Fertilizer Use, Value, and Knowledge Capital: A Case of Indian Farming
Abstract
1. Introduction
2. Data and Methods
3. Results and Discussion
3.1. Determinants of Value from Farm
3.2. Determinants of Information Acquisition
3.3. Determinants of Fertilizer Use: A Machine Learning Approach
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Round 1 | Round 2 | ||||||
---|---|---|---|---|---|---|---|---|
Mean | S.D. | Min | Max | Mean | S.D. | Min | Max | |
FRITZ | 7.67 | 1.08 | 1.93 | 15.02 | 7.64 | 1.21 | 2.04 | 14.99 |
ASSETS | 5.55 | 2.03 | −1.10 | 15.89 | 5.32 | 1.94 | −1.10 | 13.92 |
LAB | 8.01 | 1.11 | 1.43 | 15.71 | 7.83 | 1.18 | 1.97 | 15.05 |
SALES | 10.05 | 1.48 | 2.20 | 16.22 | 9.92 | 1.46 | 3.91 | 15.24 |
MPCE | 7.12 | 0.56 | −1.95 | 13.33 | 7.19 | 0.54 | −2.30 | 11.33 |
SURPLUS | 9.36 | 1.46 | 1.73 | 19.29 | 9.11 | 1.48 | 2.23 | 17.03 |
Variables | Categories (%) | |
---|---|---|
Round 1 | Round 2 | |
EXTN | Yes (7.91); No (92.09) | Yes (7.65); No (92.35) |
KVK | Yes (4.3); No (95.7) | Yes (4.61); No (95.39) |
UNIV | Yes (1.85); No (98.15) | Yes (1.89); No (98.11) |
PRGFRM | Yes (19.54); No (80.46) | Yes (20.9); No (79.1) |
PVT | Yes (6.12); No (93.88) | Yes (7.25); No (92.75) |
NGO | Yes (1.16); No (98.84) | Yes (1.46); No (98.54) |
MEDIA | Yes (23.74); No (76.26) | Yes (26.3); No (73.7) |
FORMEX | Yes (12.53); No (87.47) | Yes (12.61); No (87.39) |
PVT | Yes (23.54); No (76.46) | Yes (25.68); No (74.32) |
ST | 18.96 | 19.01 |
SC | 13.24 | 13.25 |
OBC | 40.32 | 40.28 |
OTH | 27.48 | 27.46 |
GEND | Male (91.58); Female (8.42) | Male (91.61); Female (8.39) |
ILT | ILT (34.41) | ILT (34.41) |
PRIM | 26.53 | 26.53 |
SEC | 27.64 | 27.64 |
HSDIP | 6.13 | 6.13 |
GRAD | 5.29 | 5.29 |
Sample Details | Predicted | Number of Cases | Correct Classification Ratio | ||
---|---|---|---|---|---|
Actual | Yes | No | |||
Season 1 | Yes | 12,627 | 6190 | 0.631 | |
No | 5067 | 6583 | |||
Season 2 | Yes | 13,103 | 7477 | 0.631 | |
No | 1846 | 2823 |
Sample Details | Predicted | Number of Cases | Correct Classification Ratio | ||
---|---|---|---|---|---|
Actual | Yes | No | |||
Season 1 | Yes | 13,101 | 4593 | 0.631 | |
No | 6653 | 6120 | |||
Season 2 | Yes | 11,919 | 3029 | 0.639 | |
No | 6098 | 4202 |
References
- Bahinipati, C.S.; Kumar, V.; Viswanathan, P.K. An Evidence based systematic review on farmers’ adaptation strategies in India. Food Secur. 2021, 13, 399–418. [Google Scholar] [CrossRef]
- Agarwal, B.; Agrawal, A. Do farmers really like farming? Indian farmers in transition. Oxf. Dev. Stud. 2017, 45, 460–478. [Google Scholar] [CrossRef]
- Fitzpatrick, I.A.; Millner, N.; Ginn, F. Governing the soil: Natural farming and bio-nationalism in India. Agric. Hum. Values 2022, 1–16. [Google Scholar] [CrossRef]
- Akbari, M.; Foroudi, P.; Shahmoradi, M.; Padash, H.; Parizi, Z.S.; Khosravani, A.; Ataei, P.; Cuomo, M.T. The Evolution of Food Security: Where Are We Now, Where Should We Go Next? Sustainability 2022, 14, 3634. [Google Scholar] [CrossRef]
- Yousaf, M.; Li, J.; Lu, J.; Ren, T.; Cong, R.; Fahad, S.; Li, X. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Sci. Rep. 2017, 7, 1270. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil degradation as a reason inadequate human nutrition. Food Secur. 2009, 1, 45–57. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Lampridi, M.G.; Sorensen, C.G.; Bochtis, D. Agricultural sustainability: A review of concepts and methods. Sustainability 2019, 11, 5120. [Google Scholar] [CrossRef]
