Effect of Organic Fertilizers on Avocado Trees (Cvs. Fuerte, Hass, Lamb Hass) in Western Crete, a Cool Subtropical Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment 1. The Effect of Terra Insecta® Organic Insect Manure on Young Avocado Trees
2.2. Experiment 2. The Effect of Fruit-Fix® Organic Mixture on Young Avocado Trees
2.3. Experiment 3. The Effect of AΜΙΝO-16® Organic Mixture on Mature Avocado Trees
2.4. Leaf Analysis
2.5. Dry Matter Analysis
2.6. Oil Concentration Analysis
2.7. Statistical Analysis
3. Results
3.1. Soil Analysis
- i.
- Experiment 1 took place on a sandy loam soil, with a sand content of 55.8%, clay 16.2%, silt 28.0%, pH of 7.41, total organic matter of 4.29%, high N-NO3, and low CaCO3.
- ii.
- Sub-experiment 2.1: The soil where Lamb Hass trees were planted (Souda experiment) had a sand content of 47.3%, clay 21.1%, silt 31.6%, pH of 7.54, total organic matter of 1.88%, high N-NO3, and low CaCO3.
- iii.
- Sub-experiment 2.2: Soil analysis of the experimental field (Vatolackos experiment) showed that it contained 59.8% sand, 10.2% clay, 30.0% silt, pH 6.27, total organic matter of 2.41%, N-NO3 at 18.10, and low CaCO3.
- iv.
- For the third experiment, the experimental plot consisted of silty-clay soil, with a sand content of 45.5%, clay 27.7%, silt 26.7%, pH of 8.3, total organic matter of 6.42%, high N-NO3 (30.71%), and high CaCO3 (20.70%).
3.2. Experiment 1: The Effect of TERRA INSECTA® on Young Avocado Trees
3.2.1. Sub-Experiment 1.1
3.2.2. Sub-Experiment 1.2
3.3. Experiment 2: The Effect of Fruit-Fix® on Young Avocado Trees
3.3.1. Sub-Experiment 2.1
3.3.2. Sub-Experiment 2.2
3.4. Experiment 3: The Effect of AMINO-16® on Mature Avocado Trees
4. Discussion
4.1. Experiment 1
4.2. Experiment 2
4.3. Experiment 3
5. Conclusions
- In the present study, the application of an organic mixture and insect manure to soil with satisfactory specifications led to many indices of plant growth reaching higher values than those of the control, although these results are not always statistically significant.
- Stress from environmental conditions throughout the winter (long periods of flooding) in young avocado trees can be addressed with an appropriate organic fertilizer mixture, as indicated by the Fruit-Fix® application.
- The positive results of the application of amino acids, seaweed extract, and insect frass, three sustainable sources of organic nitrogen, which were observed in other crops, were confirmed for avocado, under specific circumstances.
- The repeated application of organic nitrogen sources to young avocado trees during the stem growth period contributed to their better growth and development.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sommaruga, R.; Eldridge, H.M. Avocado Production: Water Footprint and Socio-Economic Implications. EuroChoices 2021, 20, 48–53. [Google Scholar] [CrossRef]
- CBI. The European Market Potential for Avocados. 2021. Available online: https://www.cbi.eu/market-information/fresh-fruit-vegetables/avocados/market-entry (accessed on 25 July 2022).
- Grandi, S. Retail marketing trends: Dallo shopper marketing al vertical branding. In Retail Marketing Trends; EGEA: Milan, Italy, 2017; pp. 1–245. [Google Scholar]
- Migliore, G.; Farina, V.; Tinervia, S.; Matranga, G.; Schifani, G. Consumer Interest towards Tropical Fruit: Factors Affecting Avocado Fruit Consumption in Italy. Agric. Food Econ. 2017, 5, 24. [Google Scholar] [CrossRef]
- Ford, N.A.; Liu, A.G. The Forgotten Fruit: A Case for Consuming Avocado Within the Traditional Mediterranean Diet. Front. Nutr. 2020, 7, 78. [Google Scholar] [CrossRef] [PubMed]
- Kourgialas, N.N.; Dokou, Z. Water Management and Salinity Adaptation Approaches of Avocado Trees: A Review for Hot-Summer Mediterranean Climate. Agric. Water Manag. 2021, 252, 106923. [Google Scholar] [CrossRef]
