Evidence of Validity and Factorial Invariance of a Diet and Healthy Lifestyle Scale (DEVS) in University Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Instrument
- Initially, two registered dietitians, experts in public health and vegetarian nutrition, and fluent in English and Spanish, conducted a direct and independent translation of the Vegetarian Lifestyle Index into Spanish (Peru).
- Second, the first Spanish version was independently back-translated into English by two translators whose native language was English and who were fluent in Spanish.
- Third, based on both versions, the research team, together with the translators mentioned above, evaluated the translated versions. This process was facilitated by the fact that the instrument had previously been translated into Spanish (Argentina) [36]. Therefore, a comparative analysis was carried out with this existing version, considering some linguistic and cultural similarities. The items were evaluated by registered dieticians and experts in the field who considered that the items were adequate and that the instrument was relevant to the public health of the Peruvian population. That allowed developing the initial version.
- Fourth, a pilot test was carried out, in which the initial version was applied to 10 students to check the readability and understanding of the items.
- Fifth, the research group evaluated the pilot test, and no modifications were suggested, which allowed having the final version of DEVS in Spanish (See Appendix A).
2.3. Procedure
2.4. Ethical Aspects
2.5. Statistical Analysis
3. Results
3.1. Descriptive Analysis
3.2. Exploratory Factor Analysis
3.3. Confirmatory Factor Analysis and Reliability
3.4. Factor Invariance by Gender
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
1. ¿Cuántas porciones de granos integrales consume en un día? (pan integral, avena, quínoa, arroz o trigo integral, etc.). Una porción equivale a los siguientes ejemplos: 1 rebanada de pan de molde integral, o 4 galletitas integrales, o ½ taza mediana de trigo, quínoa o arroz integral cocidos, o 1 plato chico de pastas integrales cocidas, o ½ taza mediana de avena. | |
0= | Menos de 3 porciones por día |
1= | De 3 a menos de 6 porciones por día |
3= | 6 o más porciones por día |
2. ¿Cuántas porciones de legumbres y sus derivados consumen en un día? (lentejas, arvejas, habas, tarwi o chocho, garbanzo, soja y derivados como leche de soja, tofu, milanesas o hamburguesas de legumbres, etc.). Una porción equivale a los siguientes ejemplos: ½ taza mediana de lentejas, porotos, soja, garbanzos o arvejas cocidos, o 1 milanesa de legumbres grande, o 3 rebanadas de tofu, o 4 cucharadas soperas de aderezo de legumbres (ej. humus), o 1 vaso de leche de soja o 2 cucharadas soperas de leche de soja en polvo. | |
0= | Menos de 1 porción por día |
1= | De 1 a menos de 3 porciones por día |
3= | 3 o más porciones por día |
3. ¿Cuántas porciones de verduras come en un día? (verduras crudas, verduras cocidas y jugos de verduras 100% naturales). Una porción equivale a los siguientes ejemplos: 1 plato grande de verduras de hojas verdes crudas como lechuga, espinaca, etc., ó 1 cucharón pequeño de verduras crudas como tomate, zanahoria, rabanitos, cebolla, etc., ó 1 cucharón de verduras cocidas utilizadas en sopas, guisos, ensalada rusa, en tartas o empanadas, etc., ó 1 vaso mediano de jugos de verduras 100% naturales (espinaca, zanahoria, pepino, etc.) | |
