Determination of Physico-Chemical and Functional Properties of Plum Seed Cakes for Estimation of Their Further Industrial Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Plum Seed Cake
2.3. Physico-Chemical Properties
2.4. Functional Properties
2.5. Antioxidant Potential of Plum Seed Cake
2.6. Determination of the Antioxidant Activity
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Properties of Plum Seed Cake
3.2. Functional Properties of Plum Seed Cake
3.3. The Antioxidant Potential of Plum Seed Cake
3.4. Antioxidant Activity of Plum Seed Cakes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Barnossi, A.; Moussaid, F.; Housseini, A.I. Tangerine, banana and pomegranate peels valorisation for sustainable environment: A Review. Biotechnol. Rep. 2021, 29, e00574. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.atlasbig.com/en-gb/countries-by-plum-production (accessed on 26 June 2022).
- Dołżyńska, M.; Obidziński, S.; Piekut, J.; Yildiz, G. The utilization of plum stones for pellet production and investigation of post-combustion flue gas emissions. Energies 2020, 13, 5107. [Google Scholar] [CrossRef]
- Kamel, B.S.; Kakuda, Y. Characterization of the seed oil and meal from apricot, cherry, nectarine, peach and plum. J. Am. Oil Chem. Soc. 1992, 69, 492–494. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef] [PubMed]
- Savic, I.; Savic Gajic, I.; Gajic, D. Physico-chemical properties and oxidative stability of fixed oil from plum seeds (Prunus Domestica Linn.). Biomolecules 2020, 10, 294. [Google Scholar] [CrossRef] [Green Version]
- Khallouki, F.; Haubner, R.; Erben, G.; Ulrich, C.M.; Owen, R.W. Phytochemical compositon and antioxidant capacity of various botanical parts of the fruits of Prunus Domestica L. from the Lorraine region of Europe. Food Chem. 2012, 133, 697–706. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, E.; Marina, M.L.; García, M.C. Plum (Prunus domestica L.) by-product as a new and cheap source of bioactive peptides: Extraction method and peptides characterization. J. Funct. Foods 2014, 11, 428–437. [Google Scholar] [CrossRef]
- Milala, J.; Kosmala, M.; Sójka, M.; Kołodziejczyk, K.; Zbrzeźniak, M.; Markowski, J. Plum pomaces as a potential source of dietary fibre: Composition and antioxidant properties. J. Food Sci. Technol. Mys. 2013, 50, 1012–1017. [Google Scholar] [CrossRef] [Green Version]
- Savić, I.M.; Nikolić, V.D.; Savić-Gajić, I.M.; Kundaković, T.D.; Stanojković, T.P.; Najman, S.J. Chemical composition and biological activity of the plum seed extract. Adv. Technol. 2016, 5, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Sójka, M.; Kołodziejczyk, K.; Milala, J.; Abadias, M.; Viñas, I.; Guyot, S.; Baron, A. Composition and properties of the polyphenolic extracts obtained from industrial plum pomaces. J. Funct. Foods 2015, 12, 168–178. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Giosafatto, C.V.L.; Porta, R. Biorefining of seed oil cakes as industrial co-streams for production of innovative bioplastics. A Review. Trends Food Sci. Technol. 2021, 109, 259–270. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, B.; Kaur, A.; Singh, N. Proximate, mineral, amino acid composition, phenolic profile, antioxidant and functional properties of oilseed cakes. Int. J. Food Sci. Technol. 2021, 56, 6732–6741. [Google Scholar] [CrossRef]