- Rahman, M.M.; Connor, J.D. Impact of Agricultural Extension Services on Fertilizer Use and Farmers’ Welfare: Evidence from Bangladesh. Sustainability 2022, 14, 9385. [Google Scholar] [CrossRef]
- IEG (Independent Evaluation Group). Impact Evaluations in Agriculture: An Assessment of the Evidence; World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Bahinipati, C.S.; Patnaik, U. What motivates farm-level adaptation in India? A systematic review. In Climate Change and Community Resilience: Insights from South Asia; Springer: Berlin/Heidelberg, Germany, 2022; Chapter 4; pp. 49–68. [Google Scholar]
- Foster, A.D.; Rosenzweig, M.R. Microeconomics of technology adoption. Annu. Rev. Econ. 2010, 2, 395–424. [Google Scholar] [CrossRef]
- Viswanathan, P.K.; Kavya, K.; Bahinipati, C. Global patterns of climate resilient agriculture: A review of studies and imperatives for empirical research framework for India. Rev. Dev. Change 2020, 25, 169–192. [Google Scholar] [CrossRef]
- Feder, G.; Just, R.E.; Zilberman, D. Adoption of agricultural innovations in developing countries: A survey. Econ. Dev. Cult. Chang. 1985, 33, 255–298. [Google Scholar] [CrossRef]
- Boudot, C.; Butler, A.; Dugal, N. Evaluating technologies for agricultural development: How to capture the true impact? Sci. Changements Planét. Sécheresse 2013, 24, 374–384. [Google Scholar] [CrossRef]
- Patnaik, U.; Das, P.K.; Bahinipati, C.S. Developmental Interventions, Adaptation Decision and Farmers’ Well-being: Evidence from Drought-prone Households in rural India. Clim. Dev. 2019, 11, 302–318. [Google Scholar] [CrossRef]
- Bahinipati, C.S.; Viswanathan, P.K. Can Micro-Irrigation Technologies Resolve India’s Groundwater Crisis? Reflections from Dark-Regions in Gujarat. Int. J. Commons 2019, 13, 848–858. [Google Scholar] [CrossRef]
- Biswal, D.; Bahinipati, C.S. Why are farmers not insuring crops against risks in India? A Review. Prog. Disaster Sci. 2022, 15, 100241. [Google Scholar] [CrossRef]
- Patt, A.; Suarez, P.; Gwata, C. Effects of seasonal climate forecasts and participatory workshops among subsistence farmers in Zimbabwe. Proc. Nat. Acad. Sci. USA 2005, 102, 12623–12628. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, M.S. An evergreen revolution. Crop Sci. 2006, 46, 2293–2303. [Google Scholar] [CrossRef]
- Thakur, D.S.; Sharma, K.D. Organic farming sustainable agriculture and meeting the challenges of food security in 21st century: An economic analysis. Indian J. Agric. Econ. 2005, 60, 1–15. [Google Scholar]
- Prasad, J. Soil health management—A key for sustainable production. J. Indian Soc. Soil Sci. 2015, 63, 6–13. [Google Scholar]
- Shamrao, T.S. A study of fertilizer policy in India. Int. J. Agric. Sci. 2011, 3, 145. [Google Scholar] [CrossRef]
- Gulati, A.; Narayana, S. Demystifying fertilizer and power subsidies in India. Econ. Polit. Wkly. 2000, 35, 784–794. [Google Scholar]
- Singh, B. Are nitrogen fertilizers deleterious to soil health? Agronomy 2018, 8, 48. [Google Scholar] [CrossRef]
