Sustainable Extraction of Colourant from Harmal Seeds (Peganum harmala) for Dyeing of Bio-Mordanted Wool Fabric
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Collection
2.2. Irradiation and Extraction Process
2.3. Optimization of Mordanting Condition
2.4. Shade Development Methods
2.5. Evaluation of Characteristics of Dyed and Undyed Fabrics
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barani, H.; Haji, A.; Maleki, H. Analysis of lecithin treatment effects on the structural transformation of wool fiber using vi-brational spectroscopy. Int. J. Biol. Macromol. 2018, 108, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Shokry, H.; Elkady, M.; Hamad, H. Nano activated carbon from industrial mine coal as adsorbents for removal of dye from simulated textile wastewater: Operational parameters and mechanism study. J. Mater. Res. Technol. 2019, 8, 4477–4488. [Google Scholar] [CrossRef]
- Singh, M.; Vajpayee, M.; Ledwani, L. Eco-friendly surface modification of natural fibres to improve dye uptake using natural dyes and application of natural dyes in fabric finishing: A review. Mater. Today: Proc. 2021, 43, 2868–2871. [Google Scholar] [CrossRef]
- Kandasamy, N.; Kaliappan, K.; Palanisamy, T. Upcycling sawdust into colorant: Ecofriendly natural dyeing of fabrics with ultrasound assisted dye extract of Pterocarpus indicus Willd. Ind. Crop. Prod. 2021, 171, 113969. [Google Scholar] [CrossRef]
- Sharma, A.; Mazumdar, B.; Keshav, A. Valorization of unsalable Amaranthus tricolour leaves by microwave-assisted extrac-tion of betacyanin and betaxanthin. Biomass Convers. Biorefinery 2021, 163, 1–17. [Google Scholar]
- Naebe, M.; Haque, A.N.M.A.; Haji, A. Plasma-Assisted Antimicrobial Finishing of Textiles: A Review. Engineering 2021, 12, 145–163. [Google Scholar] [CrossRef]
- Silva, D.; Rocha, R.; Silva, C.J.; Barroso, H.; Botelho, J.; Machado, V.; Mendes, J.J.; Oliveira, J.; Loureiro, M.V.; Marques, A.C.; et al. Gamma radiation for sterilization of textile based materials for personal protective equipment. Polym. Degrad. Stab. 2021, 194, 109750. [Google Scholar] [CrossRef]
- Islam, M.T.; Repon, M.R.; Liman, M.L.R.; Hossain, M.M.; Al Mamun, M.A. Functional modification of cellulose by chitosan and gamma radiation for higher grafting of UV protective natural chromophores. Radiat. Phys. Chem. 2021, 183, 109426. [Google Scholar] [CrossRef]
- Khan, A.A.; Iqbal, N.; Adeel, S.; Azeem, M.; Batool, F.; Bhatti, I.A. Extraction of natural dye from red calico leaves: Gamma ray assisted improvements in colour strength and fastness properties. Dye. Pigment. 2014, 103, 50–54. [Google Scholar] [CrossRef]
- Rehman, F.U.; Adeel, S.; Haddar, W.; Bibi, R.; Azeem, M.; Mia, R.; Ahmed, B. Microwave-Assisted Exploration of Yellow Natural Dyes for Nylon Fabric. Sustainability 2022, 14, 5599. [Google Scholar] [CrossRef]