0= | Menos de 4 porciones por día |
1= | De 4 a menos de 8 porciones por día |
3= | 8 o más porciones por día |
4. ¿Cuántas porciones de frutas come en un día? (frutas frescas, deshidratadas, enlatadas, cocidas y jugos de frutas 100% naturales). Una porción equivale a los siguientes ejemplos: 1 fruta mediana o 2 frutas pequeñas, o 2 cucharadas soperas de pasas o 1 orejón de pera o durazno, o 1 vaso mediano de jugos 100% naturales. | |
0= | Menos de 3 porciones por día |
1= | De 3 a menos de 6 porciones por día |
3= | 4 o más porciones por día |
5. ¿Cuántas porciones de frutos secos y semillas consume en un día? (nueces, almendras, castañas, lino, chía, girasol, sésamo, etc.). Una porción equivale a los siguientes ejemplos: 2 cucharadas soperas de semillas, o 10 unidades de almendras, nueces o castañas, o 1 vaso de leche o jugo de frutos secos o semillas. | |
0= | Menos de 4 porciones por semana |
1= | De 4 porciones por semana a 1 porción por día |
3= | 1 ½ o más porciones por día |
6. ¿Cuántas porciones de aceites vegetales no calentados (aceite de oliva, girasol, maíz o soja, etc.), palta y aceitunas consume en un día? Una porción equivale a los siguientes ejemplos: 2 cucharadas chicas (tipo postre) de aceite no calentado o usado en la cocción, o ½ palta chica, o 3 cucharadas tipo postre de pasta de aceitunas, o 20 aceitunas enteras. | |
0= | Hasta 2 porciones por día |
1= | Más de 2 hasta 4 porciones por día |
3= | Más de 4 porciones por día |
7. ¿Cuántas porciones de lácteos consume en un día? (Queso, yogur, leche, postres lácteos, etc.) Una porción equivale a los siguientes ejemplos: 1 taza grande de leche o yogur, o 1 rebanada mediana de queso fresco, o 3 cucharadas soperas de queso untable. | |
0= | No consumo |
1= | Hasta 2 porciones por día |
3= | Más de 2 porciones por día |
8. ¿Cuántas porciones de huevo consume en un día? (hervido, en preparaciones como revuelto, rellenos, tortilla, ensalada, tortas etc.) Una porción equivale a los siguientes ejemplos: 1 huevo o 2 claras. | |
0= | No consumo |
1= | Hasta 1 porción por día |
3= | Más de 1 porción por día |
9. ¿Cuántas porciones de dulces consume en una semana? (tortas, helados, chocolates, mermeladas, dulces, bebidas azucaradas, etc.) Una porción equivale a los siguientes ejemplos: 1 porción de torta, o 1 cucharada tipo postre de mermelada, o 2 bochas de helado, o 6 cuadraditos de chocolate, o 1 alfajor, o 1 vaso mediano de gaseosa u otra bebida azucarada. | |
0= | Menos de 2 porciones por semana |
1= | De 2 a 5 porciones por semana |
3= | Más de 5 porciones por semana |
10. ¿Cuántas porciones de fuentes confiables de vitamina B12 consume en un día? Incluye: carne, pescado, lácteos, huevos, alimentos fortificados y suplementos. Una porción equivale a los siguientes ejemplos: 1 porción chica de carne (vacuna, ave y/o pescado), o ½ vaso de leche, o 2 rebanadas de queso, o 1 huevo, o 1 vaso de jugo o leche vegetal comercial fortificada con vitamina B-12, o 1 suplemento de 100 microgramos de vitamina B-12 por día, o 1 suplemento de 2000 microgramos de vitamina B-12 por semana que equivale al consumo de 2 o más porciones de suplemento de B12 por día. | |
0= | Menos de 1 porción por día |
1= | 1 porción por día |