- Chander, G.; Wani, S.P.; Krishnappa, K.; Sahrawat, K.L.; Parthasaradhi, G.; Jangawad, L.S. Soil mapping and variety-based entry-point interventions strengthening agriculture-based livelihoods-exemplar case of ‘Bhoochetana’ in India. Curr. Sci. 2016, 110, 1683–1691. [Google Scholar] [CrossRef]
- Chander, G.; Wani, S.P.; Sahrawat, K.L.; Dixit, S.; Venkateswarlu, B.; Rajesh, C.; Pardhasaradhi, G. Soil test-based nutrient balancing improved crop productivity and rural livelihoods: Case study from rainfed semi-arid tropics in Andhra Pradesh, India. Arch. Agron. Soil Sci. 2014, 60, 1051–1066. [Google Scholar] [CrossRef]
- Chander, G.; Wani, S.P.; Sahrawat, K.L.; Kamdi, P.J.; Pal, C.K.; Pal, D.K.; Mathur, T.P. Balanced and integrated nutrient management enhanced and economic food production: Case study from rainfed semi-arid tropics in India. Arch. Agron. Soil Sci. 2013, 59, 1643–1658. [Google Scholar] [CrossRef]
- Murari, K.K.; Jayaraman, T.; Chakraborty, S. Fertilizer Use and the Small Scale Farms. How Do Small Farmer Fare? Evidence from Village Studies in India; Tulika Books: Chennai, India, 2017; pp. 201–229. [Google Scholar]
- National Sample Survey Organization (NSSO). Government of India, Income, Expenditure, Productive Assets and Indebtedness of Agricultural Households in India; NSS Report No.576; National Sample Survey Organization: New Delhi, India, 2013.
- Chavas, J.P.; Chambers, R.G.; Pope, R.D. Production economics and farm management: A century of contributions. Am. J. Agric. Econ. 2010, 92, 356–375. [Google Scholar] [CrossRef]
- Cornia, G.A. Farm size, land yields and the agricultural production function: An analysis for fifteen developing countries. World Dev. 1985, 13, 513–534. [Google Scholar] [CrossRef]
- Joshi, P.K.; Pal, S.; Birthal, P.S.; Bantilan, M.C.S. Impact of Agricultural Research: Post-Green Revolution Evidence from India; National Centre for Agricultural Economics and Policy, Research, New Delhi International Crops Research Institute for Semi-Arid Tropics: Patancheru, India, 2005. [Google Scholar]
- Evenson, R.E.; Jha, D. The contribution of agricultural research system to agricultural production in India. Indian J. Agric. Econ. 1973, 28, 212–230. [Google Scholar]
- Garforth, G.; Jones, C.; Jones, G.; Garforth, C. The history, development, and future of agricultural extension. In Improving Agricultural Extension: A Reference Manual; Swanson, B.E., Bentz, R.P., Sofranko, A.J., Eds.; FAO: Rome, Italy, 1997. [Google Scholar]
- Omvedt, G. Capitalist Agriculture and rural classes in India. Econ. Polit. Wkly. 1981, 15, A140–A159. [Google Scholar] [CrossRef]
- Huffman, W.E. Human capital: Education and agriculture. Handb. Agric. Econ. 2001, 1, 333–381. [Google Scholar]
- Murari, K.K.; Mahato, S.; Jayaraman, T.; Swaminathan, M. Extreme temperatures and crop yield in Karnataka, India. Rev. Agrar. Stud. 2019, 8. Available online: http://ras.org.in/91036314fb4c1338277b3da6a01a6a36 (accessed on 20 June 2022).
- Koenker, R.; Hallock, K.F. Quantile regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Qi, Y. Random Forest for Bioinformatics. 2012, pp. 307–323. Available online: http://www.cs.cmu.edu/~qyj/papersA08/11-rfbook.pdf (accessed on 20 May 2022).