- Čakarević, J.C.; Vidović, S.S.; Vladić, J.Z.; Jokić, S.D.; Pavlović, N.S.; Popović, L.M. Plum oil cake protein isolate: A potential source of bioactive peptides. Food Feed Res. 2019, 46, 171–178. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, Association of Official Agricultural Chemists; AOAC: Washington, DC, USA, 2000. [Google Scholar]
- Bolarinwa, I.F.; Orfila, C.; Morgan, M.R. Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chem. 2014, 152, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.J.Y.; Humbert, E.S.; Sosulski, F.W. Certain functional properties of sunflower meal products. J. Food Sci. 1974, 39, 368–370. [Google Scholar] [CrossRef]
- Compaoré, W.R.; Nikièma, P.A.; Bassolé, H.I.N.; Savadogo, A.; Mouecoucou, J. Chemical composition and antioxidative properties of seeds of Moringa Oleifera and pulps of Parkia Biglobosa and Adansonia Digitata commonly used in food fortification in burkina faso. Curr. Res. J. Biol. Sci. 2011, 3, 64–72. [Google Scholar]
- Onwulata, C.I.; Konstance, R.P.; Smith, P.W.; Holsinger, V.H. Physical properties of extruded products as affected by cheese whey. J. Food Sci. 1998, 63, 814–818. [Google Scholar] [CrossRef]
- Coffmann, C.W.; Garciaj, V.V. Functional properties and amino acid content of a protein isolate from mung bean flour. Int. J. Food Sci. Technol. 1977, 12, 473–484. [Google Scholar] [CrossRef]
- Lawhon, J.T.; Cater, C.M.; Mattil, K.F. Comparative study of the whipping potential of an extract from several oilseed flours. J. Cereal Sci. 1972, 17, 240–244. [Google Scholar]
- Savic, I.M.; Savic Gajic, I.M. Optimization study on extraction of antioxidants from plum seeds (Prunus domestica L.). Optim. Eng. 2021, 22, 141–158. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Nour, V.; Trandafir, I.; Cosmulescu, S. HPLC determination of phenolic acids, flavonoids and juglone in walnut leaves. J. Chromatogr. Sci. 2013, 51, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Savic Gajic, I.; Savic, I.; Boskov, I.; Žerajić, S.; Markovic, I.; Gajic, D. Optimization of ultrasound-assisted extraction of phenolic compounds from black locust (Robiniae pseudoacaciae) flowers and comparison with conventional methods. Antioxidants 2019, 8, 248. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.J.; Yang, Z.Z.; Yi, Y.J.; Wang, H.Y.; Zhou, W.L.; Li, F.F.; Wang, C.Y. Extraction of oil from flaxseed (Linum usitatissimum L.) using enzyme-assisted three-phase partitioning. Appl. Biochem. Biotechnol. 2016, 179, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Nas, S.; Gökalp, H.Y.; Unsal, M. Vegetable Oil Technology; Faculty of Engineering, Pamukkale University, Textbooks Publication: Pamukkale, Turkey, 2001. [Google Scholar]
- Čakarević, J.; Vidović, S.; Vladić, J.; Gavarić, A.; Jokić, S.; Pavlović, N.; Blažić, M.; Popović, L. Production of bio-functional protein through revalorization of apricot kernel cake. Foods 2019, 8, 318. [Google Scholar] [CrossRef] [Green Version]