3= | 2 o más porciones por día |
11. ¿Cuántas veces en la semana consume carnes? (carne roja, pescado, pollo y carnes procesadas como chorizo, hamburguesa, salchicha, etc.) | |
0= | No consumo |
1= | Menos de 1 vez por mes hasta 1 vez por semana |
3= | 30 min o más por día de AF moderada o 15 min o más por día de AF intensa |
12. ¿Cuántos minutos realiza de actividad física en un día? (si no realiza todos los días actividad física, promedie en un día la actividad semanal que realice). Ejemplos de actividad física (AF) moderada: Caminata rápida, jardinería o tareas domésticas activas y trabajos de construcción generales. Ejemplos de actividad física (AF) intensa: Correr o trotar, actividades en el gimnasio, desplazamientos rápidos en bicicleta y deportes competitivos. | |
0= | No realizo actividad física |
1= | Menos de 30 min por día de AF moderada o menos de 15 min por día de AF intensa |
3= | 2 o más porciones por día |
13. ¿Cuántos vasos de agua de 250 mL consume al día? | |
0= | Menos de 4 vasos por día |
1= | De 4 a 7 vasos por día |
3= | 8 o más vasos por día |
14. ¿Cuántos minutos se expone al sol (al menos brazos y/o piernas) diariamente entre las 11 y las 13 hrs? | |
0= | Menos de 5 min por día |
1= | De 5 a menos de 10 min por día |
3= | 10 min o más por día |
References
- Arriscado, D.; Knox, E.; Zabala, M.; Zurita-Ortega, F.; Dalmau, J.M.; Muros, J.J. Different healthy habits between northern and southern Spanish school children. J. Public Health 2017, 25, 653–660. [Google Scholar] [CrossRef]
- Aparicio-Ugarriza, R.; Cuenca-García, M.; Gonzalez-Gross, M.; Julián, C.; Bel-Serrat, S.; Moreno, L.A.; Breidenassel, C.; Kersting, M.; Arouca, A.B.; Michels, N.; et al. Relative validation of the adapted Mediterranean Diet Score for Adolescents by comparison with nutritional biomarkers and nutrient and food intakes: The Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study. Public Health Nutr. 2019, 22, 2381–2397. [Google Scholar] [CrossRef]
- Olds, T.; Sanders, I.; Maher, C.; Fraysse, F.; Bell, L.; Leslie, E. Does compliance with healthy lifestyle behaviours cluster within individuals in Australian primary school-aged children? Child Care Health Dev. 2018, 44, 117–123. [Google Scholar] [CrossRef]
- Ramos-Vera, C.; Serpa Barrientos, A.; Calizaya-Milla, Y.E.; Carvajal Guillen, C.; Saintila, J. Consumption of Alcoholic Beverages Associated with Physical Health Status in Adults: Secondary Analysis of the Health Information National Trends Survey Data. J. Prim. Care Community Health 2022, 13, 215013192110662. [Google Scholar] [CrossRef]
- Branca, F.; Lartey, A.; Oenema, S.; Aguayo, V.; Stordalen, G.A.; Richardson, R.; Arvelo, M.; Afshin, A. Transforming the food system to fight non-communicable diseases. BMJ 2019, 364, l296. [Google Scholar] [CrossRef]
- Chen, S.; Kuhn, M.; Prettner, K.; Bloom, D.E. The macroeconomic burden of noncommunicable diseases in the United States: Estimates and projections. PLoS ONE 2018, 13, e0206702. [Google Scholar] [CrossRef]
- Dunton, G.F. Sustaining Health-Protective Behaviors Such as Physical Activity and Healthy Eating. JAMA 2018, 320, 639–640. [Google Scholar] [CrossRef]
- World Health Organization. Noncommunicable Diseases (NCD). 2016. Available online: https://www.who.int/health-topics/noncommunicable-diseases#tab=tab_1 (accessed on 10 May 2022).