- Chirila, L.; Popescu, A.; Stanculescu, I.R.; Cutrubinis, M.H.S.; Cerempei, A.N.A.; Sandu, I. Gamma irradiation effects on natural dyeing performances of wool fabrics. Rev. Chim. 2016, 67, 2628–2633. [Google Scholar]
- Vujcic, I.; Masic, S.; Medic, M.; Milicevic, B.; Dramicanin, M. The influence of gamma irradiation on the color change of wool, linen, silk, and cotton fabrics used in cultural heritage artifacts. Radiat. Phys. Chem. 2018, 156, 307–313. [Google Scholar] [CrossRef]
- Thinkohkaew, K.; Piroonpan, T.; Jiraborvornpongsa, N.; Potiyaraj, P. Radiation induced graft polymerization of fluorinated methacrylate onto polypropylene spunbond nonwoven fabric. Surfaces Interfaces 2021, 24, 101125. [Google Scholar] [CrossRef]
- Chirila, L.; Popescu, A.; Cutrubinis, M.; Stanculescu, I.; Moise, V.I. The influence of gamma irradiation on natural dyeing properties of cotton and flax fabrics. Radiat. Phys. Chem. 2018, 145, 97–103. [Google Scholar] [CrossRef]
- Ansari, T.N.; Iqbal, S. Antibacterial efficiency of naturally occurring dyes and mordants. Proc. Indian Natl. Sci. Acad. 2021, 87, 408–419. [Google Scholar] [CrossRef]
- Bujak, T.; Zagórska-Dziok, M.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Wasilewski, T.; Hordyjewicz-Baran, Z. Antioxidant and Cytoprotective Properties of Plant Extract from Dry Flowers as Functional Dyes for Cosmetic Products. Molecules 2021, 26, 2809. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Zhang, Y.; Ranjitkar, S.; Li, M.; Guo, Y.; Yan, X.; Wang, C.; Stepp, J.R.; Yang, L. Reusing wasteroot of Rubia wallichiana dyeing from Monpa of Tibet in China. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Arifeen, W.-U.; Rehman, F.-U.; Adeel, S.; Zuber, M.; Ahmad, M.N.; Ahmad, T. Environmental friendly extraction of walnut bark-based juglone natural colorant for dyeing studies of wool fabric. Environ. Sci. Pollut. Res. 2021, 28, 49958–49966. [Google Scholar] [CrossRef]
- Thakker, A.M. Sustainable processing of cotton fabrics with plant-based biomaterials Sapindus mukorossi and Acacia concinna for health-care applications. J. Text. Inst. 2020, 112, 718–726. [Google Scholar] [CrossRef]
- Pozzi, F.; Shibayama, N.; Leona, M.; Lombardi, J.R. TLC-SERS study of Syrian rue (Peganum harmala ) and its main alkaloid constituents. J. Raman Spectrosc. 2012, 44, 102–107. [Google Scholar] [CrossRef]
- Fatma, B.; Fatiha, M.; Elattafia, B.; Noureddine, D. Phytochemical and antimicrobial study of the seeds and leaves of Peganum harmala L. against urinary tract infection pathogens. Asian Pac. J. Trop. Dis. 2016, 6, 822–826. [Google Scholar] [CrossRef]