Layer | Variable | Definition |
---|---|---|
Factors of Production | LAB | Average labor cost per hectare of land (in natural logs) |
ASSETS | Agricultural assets of the household normalized by members of the household (in natural logs) | |
Fertilizer Consumption | FRITZ | Average consumption of fertilizer per hectare of land (in natural logs) |
Knowledge Capital (Extension) | EXTN | Access to technical advice for crops from Extension Agent |
KVK | Access to technical advice for crops from Krishi Vigyan Kendra | |
UNIV | Access to technical advice for crops from Agricultural University | |
PRGFRM | Access to technical advice for crops from Progressive Farmer | |
PVT | Access to technical advice for crops from Private Commercial Agents | |
NGO | Access to technical advice for crops from Non-Governmental Organizations | |
MEDIA | Access to technical advice for crops from Radio/Newspaper / Television / Internet | |
FORMEX | EXTN + KVK + UNIV | |
PVTEX | PRGFRM + PVT + NGO | |
Identity | ST | Households belonging to the social category of Scheduled Tribes (Reference Category) |
SC | Households belonging to the social category of Scheduled Castes | |
OBC | Households belonging to the social category of Other Backward Classes | |
OTH | Household belonging to the social category Others | |
GEND | Whether the head of the household is female or male | |
Human Capital | IT | No general education (Reference Category) |
PRIM | The primary level of general education | |
SEC | Secondary level of general education | |
HSDIP | The level of general education is either Higher Secondary or Diploma | |
GRAD | The level of general education is Graduate and above | |
Others | MPCE | Monthly per capita consumption expenditure (in natural logs) |
SURPLUS | Value of Output minus Value of Input | |
FE | NSS State Region (Proxy for Agro-Climatic Conditions) | |
Outcome | SALES | Total output sold per hectare of land (in natural logs) |
FRITZ | Expenditure on fertilizer per hectare categorized into below median and median and above | |
EXTN | MEDIA, FORMEX, PVTEX |
Predicted | False | True | |
---|---|---|---|
Actual | |||
False | True Negative (TN) | False Positive (FP) | |
True | False Negative (FN) | True Positive (TP) |
Question | Variables (Model) | Method | |
---|---|---|---|
Outcome | Explanatory | ||
Determinants of value from farming | Sales per hectare | FP, FU, KC, ID, HC | OLS, SQREG |
Linkage with knowledge capital | KC | FP, FU, ID, HC, MPCE | LOGIT |
Principal drivers of fertilizer use | FU (above median & below median) | FP, ID, HC, KC, SURP | CTRE, Forest |
Variables | OLS | Quantile | |||
---|---|---|---|---|---|
20th | 40th | 60th | 80th | ||
FRITZ | 0.211 *** (0.199) | 0.369 *** (0.042) | 0.347 *** (0.027) | 0.288 *** (0.020) | 0.268 *** (0.016) |
ASSETS | 0.093 *** (0.008) | 0.147 *** (0.011) | 0.149 *** (0.009) | 0.153 *** (0.009) | 0.172 *** (0.009) |