- Whatnall, M.C.; Patterson, A.J.; Brookman, S.; Convery, P.; Swan, C.; Pease, S.; Hutchesson, M.J. Lifestyle behaviors and related health risk factors in a sample of Australian university students. J. Am. Coll Health 2020, 68, 734–741. [Google Scholar] [CrossRef]
- Alvarez-Alvarez, M.; de la Vega-Marcos, R.; Jiménez-Castuera, R.; Leyton-Román, M. Psychometric Properties of the Healthy Lifestyle Questionnaire for Ecuadorian University Students (EVS-EUE). Int. J. Environ. Res. Public Health 2021, 18, 1087. [Google Scholar] [CrossRef]
- Nuñez-Leyva, R.E.; Lozano-López, T.E.; Calizaya-Milla, Y.E.; Calizaya-Milla, S.E.; Saintila, J. Excess Weight and Body Fat Percentage Associated with Waist Circumference as a Cardiometabolic Risk Factor in University Students; Zeni, S., Ed.; Scientifica: Uckfield, UK, 2022; pp. 1–8. [Google Scholar]
- Aceijas, C.; Waldhäusl, S.; Lambert, N.; Cassar, S.; Bello-Corassa, R. Determinants of health-related lifestyles among university students. Perspect Public Health 2017, 137, 227–236. [Google Scholar] [CrossRef]
- Instituto de Derechos Humanos y Desarrollo. Marco Situacional y Problemática del Consumo de Tabaco; USMP: Lima, Perú, 2017. [Google Scholar]
- Cabanillas-Rojas, W. Alcohol consumption and gender in the adolescent school population of peru: Evolution and intervention challenges. Rev. Peru. De Med. Exp. Y Salud Publica 2020, 37, 148–154. [Google Scholar] [CrossRef]
- World Hearth Federation/World Congress of Cardiology & Cardiology Health (WHF/WCC). El Costo de Las Enfermedades Cardiacas en América Latina; WHF/WCC: México City, Mexico, 2016. [Google Scholar]
- Fernández-Rodríguez, L.J.; Bardales-Zuta, V.H.; Avalos-Alvarado, C.E.; Hilario-Vargas, J.S. Cardiovascular risk profile in Peruvian medical students. FASEB J. 2016, 30, lb615. [Google Scholar] [CrossRef]
- Iparraguirre, R.M.P.; Porras, M.M.; De La Cruz, A.H.; Días Bonilla, M.L. Prevalence of overweight and obesity in Young Peruvian students at National University of Center of Peru-Region Junin-Huancayo. Obes. Med. 2020, 19, 100242. [Google Scholar] [CrossRef]
- Popkin, B.M.; D’Anci, K.E.; Rosenberg, I.H. Water, Hydration and Health. Nutr Rev. 2010, 68, 439. [Google Scholar] [CrossRef]
- Alter, J.S.; Nair, R.M.; Nair, R. Nature Cure and Non-Communicable Diseases: Ecological Therapy as Health Care in India. Int. J. Environ. Res. Public Health 2017, 14, 1525. [Google Scholar] [CrossRef]
- Saintila, J.; Lozano, T.E.; Ruiz, P.G.; White, M.; Huancahuire-Vega, S. Health-Related Quality of Life, Blood Pressure, and Biochemical and Anthropometric Profile in Vegetarians and Nonvegetarians. J. Nutr. Metab. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Tsubota, K.; Watanabe, M. Effects of vegetarian diets on blood pressure. Nutr. Diet. Suppl. 2016, 8, 57–64. [Google Scholar] [CrossRef]
- Schulze, M.B.; Martínez-González, M.A.; Fung, T.T.; Lichtenstein, A.H.; Forouhi, N.G. Food based dietary patterns and chronic disease prevention. BMJ 2018, 361, k2396. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Sánchez-Tainta, A.; Corella, D.; Salas-Salvadó, J.; Ros, E.; Arós, F.; Gómez-Gracia, E.; Fiol, M. A provegetarian food pattern and reduction in total mortality in the Prevención con Dieta Mediterránea (PREDIMED) study. Am. J. Clin. Nutr. 2014, 100 (Suppl. S1), 320S–328S. [Google Scholar] [CrossRef]