- Adeel, S.; Zuber, M.; Rehman, F.U.; Zia, K.M. Microwave-assisted extraction and dyeing of chemical and bio-mordanted cotton fabric using harmal seeds as a source of natural dye. Environ. Sci. Pollut. Res. 2018, 25, 11100–11110. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-P.; Wang, Y.-W.; Qi, S.-L.; Zhang, Y.-P.; Deng, G.; Ding, W.-Z.; Ma, C.; Lin, Q.-Y.; Guan, H.-D.; Liu, W.; et al. Analogous β-Carboline Alkaloids Harmaline and Harmine Ameliorate Scopolamine-Induced Cognition Dysfunction by Attenuating Acetylcholinesterase Activity, Oxidative Stress, and Inflammation in Mice. Front. Pharmacol. 2018, 9, 346. [Google Scholar] [CrossRef]
- Ren, Y.; Gong, J.; Fu, R.; Li, Z.; Li, Q.; Zhang, J.; Yu, Z.; Cheng, X. Dyeing and antibacterial properties of cotton dyed with prodigiosins nanomicelles produced by microbial fermentation. Dye. Pigment. 2017, 138, 147–153. [Google Scholar] [CrossRef]
- Soosaraei, M.; Fakhar, M.; Teshnizi, S.H.; Hezarjaribi, H.Z.; Banimostafavi, E.S. Medicinal plants with promising antileishmanial activity in Iran: A systematic review and meta-analysis. Ann. Med. Surg. 2017, 21, 63–80. [Google Scholar] [CrossRef]
- Ayoob, I.; Hazari, Y.M.; Lone, S.H.; Rehman, S.U.; Khuroo, M.A.; Fazili, K.M.; Bhat, K.A. Phytochemical and Cytotoxic Evaluation of Peganum Harmala: Structure Activity Relationship Studies of Harmine. ChemistrySelect 2017, 2, 2965–2968. [Google Scholar] [CrossRef]
- Miraj, S. A review study of therapeutic effects of Peganum harmala. Pharm. Lett. 2016, 8, 161–166. [Google Scholar]
- Adeel, S.; Kiran, S.; Shahid, M.; Habib, S.R.; Habib, N.; Hussaan, M. Ecofriendly application of coconut coir (Cocos nucifera) extract for silk dyeing. Environ. Sci. Pollut. Res. 2021, 29, 564–572. [Google Scholar] [CrossRef]
- Hasan, M.U.; Adeel, S.; Batool, F.; Ahmad, T.; Tang, R.-C.; Amin, N.; Khan, S.R. Sustainable application of Cassia obovata–based chrysophanic acid as potential source of yellow natural colorant for textile dyeing. Environ. Sci. Pollut. Res. 2021, 29, 10740–10753. [Google Scholar] [CrossRef]
- Hussaan, M.; Iqbal, N.; Adeel, S.; Azeem, M.; Javed, M.T.; Raza, A. Microwave-assisted enhancement of milkweed (Calotropis procera L.) leaves as an eco-friendly source of natural colorants for textile. Environ. Sci. Pollut. Res. 2016, 24, 5089–5094. [Google Scholar] [CrossRef]
- Abolhasani, A.; Barzegar, M.; Sahari, M.A. Effect of gamma irradiation on the extraction yield, antioxidant, and antityrosinase activities of pistachio green hull extract. Radiat. Phys. Chem. 2018, 144, 373–378. [Google Scholar] [CrossRef]
- Munna, M.K.H.; Chinyerenwa, A.C.; Kamruzzaman, M.; Hossain, M.A.; Ahamed, M.K.; Wahab, M.A. Effect of gamma radiation on cotton fabric with chitosan to improve the mechanical properties. Int. J. Text. Sci. 2017, 6, 1–6. [Google Scholar]
- Yusuf, M.; Khan, S.A.; Shabbir, M.; Mohammad, F. Developing a Shade Range on Wool by Madder (Rubia cordifolia) Root Extract with Gallnut (Quercus infectoria) as Biomordant. J. Nat. Fibers 2016, 14, 597–607. [Google Scholar] [CrossRef]