- Majzoobi, M.; Karambakhsh, G.; Golmakani, M.T.; Mesbahi, G.R.; Farahnaki, A. Chemical composition and functional properties of date press cake, an agro-industrial waste. J. Agr. Sci. Technol.-Iran 2019, 21, 1807–1817. [Google Scholar]
- (EFSA) EFSA Panel on Contaminants in the Food Chain. Acute health risks related to the presence of cyanogenic glycosides in raw apricot kernels and products derived from raw apricot kernels. EFSA J. 2016, 14, 4424. [Google Scholar]
- O’shea, N.; Ktenioudaki, A.; Smyth, T.P.; McLoughlin, P.; Doran, L.; Auty, M.A.E.; Arendt, E.; Gallagher, E. Physicochemical Assessment of two fruit by-products as functional ingredients: Apple and orange pomace. J. Food Eng. 2015, 153, 89–95. [Google Scholar] [CrossRef]
- Adebowale, K.O.; Lawal, O.S. Comparative study of the functional properties of bambarra groundnut (Voandzeia Subterranean), jack bean (Canavalia Ensiformis) and mucuna bean (Mucuna Pruriens) flours. Food Res. Int. 2004, 37, 355–365. [Google Scholar] [CrossRef]
- Karaman, E.; Karabiber, E.B.; Yılmaz, E. Physicochemical and functional properties of the cold press lemon, orange, and grapefruit seed meals. Qual. Assur. Saf. Crop. 2018, 10, 233–243. [Google Scholar] [CrossRef]
- Olaofe, O.; Adeyemi, F.O.; Adediran, G.O. Amino acid and mineral compositions and functional properties of some oilseeds. J. Agr. Food Chem. 1994, 42, 878–881. [Google Scholar] [CrossRef]
- Kain, R.J.; Chen, Z. Physico-functional properties of peanut meal flour as affected by processing methods. J. Food Biochem. 2010, 34, 229–243. [Google Scholar] [CrossRef]
- Celik, M.; Güzel, M.; Yildirim, M. Effect of pH on Protein extraction from sour cherry kernels and functional properties of resulting protein concentrate. J. Food Sci. Technol. Mys 2019, 56, 3023–3032. [Google Scholar] [CrossRef] [PubMed]
- Fennema, R.O. Food Chemistry, 3rd ed.; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland; Hong Kong, China, 1996; pp. 365–369. [Google Scholar]
- Yılmaz, E.; Hüriyet, Z.; Arifoğlu, N.; Emir, D.D. Functional properties of the capia pepper seed defatted press cakes. Waste Biomass Valori. 2017, 8, 783–791. [Google Scholar] [CrossRef]
- Zhang, C.; Guan, J.; Zhang, J.; Yang, J.; Wang, X.; Peng, X. Protective effects of three structurally similar polyphenolic compounds against oxidative damage and their binding properties to human serum albumin. Food Chem. 2021, 349, 129118. [Google Scholar] [CrossRef] [PubMed]
- Teh, S.S.; Birch, E.J. Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes. Ultrason. Sonochem. 2014, 21, 346–353. [Google Scholar] [CrossRef]
Property | n-Hexane | n-Heptane | Ethyl-Acetate | Chloroform:Methanol (2:1 v/v) | Acetone |
---|---|---|---|---|---|
Moisture (%) | 7.66 ± 0.23 a | 7.09 ± 0.21 b | 5.96 ± 0.09 c | 7.46 ± 0.11 ab | 7.47 ± 0.14 ab |
Crude fiber (%) | 9.32 ± 0.19 b | 7.95 ± 0.14 c | 6.36 ± 0.10 d | 9.85 ± 0.18 a | 8.39 ± 0.24 c |
Protein (%) | 57.01 ± 1.70 b | 61.90 ± 1.73 a | 36.95 ± 1.14 d | 46.03 ± 1.01 c | 54.55 ± 0.98 b |
pH value | 5.49 ± 0.11 a | 5.53 ± 0.15 a | 5.37 ± 0.14 a | 5.54 ± 0.15 a | 5.53 ± 0.13 a |