- Saintila, J.; Lozano, T.E.; Calizaya-Milla, Y.E.; White, M.; Huancahuire-Vega, S. Nutritional knowledge, anthropometric profile, total cholesterol, and motivations among Peruvian vegetarians and non-vegetarians. Nutr. Clín. Diet. Hosp. 2021, 41, 91–98. [Google Scholar]
- Chen, Z.; Zuurmond, M.G.; van der Schaft, N.; Nano, J.; Wijnhoven, H.A.H.; Ikram, M.A.; Franco, O.H.; Voortman, T. Plant versus animal based diets and insulin resistance, prediabetes and type 2 diabetes: The Rotterdam Study. Eur. J. Epidemiol. 2018, 33, 883–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tantamango-Bartley, Y.; Knutsen, S.F.; Knutsen, R.; Jacobsen, B.K.; Fan, J.; Lawrence Beeson, W.; Sabate, J.; Hadley, D.; Jaceldo-Siegl, K.; Penniecook, J.; et al. Are strict vegetarians protected against prostate cancer? Am. J. Clin. Nutr. 2016, 103, 153–160. [Google Scholar] [CrossRef]
- Barnard, N.D.; Goldman, D.M.; Loomis, J.F.; Kahleova, H.; Levin, S.M.; Neabore, S.; Batts, T.C. Plant-based diets for cardiovascular safety and performance in endurance sports. Nutrients 2019, 11, 130. [Google Scholar] [CrossRef] [PubMed]
- Leyton-Román, M.; Mesquita, S.; Jiménez-Castuera, R. Validation of the Spanish Healthy Lifestyle Questionnaire. Int. J. Clin. Health Psychol. 2021, 21, 100228. [Google Scholar] [CrossRef]
- Santiago-Bazan, C.; Carcausto, W. Validez y fiabilidad de un cuestionario de estilo de vida saludable en estudiantes universitarios. Peruvian. J. Health Care Glob. Health 2019, 3, 23–28. [Google Scholar]
- Vera-Ponce, V.J.; Torres-Malca, J.R.; Tello-Quispe, E.K.; Orihuela-Manrique, E.J.; Cruz-Vargas, J.A. Validación de escala de cambios en los estilos de vida durante el periodo de cuarentena en una población de estudiantes universitarios de Lima, Perú. Rev. La Fac Med. Hum. 2020, 20, 614–623. [Google Scholar]
- Chang, S.-H.; Chang, Y.-Y.; Wu, L.-Y. Gender differences in lifestyle and risk factors of metabolic syndrome: Do women have better health habits than men ? J. Clin. Nurs. 2019, 28, 2225–2234. [Google Scholar] [CrossRef]
- Shiferaw, B.; Verrill, L.; Booth, H.; Zansky, S.M.; Norton, D.M.; Crim, S.; Henao, O.L. Sex-Based Differences in Food Consumption: Foodborne Diseases Active Surveillance Network (FoodNet) Population Survey, 2006–2007. Clin. Infect. Dis. 2012, 54 (suppl. S5), S453–S457. [Google Scholar] [CrossRef]
- Ancka-Iglesias, C.V.; Flores-Albino, Y.A.; Calizaya-Milla, Y.E.; Saintila, J. Sociodemographic characteristics and consumption of ultra-processed foods in vegetarians and non-vegetarians: A cross-sectional study in the Peruvian population. Nutr. Clin. Y Diet. Hosp. 2022, 42, 186–196. [Google Scholar]