- Haji, A.; Qavamnia, S.S.; Nasiriboroumand, M. The use of D-optimal design in optimization of wool dyeing with Juglans regia bark. Ind. Text. 2018, 69, 104–110. [Google Scholar]
- Lachguer, K.; El Ouali, M.; Essaket, I.; El Merzougui, S.; Cherkaoui, O.; Serghini, M.A. Eco-Friendly Dyeing of Wool with Natural Dye Extracted from Moroccan Crocus sativus L. Flower Waste. Fibers Polym. 2021, 22, 3368–3377. [Google Scholar] [CrossRef]
- Islam, S.U.; Rather, L.J.; Shabbir, M.; Sheikh, J.; Bukhari, M.N.; Khan, M.A.; Mohammad, F. Exploiting the potential of polyphenolic biomordants in environmentally friendly coloration of wool with natural dye from Butea monosperma flower extract. J. Nat. Fibers 2018, 16, 512–523. [Google Scholar] [CrossRef]
- Ghaheh, F.S.; Moghaddam, M.K.; Tehrani, M. Comparison of the effect of metal mordants and bio-mordants on the colorimetric and antibacterial properties of natural dyes on cotton fabric. Color. Technol. 2021, 137, 689–698. [Google Scholar] [CrossRef]
- Rather, L.J.; Zhou, Q.; Ali, A.; Haque, Q.M.R.; Li, Q. Valorization of Agro-industrial Waste from Peanuts for Sustainable Natural Dye Production: Focus on Adsorption Mechanisms, Ultraviolet Protection, and Antimicrobial Properties of Dyed Wool Fabric. ACS Food Sci. Technol. 2021, 1, 427–442. [Google Scholar] [CrossRef]
- Rather, L.J.; Zhou, Q.; Li, Q. Re-use of Cinnamomum camphora natural dye generated wastewater for sustainable UV protective and antioxidant finishing of wool fabric: Effect of Fe(II) sulfate. Sustain. Chem. Pharm. 2021, 21, 100422. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Song, D.; Guo, H.; Hu, J.; Wang, Y.; Xu, W. Dyeing behavior and mechanism of Crocein Orange G on carboxymethyl cotton fabric. Cellulose 2021, 28, 5911–5922. [Google Scholar] [CrossRef]
- Doty, K.; Haar, S.; Kim, J. Black walnut, Osage orange and eastern redcedar sawmill waste as natural dyes: Effect of aluminum mordant on color parameters. Fash. Text. 2016, 3, 1–16. [Google Scholar] [CrossRef]
- Shabbir, M.; Rather, L.J.; Islam, S.U.; Bukhari, M.N.; Shahid, M.; Khan, M.A.; Mohammad, F. An eco-friendly dyeing of woolen yarn by Terminalia chebula extract with evaluations of kinetic and adsorption characteristics. J. Adv. Res. 2016, 7, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, Q.; Rather, L.J.; Li, Q. Agricultural waste of Eriobotrya japonica L. (Loquat) seeds and flora leaves as source of natural dye and bio-mordant for coloration and bio-functional finishing of wool textile. Ind. Crop. Prod. 2021, 169, 113633. [Google Scholar] [CrossRef]
- Yan, X.; Hong, L.; Pei, S.; Hamilton, A.; Sun, H.; Yang, R.; Liu, A.; Yang, L. A natural yellow colorant from Buddleja officinalis for dyeing hemp fabric. Ind. Crop. Prod. 2021, 171, 113968. [Google Scholar] [CrossRef]