- Carvalho, C.P.; Velásquez, M.A.; Van Rooyen, Z. Determination of the Minimum Dry Matter Index for the Optimum Harvest of’Hass’ Avocado Fruits in Colombia. Agron. Colomb. 2014, 32, 399–406. [Google Scholar] [CrossRef]
- Aziz, A.B.A.; Desouki, I.; El-Tanahy, M.M. Effect of Nitrogen Fertilization on Yield and Fruit Oil Content of Avocado Trees. Sci. Hortic. 1975, 3, 89–94. [Google Scholar] [CrossRef]
- Silber, A.; Naor, A.; Cohen, H.; Bar-Noy, Y.; Yechieli, N.; Levi, M.; Noy, M.; Peres, M.; Duari, D.; Narkis, K.; et al. Avocado Fertilization: Matching the Periodic Demand for Nutrients. Sci. Hortic. 2018, 241, 231–240. [Google Scholar] [CrossRef]
- Gamble, J.; Harker, F.R.; Jaeger, S.R.; White, A.; Bava, C.; Beresford, M.; Stubbings, B.; Wohlers, M.; Hofman, P.J.; Marques, R.; et al. The Impact of Dry Matter, Ripeness and Internal Defects on Consumer Perceptions of Avocado Quality and Intentions to Purchase. Postharvest Biol. Technol. 2010, 57, 35–43. [Google Scholar] [CrossRef]
- International Federation of Organic Agriculture Movements (IFOAM). IFOAM Basic Standards for Organic Production and Processing; IFOAM Publications: Bonn, Germany, 2002. [Google Scholar]
- International Federation of Organic Agriculture Movements (IFOAM). The IFOAM Norms Organic Production Processing; IFOAM Publications: Bonn, Germany, 2012. [Google Scholar]
- Azimi, M.S.; Daneshian, J.; Sayfzadeh, S.; Zare, S. Evaluation of Amino Acid and Salicylic Acid Application on Yield and Growth of Wheat under Water Deficit. Int. J. Agric. Crop Sci. 2013, 5, 816. [Google Scholar]
- El-Hamady, M.M.; Baddour, A.G.; Sobh, M.M.; Ashour, H.M.; Manaf, H.H. Influence of Mineral Fertilization in Combination with Khumate, Amino Acids and Sodium Selenite on Growth, Chemical Composition, Yield and Fruit Quality of Sweet Pepper Plant. Middle East J. Agric. Res. 2017, 6, 433–447. [Google Scholar]
- Ghasemi, S.; Khoshgoftarmanesh, A.H.; Afyuni, M.; Hadadzadeh, H. The Effectiveness of Foliar Applications of Synthesized Zinc-Amino Acid Chelates in Comparison with Zinc Sulfate to Increase Yield and Grain Nutritional Quality of Wheat. Eur. J. Agron. 2013, 45, 68–74. [Google Scholar] [CrossRef]
- Khan, A.S.; Ahmad, B.; Jaskani, M.J.; Ahmad, R.; Malik, A.U. Foliar Application of Mixture of Amino Acids and Seaweed (Ascophylum Nodosum) Extract Improve Growth and Physicochemical Properties of Grapes. Int. J. Agric. Biol. 2012, 14, 383–388. [Google Scholar]
- Morales-Payan, J.P. Influence of foliar sprays of an amino acid formulation on fruit yield of ‘Edward’ mango. Acta Hortic. 2015, 1075, 157–159. [Google Scholar] [CrossRef]
- Morales-Payan, J.P.; Stall, W.M. Papaya (Carica Papaya) Response to Foliar Treatments with Organic Complexes of Peptides and Amino Acids. Proc. Fla. State Hortic. Soc. 2003, 116, 30–32. [Google Scholar]
- Thomas, J.; Mandal, A.; Raj Kumar, R.; Chordia, A. Role of Biologically Active Amino Acid Formulations on Quality and Crop Productivity of Tea (Camellia Sp.). Int. J. Agric. Res. 2009, 4, 228–236. [Google Scholar] [CrossRef]
- Halloran, A.; Hansen, H.H.; Jensen, L.S.; Bruun, S. Comparing environmental impacts from insects for feed and food as an alternative to animal production. In Edible Insects in Sustainable Food Systems; Halloran, A., Flore, R., Vantomme, P., Roos, N., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 163–180. ISBN 978-3-319-74011-9. [Google Scholar]
- Jensen, L.S. Animal manure fertiliser value, crop utilisation and soil quality impacts. In Animal Manure Recycling: Treatment and Management; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 295–328. [Google Scholar]
- Bouyoukos, G.J. Hydrometer method improved for making particle size analyses of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Methods of soil analysis, part 2 chemical and microbiological properties. In Total Carbon, Organic Carbon and Organic Matter, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture: Washington, DC, USA, 1954.