- Solís-Guevara, F.D.; Ruiz Mamani, P.G.; Saintila, J. Dietary Regimen, Overweight, and Obesity in Human Nutrition Students and Other Majors: A Cross-Sectional Study. J. Nutr. Metab. 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Le, L.T.; Sabaté, J.; Singh, P.N.; Jaceldo-Siegl, K. The design, development and evaluation of the vegetarian lifestyle index on dietary patterns among vegetarians and non-vegetarians. Nutrients 2018, 10, 542. [Google Scholar] [CrossRef] [PubMed]
- Gili, R.; Leeson, S.; Montes-Chañi, E.; Xutuc, D.; Contreras-Guillén, I.; Guerrero-Flores, G.; Martins, M.C.; Pacheco, F.J.; Pacheco, S.O. Healthy Vegan Lifestyle Habits among Argentinian Vegetarians and Non-Vegetarians. Nutrients 2019, 11, 154. [Google Scholar] [CrossRef] [PubMed]
- Christopher, M.S.; Charoensuk, S.; Gilbert, B.D.; Neary, T.J.; Pearce, K.L. Mindfulness in Thailand and the United States: A case of apples versus oranges? J. Clin. Psychol. 2009, 65, 590–612. [Google Scholar] [CrossRef] [PubMed]
- Hunsley, J.; Marsh, E.J. Developing criteria for evidence-based assessment: An introduction to assessment that work. In A Guide to Assessments that Work; Hunsley, J., Marsh, E.J., Eds.; Oxford University Press: Oxford, UK, 2008; pp. 3–14. [Google Scholar]
- Ponterotto, J.G.; Charter, R.A. Statistical extensions of ponterotto and ruckdeschel’s (2007) reliability matrix for estimating the adequacy of internal consistency coefficients. Percept. Mot. Ski. 2009, 108, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Ato, M.; López, J.J.; Benavente, A. Un sistema de clasificación de los diseños de investigación en psicología. Ann. Psychol. 2013, 29, 1038–1059. [Google Scholar] [CrossRef]
- Soper, D. A-Priori Sample Size Calculator for Structural Equation Models. [Software]. 2021. Available online: https://www.danielsoper.com/statcalc/calculator.aspx?id=89 (accessed on 3 March 2022).
- Tsang, S.; Royse, C.F.; Terkawi, A.S. Guidelines for developing, translating, and validating a questionnaire in perioperative and pain medicine. Saudi J. Anaesth. 2017, 11 (Suppl. S1), S80–S89. [Google Scholar] [CrossRef]
- Hoerger, M.; Currell, C. Ethical issues in Internet research. In APA Handbook of Ethics in Psychology, Vol 2: Practice, Teaching, and Research; Knapp, S., Gottlieb, M., Handelsman, M., VandeCreek, L., Eds.; American Psychological Association: Washington, DC, USA, 2011; pp. 385–400. [Google Scholar]
- Das, M.; Ester, P.; Kaczmirek, L. Social and Behavioral Research and the Internet: Advances in Applied Methods and Research Strategies; Routledge: New York, NY, USA, 2011. [Google Scholar]
- VandenBos, G.R. American Psychological Association. APA dictionary of Psychology, 2nd ed.; VandenBos, G.R., Association, A.P., Eds.; American Psychological Association: Washington, DC, USA, 2015. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; Methodology in the Social Sciences; Guilford Press: New York, NY, USA, 2015. [Google Scholar]
- Hutcheson, G. The Multivariate Social Scientist. In The Multivariate Social Scientist; SAGE Publications, Ltd.: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Jöreskog, K.G. Factor Analysis by MINRES 2003. Available online: https://ssicentral.com/wp-content/uploads/2021/04/lis_minres.pdf (accessed on 7 May 2022).