- Lykidou, S.; Pashou, M.; Vouvoudi, E.; Nikolaidis, N. Study on the Dyeing Properties of Curcumin on Natural and Synthetic Fibers and Antioxidant and Antibacterial Activities. Fibers Polym. 2021, 22, 3336–3342. [Google Scholar] [CrossRef]
- Hosseinnezhad, M.; Gharanjig, K.; Jafari, R.; Imani, H.; Razani, N. Cleaner colorant extraction and environmentally wool dyeing using oak as eco-friendly mordant. Environ. Sci. Pollut. Res. 2020, 28, 7249–7260. [Google Scholar] [CrossRef] [PubMed]
- Datta, M.K.; Talukder, E.; Faisal, A.; Sarker, A.; Jiang, H. The Sustainable Coloration of Wool Fabric Using Naturally Extracted Dyes from Sappan Heartwood. J. Nat. Fibers 2021, 1–15. [Google Scholar] [CrossRef]
- Önal, A.; Özbek, O.; Tombul, K.C.; Nached, S. Investigation of the dyeing properties of cotton fabrics and wool yarns using Prunus persica leaf extract. J. Indian Chem. Soc. 2021, 98, 100092. [Google Scholar] [CrossRef]
- Islam, M.T.; Liman, L.R.; Roy, M.N.; Hossain, M.; Repon, R.; Al Mamun, A. Cotton dyeing performance enhancing mechanism of mangiferin enriched bio-waste by transition metals chelation. J. Text. Inst. 2021, 113, 567–579. [Google Scholar] [CrossRef]
- Sharma, A.; Kadam, S.; Mathur, P.; Islam, S.U.; Sheikh, J. Re-using henna natural dyeing wastewater for coloration and multifunctional finishing of linen fabric. Sustain. Chem. Pharm. 2018, 11, 17–22. [Google Scholar] [CrossRef]
- Glogar, M.; Tancik, J.; Brlek, I.; Sutlovic, A.; Tkalec, M. Optimisation of process parameters of Alpaca wool printing with Juglans regia natural dye. Color Technol. 2020, 136, 188–201. [Google Scholar]
Mordant Concentration | K/S | L* | a* | b* | Mordant Concentration | K/S | L* | a* | b* |
---|---|---|---|---|---|---|---|---|---|
Al 10% (Pre) | 16.341 | 70.80 | 2.83 | 30.04 | T. A 10% (Pre) | 21.281 | 58.45 | 7.66 | 30.69 |
Al 7% (Post) | 7.1222 | 71.08 | 3.58 | 24.77 | T. A 7% (Post) | 8.666 | 54.57 | 8.77 | 22.60 |
Fe 10% (Pre) | 19.299 | 59.43 | 6.48 | 30.87 | Acacia 3% (Pre) | 12.612 | 60.33 | 9.12 | 30.21 |
Fe 7% (Post) | 7.6815 | 60.00 | 10.40 | 28.73 | Acacia 7% (Post) | 6.6678 | 58.62 | 12.19 | 27.35 |
Co 7% (Pre) | 19.77 | 61.55 | 10.51 | 34.49 | Pomegranate 7%(Pre) | 19.527 | 61.52 | 7.12 | 30.76 |
Co 7% (Post) | 7.2014 | 60.69 | 7.52 | 20.69 | Pomegranate 3%(Post) | 6.4293 | 68.68 | 4.78 | 32.29 |
Sn 10% (Pre) | 17.439 | 69.86 | 6.50 | 33.30 | Henna 9% (Pre) | 21.578 | 49.70 | 9.46 | 28.65 |
Sn 7% (Post) | 8.0339 | 74.57 | 4.29 | 30.94 | Henna 9% (Post) | 12.547 | 51.74 | 12.37 | 30.13 |
Cu 10% (Pre) | 16.924 | 54.69 | 2.23 | 31.69 | Turmeric 10% (Pre) | 23.645 | 51.35 | 13.23 | 43.86 |
Cu 7% (Post) | 7.6831 | 63.06 | 7.05 | 23.25 | Turmeric 10% (Post) | 23.576 | 59.21 | 16.14 | 64.98 |