LAB | 0.261 *** (0.019) | 0.027 (0.028) | 0.093 *** (0.022) | 0.146 *** (0.022) | 0.205 *** (0.020) |
FORMEX | 0.149 *** (0.041) | 0.231 *** (0.056) | 0.164 *** (0.057) | 0.141 *** (0.048) | 0.101 *** (0.039) |
PVTEX | 0.111 *** (0.131) | 0.090 *** (0.037) | 0.043 (0.031) | 0.056 (0.035) | 0.075 * (0.042) |
MEDIA | 0.192 *** (0.033) | 0.144 ** (0.065) | 0.185 *** (0.054) | 0.167 *** (0.044) | 0.132 *** (0.053) |
SC | −0.106 (0.069) | −0.190 ** (0.095) | −0.149 ** (0.073) | −0.215 *** (0.077) | −0.208 ** (0.088) |
OBC | 0.134 ** (0.054) | 0.199 *** (0.063) | 0.134 ** (0.059) | 0.119 ** (0.063) | 0.083 (0.056) |
OTH | 0.265 *** (0.057) | 0.299 *** (0.058) | 0.266 *** (0.059) | 0.315 *** (0.053) | 0.329 *** (0.046) |
PRIM | 0.111 *** (0.039) | 0.135 ** (0.063) | 0.028 (0.055) | 0.055 (0.048) | 0.071 (0.064) |
SEC | 0.151 *** (0.039) | 0.053 (0.059) | 0.040 (0.045) | 0.039 (0.045) | 0.073 (0.057) |
HSDIP | 0.194 *** (0.059) | 0.052 (0.089) | −0.023 (0.085) | 0.012 (0.068) | 0.139 * (0.079) |
GRAD | 0.392 *** (0.058) | 0.269 *** (0.079) | 0.116 (0.104) | 0.126 (0.109) | 0.171 ** (0.083) |
GEND | −0.045 (0.066) | −0.033 (0.123) | −0.019 (0.108) | −0.053 (0.092) | −0.154 ** (0.073) |
CONST | 5.683 *** (0.219) | 5.068 *** (0.343) | 5.566 *** (0.203) | 6.169 *** (0.174) | 6.683 *** (0.182) |
OUTCOME | SALES | ||||
FE | YES | NO | NO | NO | NO |
R2/Pseudo R2 | 0.375 | 0.079 | 0.101 | 0.116 | 0.129 |
N | 6568 | 6568 | 6568 | 6568 | 6568 |
Variables | OLS | Quantile | |||
---|---|---|---|---|---|
20th | 40th | 60th | 80th | ||
FRITZ | 0.177 *** (0.020) | 0.321 *** (0.017) | 0.275 *** (0.018) | 0.259 *** (0.020) | 0.244 *** (0.015) |
ASSETS | 0.112 *** (0.008) | 0.160 *** (0.012) | 0.166 *** (0.009) | 0.159 *** (0.006) | 0.171 *** (0.007) |
LAB | 0.215 *** (0.019) | 0.078 ** (0.032) | 0.159 *** (0.024) | 0.171 *** (0.021) | 0.163 *** (0.016) |
FORMEX | 0.171 *** (0.039) | 0.195 *** (0.065) | 0.176 *** (0.045) | 0.146 *** (0.044) | 0.205 *** (0.043) |
PVTEX | 0.068 ** (0.029) | 0.084 (0.054) | 0.025 (0.043) | 0.023 (0.034) | 0.001 (0.043) |
MEDIA | 0.110 *** (0.031) | 0.058 (0.048) | 0.018 (0.038) | 0.016 (0.038) | 0.042 (0.044) |
SC | −0.049 (0.064) | −0.254 *** (0.065) | −0.258 *** (0.083) | −0.166 ** (0.065) | −0.215 *** (0.065) |
OBC | 0.082 (0.053) | 0.022 (0.064) | 0.006 (0.069) | 0.032 (0.052) | 0.016 (0.068) |
OTH | 0.178 *** (0.055) | −0.030 (0.071) | 0.057 (0.076) | 0.15 *** (0.056) | 0.213 *** (0.061) |
PRIM | 0.105 *** (0.037) | 0.071 (0.052) | 0.007 (0.044) | 0.062 (0.054) | 0.033 (0.034) |
SEC | 0.157 *** (0.035) | 0.095 * (0.045) | −0.017 (0.058) | 0.016 (0.034) | 0.012 (0.034) |
HSDIP | 0.172 *** (0.052) | 0.185 *** (0.067) | 0.048 (0.072) | 0.035 (0.063) | 0.016 (0.047) |
GRAD | 0.234 *** (0.055) | 0.129 (0.109) | −0.039 (0.068) | −0.012 (0.047) | −0.017 (0.079) |
GEND | −0.084 (0.059) | 0.036 (0.099) | −0.131 (0.096) | −0.067 (0.075) | −0.183 ** (0.082) |
CONST | 5.926 *** (0.185) | 5.285 *** (0.192) | 5.793 *** (0.171) | 6.342 *** (0.168) | 7.076 *** (0.166) |