- McDonald, R.P. Test Theory: A United Treatment; Lawrence Erlbaum: Mahwah, NJ, USA, 1999. [Google Scholar]
- Hancock, G.R.; Mueller, R.O. Rethinking Construct Reliability within Latent Variable Systems. In Structural Equation Modeling: Present and Future—A Festschrift in Honor of Karl Joreskog; Cudeck, R., Toit, S.D., Soerbom, D., Eds.; Scientific Software International: Lincolnwood, IL, USA, 2001; pp. 195–216. [Google Scholar]
- Gadermann, A.M.; Guhn, M.; Zumbo, B.D. Estimating ordinal reliability for Likert-type and ordinal item response data: A conceptual, empirical, and practical guide. Pract. Assess. Res. Eval. 2019, 17, 3. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Análisis, 8th ed.; Cengage Learning: Boston, MA, USA, 2019. [Google Scholar]
- DiStefano, C.; Morgan, G.B. A Comparison of Diagonal Weighted Least Squares Robust Estimation Techniques for Ordinal Data. Struct. Equ. Modeling A Multidiscip. J. 2014, 21, 425–438. [Google Scholar] [CrossRef]
- Escobedo, M.T.; Hernández, J.A.; Estebané, V.; Martínez, G. Modelos de ecuaciones estructurales: Características, fases, construcción, aplicación y resultados. Cienc. Trab. 2016, 18, 16–22. [Google Scholar] [CrossRef]
- Vandenberg, R.J.; Lance, C.E. A Review and Synthesis of the Measurement Invariance Literature: Suggestions, Practices, and Recommendations for Organizational Research. Organ. Res. Methods 2016, 3, 4–69. [Google Scholar] [CrossRef]
- Cheung, G.W.; Rensvold, R.B. Evaluating Goodness-of-Fit Indexes for Testing Measurement Invariance. Struct. Equ. Modeling A Multidiscip. J. 2009, 9, 233–255. [Google Scholar] [CrossRef]
- French, B.F.; Finch, W.H. Confirmatory Factor Analytic Procedures for the Determination of Measurement Invariance. Struct. Equ. Modeling 2009, 13, 378–402. [Google Scholar] [CrossRef]
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–93. [Google Scholar] [CrossRef]
- Jorgensen, T.D.; Pornprasertmanit, S.; Schoemann, A.M.; Rosseel, Y. Useful tools for structural equation modeling—R package version 0.5–1. 2018. Available online: https://cran.r-project.org/web/packages/semTools/semTools.pdf (accessed on 12 May 2022).
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 7th ed.; Pearson: Boston, MA, USA, 2019. [Google Scholar]
- Horn, J.L. A rationale and test for the number of factors in factor analysis. Psychometrika 1965, 30, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Su, C.; Du, W.; Ouyang, Y.; Wang, H.; Wang, Z.; Ding, G.; Zhang, B. The association between physical activity and body fat percentage with adjustment for body mass index among middle-aged adults: China health and nutrition survey in 2015. BMC Public Health 2020, 20, 732. [Google Scholar] [CrossRef]
- Kleinert, S.; Horton, R. Obesity needs to be put into a much wider context. Lancet 2019, 393, 724–726. [Google Scholar] [CrossRef]
- Walker, S.N.; Sechrist, K.R.; Pender, N.J. The health-promoting lifestyle profile: Development and psychometric characteristics. Nurs. Res. 1987, 36, 76–81. [Google Scholar] [CrossRef]
Item | M | SD | g1 | g2 | r-itc | αordinal |
---|---|---|---|---|---|---|
1 | 1.5 | 0.61 | 0.81 | −0.35 | 0.52 | 0.81 |