Mordant Concentration | LF | WF | RF | DCF | PF | |||
---|---|---|---|---|---|---|---|---|
c. c | c.s | DRF | WRF | Acidic | Alkaline | |||
Control | 3/4 | 3 | 3 | ¾ | ¾ | 3/4 | 3 | 3 |
Al 10% (Pre) | 4 | 4/5 | 4/5 | 4/5 | 4 | 4 | 4/5 | 4/5 |
Al 7% (Post) | 4/5 | 5 | 5 | 5 | 5 | 4/5 | 5 | 5 |
Fe 10% (Pre) | 4/5 | 4/5 | 4/5 | 4/5 | 4 | 4 | 5 | 5 |
Fe 7% (Post) | 4/5 | 5 | 4/5 | 5 | 4/5 | 4 | 4/5 | 4/5 |
Co 7% (Pre) | 4/5 | 5 | 4/5 | 4 | ¾ | 4 | 4/5 | 4/5 |
Co 7% (Post) | 4/5 | 5 | 5 | 5 | 4 | 4/5 | 5 | 5 |
Sn 10% (Pre) | 4 | 4/5 | 4/5 | 4/5 | 4 | 4 | 4/5 | 4/5 |
Sn 7% (Post) | 4/5 | 5 | 5 | 5 | 5 | 4 | 4/5 | 4/5 |
Cu 10% (Pre) | 4/5 | 5 | 4/5 | 4/5 | 4 | 4/5 | 4/5 | 4/5 |
Cu 7% (Post) | 4/5 | 5 | 5 | 4/5 | 4 | 5 | 5 | 5 |
T. A 10% (Pre) | 4/5 | 4/5 | 4/5 | 4/5 | 4 | 4 | 4/5 | 4/5 |
T. A 7% (Post) | 4/5 | 5 | 5 | 4/5 | 4 | 5 | 4/5 | 4/5 |
Acacia 3% (Pre) | 4 | 4/5 | 4/5 | 4/5 | 4 | 4 | 4/5 | 4/5 |
Acacia 7% (Post) | 4/5 | 4/5 | 4/5 | 4 | 4 | 4/5 | 4/5 | 4/5 |
Pomegranate 7% (Pre) | 4/5 | 4/5 | 4/5 | 4/5 | 4 | 4/5 | 4/5 | 4/5 |
Pomegranate3%(Post) | 4/5 | 4/5 | 4/5 | 4/5 | 4 | 4/5 | 4/5 | 4/5 |
Henna 9% (Pre) | 4/5 | 4/5 | 5 | 4/5 | 4/5 | 4 | 4/5 | 4/5 |
Henna 9% (Post) | 4/5 | 4/5 | 5 | 4/5 | 4/5 | 4 | 4/5 | 4/5 |
Turmeric 10% (Pre) | 4 | 4/5 | 4/5 | 4 | ¾ | 4 | 4/5 | 4/5 |
Turmeric 10% (Post) | 4 | 4/5 | 4/5 | 4 | ¾ | 4 | 4/5 | 4/5 |
WITH OUT MORDANT | ||||
Al 10% Pre | Al 7% Post | Fe 10% Pre | Fe 7% Post | Co 7% Pre |
Co 7% Post | Sn 10% Pre | Sn 7% Post | Cu 10% Pre | Cu 7% Post |
T.A 10% Pre | T.A 7% Post | Acacia 3% Pre | Acacia 7% Post | Pomegranate 7%Pre |
Pomegranate 3% Post | Henna 9% Pre | Henna 9% Post | Turmeric 10% Pre | Turmeric 10% Post |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeel, S.; Anjum, F.; Zuber, M.; Hussaan, M.; Amin, N.; Ozomay, M. Sustainable Extraction of Colourant from Harmal Seeds (Peganum harmala) for Dyeing of Bio-Mordanted Wool Fabric. Sustainability 2022, 14, 12226. https://doi.org/10.3390/su141912226
Adeel S, Anjum F, Zuber M, Hussaan M, Amin N, Ozomay M. Sustainable Extraction of Colourant from Harmal Seeds (Peganum harmala) for Dyeing of Bio-Mordanted Wool Fabric. Sustainability. 2022; 14(19):12226. https://doi.org/10.3390/su141912226
Chicago/Turabian StyleAdeel, Shahid, Fozia Anjum, Muhammad Zuber, Muhammad Hussaan, Nimra Amin, and Meral Ozomay. 2022. "Sustainable Extraction of Colourant from Harmal Seeds (Peganum harmala) for Dyeing of Bio-Mordanted Wool Fabric" Sustainability 14, no. 19: 12226. https://doi.org/10.3390/su141912226
APA StyleAdeel, S., Anjum, F., Zuber, M., Hussaan, M., Amin, N., & Ozomay, M. (2022). Sustainable Extraction of Colourant from Harmal Seeds (Peganum harmala) for Dyeing of Bio-Mordanted Wool Fabric. Sustainability, 14(19), 12226. https://doi.org/10.3390/su141912226