- Horton, J.H.; Newsom, D.W. A rapid gas evolution method for calcium carbonate equivalent in liming materials. Soil Sci. Soc. Am. Proc. 1953, 17, 414–415. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Gaines, T.P.; Mitchell, G.A. Chemical Methods for Soil and Plant Analysis; Agronomy Handbook No. 1; University of Georgia, Coastal Plain Station: Athens, GA, USA, 1979; pp. 105–110. [Google Scholar]
- Houben, D.; Daoulas, G.; Faucon, M.-P.; Dulaurent, A.-M. Potential Use of Mealworm Frass as a Fertilizer: Impact on Crop Growth and Soil Properties. Sci. Rep. 2020, 10, 4659. [Google Scholar] [CrossRef]
- Kagata, H.; Ohgushi, T. Positive and Negative Impacts of Insect Frass Quality on Soil Nitrogen Availability and Plant Growth. Popul. Ecol. 2012, 54, 75–82. [Google Scholar] [CrossRef]
- Poveda, J. Insect Frass in the Development of Sustainable Agriculture. A Review. Agron. Sustain. Dev. 2021, 41, 5. [Google Scholar] [CrossRef]
- Tzatzani, T.-T.; Kavroulakis, N.; Doupis, G.; Psarras, G.; Papadakis, I.E. Nutritional status of "Hass" and "Fuerte" avocado (Persea americana Mill.) plants subjected to high soil moisture. J. Plant Nutr. 2020, 43, 327–334. [Google Scholar] [CrossRef]
- Frioni, T.; VanderWeide, J.; Palliotti, A.; Tombesi, S.; Poni, S.; Sabbatini, P. Foliar vs. Soil Application of Ascophyllum Nodosum Extracts to Improve Grapevine Water Stress Tolerance. Sci. Hortic. 2021, 277, 109807. [Google Scholar] [CrossRef]
- Saa, S.; Olivos-Del Rio, A.; Castro, S.; Brown, P.H. Foliar Application of Microbial and Plant Based Biostimulants Increases Growth and Potassium Uptake in Almond (Prunus Dulcis [Mill.] D. A. Webb). Front. Plant Sci. 2015, 6, 87. [Google Scholar] [CrossRef]
- De Saeger, J.; Van Praet, S.; Vereecke, D.; Park, J.; Jacques, S.; Han, T.; Depuydt, S. Toward the Molecular Understanding of the Action Mechanism of Ascophyllum Nodosum Extracts on Plants. J. Appl. Phycol. 2020, 32, 573–597. [Google Scholar] [CrossRef] [Green Version]
- Aliko, A.A.; Manga, A.A.; Haruna, H.; Abubakar, A.W. Effect of Different Concentrations of Aqueous Ascophyllum Nodosum Extract on Flowering and Fruiting in Some Vegetables. Bayero J. Pure Appl. Sci. 2017, 10, 63–65. [Google Scholar] [CrossRef]
- Ayub, R.A.; de Sousa, A.M.; Viencz, T.; Botelho, R.V. Fruit Set and Yield of Apple Trees Cv. Gala Treated with Seaweed Extract of Ascophyllum Nodosum and Thidiazuron. Rev. Bras. Frutic. 2019, 41, 1–12. [Google Scholar] [CrossRef]
- Schaffer, B.A.; Wolstenholme, B.N.; Whiley, A.W. The Avocado: Botany, Production and Uses; CABI: Wallingford, UK, 2013. [Google Scholar]
- Van Rooyen, Z.; Bower, J.P. The Role of Fruit Mineral Composition on Fruit Softness and Mesocarp Discolouration in ‘Pinkerton’ Avocado (Persea Americana Mill.). J. Hortic. Sci. Biotechnol. 2005, 80, 793–799. [Google Scholar] [CrossRef]
- Abd El-Aal, F.S.; Shaheen, A.; Ahmed, A.; Mahmoud, A.R. Effect of Foliar Application of Urea and Amino Acids Mixtures as Antioxidants on Growth, Yield and Characteristics of Squash. Res. J. Agric. Biol. Sci. 2010, 6, 583–588. [Google Scholar]
- Tsouvaltzis, P.; Koukounaras, A.; Siomos, A.S. Application of Amino Acids Improves Lettuce Crop Uniformity and Inhibits Nitrate Accumulation Induced by the Supplemental Inorganic Nitrogen Fertilization. Int. J. Agric. Biol. 2014, 16, 951–955. [Google Scholar]