OUTCOME | SALES | ||||
FE | YES | NO | NO | NO | NO |
R2/Pseudo R2 | 0.358 | 0.085 | 0.10 | 0.114 | 0.122 |
N | 6510 | 6510 | 6510 | 6510 | 6510 |
Variables | Round 1 | Round 2 | ||||
---|---|---|---|---|---|---|
ASSETS | 1.078 *** (0.013) | 1.108 *** (0.018) | 1.028 ** (0.012) | 1.141 *** (0.015) | 1.209 *** (0.021) | 1.087 *** (0.014) |
MPCE | 1.307 *** (0.066) | 1.243 *** (0.079) | 1.299 *** (0.064) | 1.207 *** (0.063) | 1.138 * (0.082) | 1.190 *** (0.062) |
FRITZ | 1.190 *** (0.029) | 1.099 *** (0.035) | 1.161 *** (0.027) | 1.056 *** (0.024) | 1.066 ** (0.034) | 1.157 *** (0.026) |
SC | 1.111 (0.122) | 1.383 ** (0.197) | 1.109 (0.110) | 0.873 (0.095) | 0.983 (0.147) | 1.344 *** (0.141) |
OBC | 1.298 *** (0.115) | 1.413 *** (0.152) | 1.253 *** (0.099) | 1.101 (0.098) | 1.059 (0.126) | 1.567 *** (0.141) |
OTH | 1.725 *** (0.162) | 1.674 *** (0.194) | 1.234 ** (0.106) | 1.297 *** (0.119) | 1.042 (0.129) | 1.465 *** (0.141) |
PRIM | 1.539 *** (0.099) | 1.345 *** (0.111) | 1.133 ** (0.067) | 1.331 *** (0.085) | 1.144 (0.103) | 1.031 (0.064) |
SEC | 1.929 *** (0.123) | 1.901 *** (0.154) | 1.276 *** (0.074) | 1.704 *** (0.104) | 1.598 *** (0.137) | 1.098 (0.064) |
HSDIP | 2.571 *** (0.255) | 2.144 *** (0.276) | 1.345 *** (0.127) | 1.786 *** (0.166) | 1.609 *** (0.215) | 1.004 (0.092) |
GRAD | 2.391 *** (0.237) | 2.569 *** (0.318) | 1.101 (0.109) | 2.054 *** (0.198) | 2.173 *** (0.278) | 0.953 (0.091) |
GEND | 0.826 * (0.082) | 0.984 (0.125) | 0.997 (0.107) | 0.839 * (0.084) | 0.887 (0.124) | 0.815 ** (0.079) |
CONST | 0.005 *** (0.002) | 0.115 *** (0.006) | 0.003 *** (0.001) | 0.031 *** (0.015) | 0.02 *** (0.013) | 0.004 *** (0.002) |
Outcome | MEDIA | FORMEX | PVT | MEDIA | FORMEX | PVT |
FE | YES | |||||
Wald Chi2 | 1663.17 *** | 1368.07 *** | 1248.20 *** | 1400.66 *** | 1317.46 *** | 1540.84 *** |
Pseudo R2 | 0.174 | 0.178 | 0.116 | 0.145 | 0.185 | 0.151 |
N | 11884 | 11875 | 11821 | 11538 | 11540 | 11467 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, B.; Patnaik, U.; Sasidharan, S.; Murari, K.K.; Bahinipati, C.S. Fertilizer Use, Value, and Knowledge Capital: A Case of Indian Farming. Sustainability 2022, 14, 12491. https://doi.org/10.3390/su141912491
Paul B, Patnaik U, Sasidharan S, Murari KK, Bahinipati CS. Fertilizer Use, Value, and Knowledge Capital: A Case of Indian Farming. Sustainability. 2022; 14(19):12491. https://doi.org/10.3390/su141912491
Chicago/Turabian StylePaul, Bino, Unmesh Patnaik, Subash Sasidharan, Kamal Kumar Murari, and Chandra Sekhar Bahinipati. 2022. "Fertilizer Use, Value, and Knowledge Capital: A Case of Indian Farming" Sustainability 14, no. 19: 12491. https://doi.org/10.3390/su141912491
APA StylePaul, B., Patnaik, U., Sasidharan, S., Murari, K. K., & Bahinipati, C. S. (2022). Fertilizer Use, Value, and Knowledge Capital: A Case of Indian Farming. Sustainability, 14(19), 12491. https://doi.org/10.3390/su141912491