Amygdalin (mg/g d.w.) | 0.139 ± 0.002 a | 0.041 ± 0.001 a | 0.100 ± 0.002 a | 0.102 ± 0.003 a | 0.005 ± 0.0001 a |
Properties | n-Hexane | n-Heptane | Ethyl-Acetate | Chloroform:Methanol (2:1 v/v) | Acetone |
---|---|---|---|---|---|
WAC (g/g) | 1.45 ± 0.04 cd | 1.38 ± 0.03 d | 1.51 ± 0.03 bc | 1.61 ± 0.04 a | 1.59 ± 0.02 ab |
WSI (%) | 3.56 ± 0.10 b | 3.16 ± 0.09 d | 3.27 ± 0.08 cd | 3.87 ± 0.11 a | 3.45 ± 0.09 bc |
OAC (g/g) | 1.38 ± 0.04 b | 1.41 ± 0.03 b | 1.98 ± 0.04 a | 1.46 ± 0.03 b | 1.10 ± 0.02 c |
FC (%) | 7.63 ± 0.23 a | 7.55 ± 0.23 a | 7.18 ± 0.20 a | 7.34 ± 0.21 a | 7.63 ± 0.24 a |
FS (%) | 76.00 ± 2.28 a | 75.00 ± 2.01 ab | 72.00 ± 2.08 ab | 74.00 ± 2.15 ab | 70.00 ± 2.11 b |
EA (%) | 51.56 ± 1.55 ab | 48.48 ± 1.45 bc | 55.12 ± 1.61 a | 47.06 ± 1.40 c | 48.57 ± 1.43 bc |
ES (%) | 46.00 ± 1.38 a | 45.45 ± 1.21 bc | 50.67 ± 1.42 a | 44.11 ± 1.19 bc | 42.38 ± 1.22 c |
Cakes | 2% | 4% | 6% | 8% | 10% |
---|---|---|---|---|---|
n-Hexane | – | + | ++ | + + + | + + + |
n-Heptane | – | + | ++ | + + + | + + + |
Ethyl-acetate | – | + | ++ | + + + | + + + |
Chloroform:Methanol (2:1 v/v) | – | + | ++ | + + + | + + + |
Acetone | – | + | ++ | + + + | + + + |
Compound | λ (nm) | tR (min) | Concentration (mg/100 g d.w.) | ||||
---|---|---|---|---|---|---|---|
n-Hexane | n-Heptane | Ethyl-Acetate | Chloroform:Methanol (2:1 v/v) | Acetone | |||
Rutin | 254 | 57.48 | 4.87 ± 0.12 a | 4.68 ± 0.09 a | 3.340 ± 0.09 c | 3.97 ± 0.06 b | 4.12 ± 0.05 b |
Gallic acid | 278 | 5.38 | 0.53 ± 0.01 a | 0.49 ± 0.01 a | 0.360 ± 0.01 b | 0.42 ± 0.05 b | 0.50 ± 0.02 a |
Syringic acid | 278 | 37.58 | 0.93 ± 0.01 b | 1.31 ± 0.02 a | 0.500 ± 0.01 d | 0.45 ± 0.06 d | 0.67 ± 0.03 c |
Epicatechin | 278 | 40.31 | 1.12 ± 0.03 a | 1.08 ± 0.02 ab | 0.890 ± 0.02 c | 0.96 ± 0.10 bc | 1.03 ± 0.04 ab |
Caffeic acid | 300 | 30.92 | 0.39 ± 0.01 c | 0.44 ± 0.01 b | 0.630 ± 0.01 a | 0.31 ± 0.01 d | 0.29 ± 0.01 e |
Coumaric acid | 300 | 46.12 | n.d. | n.d. | 11.32 ± 0.04 c | 12.23 ± 0.38 b | 12.98 ± 0.19 a |
TAC | 765 | - | 249.90 ± 7.50 bc | 256.50 ± 7.20 ab | 183.60 ± 4.60 d | 234.10 ± 6.30 c | 268.90 ± 7.80 a |
Cakes | IC50 (mg/mL) | Concentration (mg/mL) |
---|---|---|
n-Hexane | 0.48 ± 0.01 c | 0.0079–2.0240 |
n-Heptane | 0.61 ± 0.02 b | 0.0086–2.1977 |
Ethyl-acetate | 0.40 ± 0.01 d | 0.0024–0.6017 |
Chloroform:Methanol (2:1 v/v) | 0.65 ± 0.02 a | 0.0064–1.6342 |
Acetone | 0.63 ± 0.01 ab | 0.0076–1.9366 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savic, I.M.; Savic Gajic, I.M. Determination of Physico-Chemical and Functional Properties of Plum Seed Cakes for Estimation of Their Further Industrial Applications. Sustainability 2022, 14, 12601. https://doi.org/10.3390/su141912601
Savic IM, Savic Gajic IM. Determination of Physico-Chemical and Functional Properties of Plum Seed Cakes for Estimation of Their Further Industrial Applications. Sustainability. 2022; 14(19):12601. https://doi.org/10.3390/su141912601
Chicago/Turabian StyleSavic, Ivan M., and Ivana M. Savic Gajic. 2022. "Determination of Physico-Chemical and Functional Properties of Plum Seed Cakes for Estimation of Their Further Industrial Applications" Sustainability 14, no. 19: 12601. https://doi.org/10.3390/su141912601