2 | 1.73 | 0.64 | 0.32 | −0.71 | 0.52 | 0.81 |
3 | 1.64 | 0.64 | 0.48 | −0.68 | 0.57 | 0.81 |
4 | 1.78 | 0.69 | 0.31 | −0.89 | 0.56 | 0.81 |
5 | 1.56 | 0.68 | 0.83 | −0.51 | 0.55 | 0.81 |
6 | 1.43 | 0.60 | 1.05 | 0.08 | 0.59 | 0.80 |
7 | 1.81 | 0.59 | 0.06 | −0.34 | 0.53 | 0.81 |
8 | 1.95 | 0.58 | 0.00 | −0.07 | 0.45 | 0.81 |
9 | 1.48 | 0.61 | 0.87 | −0.24 | 0.45 | 0.81 |
10 | 1.76 | 0.66 | 0.31 | −0.79 | 0.55 | 0.81 |
11 | 1.85 | 0.55 | −0.06 | 0.03 | 0.34 | 0.82 |
12 | 1.94 | 0.66 | 0.07 | −0.70 | 0.49 | 0.81 |
13 | 1.87 | 0.69 | 0.18 | −0.88 | 0.48 | 0.81 |
14 | 1.82 | 0.70 | 0.26 | −0.95 | 0.40 | 0.82 |
Item | Factor | h2 | u2 |
---|---|---|---|
1 | 0.53 | 0.278 | 0.72 |
2 | 0.53 | 0.277 | 0.72 |
3 | 0.59 | 0.347 | 0.65 |
4 | 0.57 | 0.330 | 0.67 |
5 | 0.57 | 0.323 | 0.68 |
6 | 0.60 | 0.359 | 0.64 |
7 | 0.52 | 0.269 | 0.73 |
8 | 0.42 | 0.179 | 0.82 |
9 | 0.44 | 0.193 | 0.81 |
10 | 0.54 | 0.296 | 0.70 |
11 | 0.31 | 0.097 | 0.90 |
12 | 0.48 | 0.228 | 0.77 |
13 | 0.47 | 0.224 | 0.78 |
14 | 0.39 | 0.151 | 0.85 |
Model | χ2 | p | CFI | TLI | RMSEA [90% CI] | SRMR | ω | H |
---|---|---|---|---|---|---|---|---|
Total sample | 2334.356 | 0.000 | 928 | 915 | 0.068 [0.069–0.075] | 0.074 | 0.83 | 0.84 |
Men | 1146.411 | 0.000 | 908 | 891 | 0.077 [0.072–0.081] | 0.070 | 0.80 | 0.81 |
Women | 1387.884 | 0.000 | 940 | 929 | 0.074 [0.074–0.071] | 0.071 | 0.85 | 0.86 |
χ2 (df) | Δχ2 (Δdf) | RMSEA [90% IC] | TLI | p | CFI | (ΔCFI) | (ΔRMSEA) | |
---|---|---|---|---|---|---|---|---|
M1 | 1760.008 (154) | - | 0.056 [0.054, 0.059] | 0.908 | <0.001 | 0.922 | - | - |
M2 | 1673.231 (167) | 86.777 (13) | 0.056 [0.054, 0.059] | 0.908 | <0.001 | 0.915 | 0.007 | 0.000 |
M3 | 1816.516 (180) | 143.285 (13) | 0.057 [0.054, 0.059] | 0.907 | <0.001 | 0.908 | 0.007 | 0.001 |
M4 | 1918.05 (194) | 101.534 (14) | 0.056 [0.054, 0.059] | 0.908 | <0.001 | 0.901 | 0.007 | −0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calizaya-Milla, Y.E.; Saintila, J.; Morales-García, W.C.; Ruiz Mamani, P.G.; Huancahuire-Vega, S. Evidence of Validity and Factorial Invariance of a Diet and Healthy Lifestyle Scale (DEVS) in University Students. Sustainability 2022, 14, 12273. https://doi.org/10.3390/su141912273
Calizaya-Milla YE, Saintila J, Morales-García WC, Ruiz Mamani PG, Huancahuire-Vega S. Evidence of Validity and Factorial Invariance of a Diet and Healthy Lifestyle Scale (DEVS) in University Students. Sustainability. 2022; 14(19):12273. https://doi.org/10.3390/su141912273
Chicago/Turabian StyleCalizaya-Milla, Yaquelin E., Jacksaint Saintila, Wilter C. Morales-García, Percy G. Ruiz Mamani, and Salomón Huancahuire-Vega. 2022. "Evidence of Validity and Factorial Invariance of a Diet and Healthy Lifestyle Scale (DEVS) in University Students" Sustainability 14, no. 19: 12273. https://doi.org/10.3390/su141912273
APA StyleCalizaya-Milla, Y. E., Saintila, J., Morales-García, W. C., Ruiz Mamani, P. G., & Huancahuire-Vega, S. (2022). Evidence of Validity and Factorial Invariance of a Diet and Healthy Lifestyle Scale (DEVS) in University Students. Sustainability, 14(19), 12273. https://doi.org/10.3390/su141912273