, C.; Adenaeuer, L. Up, up and Away! The Economics of Vertical Farming. J. Agric. Stud. 2014, 2, 40–60. [Google Scholar] [CrossRef]
- Despommier, D. Farming up the City: The Rise of Urban Vertical Farms. Trends Biotechnol. 2013, 31, 388–389. [Google Scholar] [CrossRef]
- Khan, T.F.; Ullah, M.W.; Huq, S.M.I. Assessment of Vulnerability in Agricultural Sector in Disaster Prone Areas of Bangladesh. Bangladesh J. Sci. Res. 2016, 28, 91–101. [Google Scholar] [CrossRef]
Type | No. | Start Year | Location | Cultivated Area (m2) | Production (t(106 g) year−1) |
---|---|---|---|---|---|
Natural light | A-1 | 2001 | Kurihara | 20,000 | 350 |
A-2 | 2016 | Kesennuma | 20,000 | 440 | |
A-3 | 2005 | Kurokawa | 10,400 | 283 | |
A-4 | 2017 | Kurokawa | 10,000 | 200 | |
A-5 | 2012 | Ishinomaki | 15,700 | 200 | |
A-6 | 2014 | Matsushima | 10,000 | 300 | |
A-7 | 1996 | Matsushima | 10,000 | 300 | |
A-8 | 2012 | Miyagino | 12,000 | * | |
B-1 | 2016 | Ishinomaki | 24,000 | 630 | |
B-2 | 2014 | Ishinomaki | 13,000 | 28.5 | |
B-3 | 2012 | Miyagino | 28,000 | * | |
B-4 | 2012 | Yamamoto | 14,030 | 178 | |
C-1 | 2013 | Ohira | 18,000 | 315 | |
C-2 | 2011 | Yamamoto | 21,600 | 10 | |
C-3 | 2012 | Yamamoto | 8600 | 47.3 | |
Combination | D-1 | 2012 | Minamisanriku | 14,700 | * |
Artificial lighting | E-1 | 2010 | Ishinomaki | 330 | 27 |
E-2 | 2015 | Tagajou | 2300 | 292 | |
E-3 | 1988 | Wakabayashi | 600 | * | |
F-1 | 2010 | Wakabayashi | * | * | |
G-1 | 1989 | Shiroishi | 4100 | * |
Vegetable Groups and Crops | Current in 2018 | Scenario 1 | Scenario 2 | Scenario 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Quantity 109 g | Ratio % | Quantity 109 g | Ratio % | Quantity 109 g | Ratio % | Ratio % | ||||
Currently VF grown | ||||||||||
Tomatoes | 260 | 43 | 94 | 22 | 130 | 28 | 0 | |||
Bell peppers | 41 | 28 | 19 | 14 | 20 | 16 | 0 | |||
Possibly VF grown | ||||||||||
Spinach | 52 | 40 | 19 | 20 | 26 | 25 | 0 | |||
Celery | 8.0 | 24 | 3.5 | 12 | 4.0 | 14 | 0 | |||
Asparagus | 12 | 42 | 4.2 | 21 | 5.8 | 28 | 0 | |||
Broccoli | 75 | 42 | 28 | 21 | 38 | 26 | 0 | |||
Welsh onion | 67 | 27 | 28 | 14 | 34 | 16 | 0 | |||
Potentially VF grown | ||||||||||
Pumpkin | 103 | 58 | 31 | 29 | 52 | 41 | 0 | |||
Melon | 27 | 35 | 11 | 18 | 14 | 22 | 0 |
Vegetables | N Footprint (Mg N year−1) | P Footprint (Mg P year−1) | |||||||
---|---|---|---|---|---|---|---|---|---|
Current (in 2018) | Scenario 1 | Scenario 2 | Scenario 3 | Current (in 2018) | Scenario 1 | Scenario 2 | Scenario 3 | ||
Total | 992 | 758 | 808 | 624 | 198 | 153 | 163 | 127 | |
Currently VF grown | 163 | 126 | 133 | 103 | 34 | 26 | 28 | 21 | |
Tomatoes | 113 | 84 | 90 | 67 | 25 | 18 | 20 | 15 | |
Bell peppers | 50 | 42 | 43 | 36 | 9.0 | 7.5 | 7.7 | 6.5 | |
Possibly VF grown | 607 | 483 | 507 | 407 | 128 | 103 | 107 | 87 | |
Spinach | 157 | 119 | 126 | 96 | 28 | 21 | 22 | 16 | |
Celery | 9.4 | 8.2 | 8.3 | 7.2 | 2.41 | 2.09 | 2.13 | 1.84 | |
Asparagus | 54 | 39 | 42 | 30 | 9.2 | 6.6 | 7.2 | 5.2 | |
Broccoli | 148 | 110 | 118 | 88 | 30 | 22 | 24 | 18 | |
Welsh onions | 238 | 207 | 211 | 184 | 58 | 51 | 52 | 46 | |
Potentially VF grown | 222 | 149 | 168 | 114 | 37 | 25 | 28 | 19 | |
Pumpkin | 145 | 88 | 104 | 64 | 22 | 13 | 16 | 10 | |
Melons | 78 | 61 | 64 | 50 | 14.7 | 11.6 | 12.1 | 9.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Oita, A.; Hayashi, K.; Matsubae, K. Sustainability of Vertical Farming in Comparison with Conventional Farming: A Case Study in Miyagi Prefecture, Japan, on Nitrogen and Phosphorus Footprint. Sustainability 2022, 14, 1042. https://doi.org/10.3390/su14021042
Liu J, Oita A, Hayashi K, Matsubae K. Sustainability of Vertical Farming in Comparison with Conventional Farming: A Case Study in Miyagi Prefecture, Japan, on Nitrogen and Phosphorus Footprint. Sustainability. 2022; 14(2):1042. https://doi.org/10.3390/su14021042
Chicago/Turabian StyleLiu, Jiarui, Azusa Oita, Kentaro Hayashi, and Kazuyo Matsubae. 2022. "Sustainability of Vertical Farming in Comparison with Conventional Farming: A Case Study in Miyagi Prefecture, Japan, on Nitrogen and Phosphorus Footprint" Sustainability 14, no. 2: 1042. https://doi.org/10.3390/su14021042