- Whiley, A.; Rasmussen, T.; Saranah, J.; Wolstenholme, B. Delayed Harvest Effects on Yield, Fruit Size and Starch Cycling in Avocado (Persea Americana Mill.) in Subtropical Environments. II. The Late-Maturing Cv. Hass. Sci. Hortic. 1996, 66, 35–49. [Google Scholar] [CrossRef]
- Al-Said, M.A.; Kamal, A.M. Effect of foliar spray with folic acid and some amino acids on flowering, yield and quality of sweet pepper. J. Plant Prod. 2008, 33, 7403–7412. [Google Scholar] [CrossRef]
- do, C. Mouco, M.A.; de Lima, M.A.C.; da Silva, A.L.; dos Santos, S.C.A.; Rodrigues, F.M. Amino acids on mango yield and fruit quality at submedio são francisco region, Brazil. Acta Hortic. 2009, 820, 437–442. [Google Scholar] [CrossRef] [Green Version]
- Ashmead, H. The Absorption Mechanism of Amino Acid Chelates by Plant Cells; FAO: Rome, Italy, 1986. [Google Scholar]
- Kandil, A.; Sharief, A.; Seadh, S.; Altai, D. Role of Humic Acid and Amino Acids in Limiting Loss of Nitrogen Fertilizer and Increasing Productivity of Some Wheat Cultivars Grown under Newly Reclaimed Sandy Soil. Int. J. Adv. Res. Biol. Sci. 2016, 3, 123–136. [Google Scholar]
- Morales-Payan, J.P. Effects of selected biostimulants on mango fruit retention and size. In Hortscience; American Society for Horticultural Science: Alexandria, VA, USA, 2012; Volume 47, p. S254. [Google Scholar]
Soil Analysis | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sand | Clay | Silt | pH | Conductance (mS/cm) | Total Organic Matter (%) | Total CaCO3 (%) | mg N-NO3 /K Soil | P (mg/K Soil) | |
Exp. 1 Terra Insecta® | 55.8 | 16.2 | 28.0 | 7.41 | 0.17 | 4.29 | 0.37 | 52.80 | 6.04 |
Sub-exp. 2.1 Fruit-Fix® | 47.3 | 21.1 | 31.6 | 7.54 | 0.37 | 1.88 | 1.09 | 39.90 | 80.00 |
Sub-exp. 2.2 Fruit-Fix® | 59.8 | 10.2 | 30.0 | 6.27 | 0.11 | 2.41 | 0.25 | 18.10 | 24.00 |
Exp. 3 AMINO-16® | 45.5 | 27.7 | 26.7 | 8.30 | 0.53 | 6.72 | 20.70 | 30.71 | 31.52 |
The Effect of TERRA INSECTA® on Young Fuerte Avocado Trees | ||||||||
---|---|---|---|---|---|---|---|---|
ES % | SI (%) | SG (%) | SB | SL (cm) | TSL (cm) | LN | TLN | |
Control | 100.0a ± 0.0 | 100.0a ± 0.0 | 100.0a ± 0.0 | 8.1a ± 2.345 | 6.5a ± 1.758 | 52.9a ± 6.190 | 5.3a ± 1.673 | 44.1a ± 4.975 |
Terra Insecta® | 100.0a ± 0.0 | 100.0a ± 0.0 | 100.0a ± 0.0 | 8.5a ± 2.101 | 6.7a ± 1.967 | 56.4a ± 5.036 | 4.9a ± 2.015 | 41.1a ± 5.064 |
The Effect of Terra Insecta® on Young Hass Avocado Trees | ||||||||
---|---|---|---|---|---|---|---|---|
ES (%) | SI (%) | SG (%) | SB | SL (cm) | TSL (cm) | LN | TLN | |
Control | 100.0a ± 0.0 | 100.0a ± 0.0 | 100.0a ± 0.0 | 8.2a ± 1.078 | 6.6a ± 1.450 | 55.2a ± 10.835 | 5.6a ± 0.643 | 46.1a ± 12.986 |
Terra Insecta® | 100.0a ± 0.0 | 100.0a ± 0.0 | 100.0a ± 0.0 | 11.6b ± 1.972 | 9.2b ± 1.069 | 107.9b ± 18.740 | 7.4b ± 1.087 | 86.8b ± 18.301 |
The Effect of Terra Insecta® on Young Lamb Hass Avocado Trees | ||||||||
---|---|---|---|---|---|---|---|---|
ES (%) | SI (%) | SG (%) | SB | SL (cm) | TSL (cm) | LN | TLN | |
Control | 100.0a ± 0.0 | 100.0a ± 0.0 | 100.0a ± 0.0 | 10.2a ± 1.703 | 6.3a ± 0.923 | 66.4a ± 19.478 | 4.7a ± 1.179 | 52.4a ± 14.296 |
Terra Insecta® | 100.0a ± 0.0 | 100.0a ± 0.0 | 100.0a ±0.0 | 14.2b ± 2.108 | 8.7b ± 1.086 | 123.8b ± 34.926 | 7.2b ± 1.056 | 103.0b ± 31.914 |
The Effect of Fruit-Fix® on Young Lamb Hass Avocado Trees | ||||||||
---|---|---|---|---|---|---|---|---|
ES (%) | SI (%) | SG (%) | SB | SL (cm) | TSL (cm) | LN | TLN | |
Control | 87.5a ± 0.0 | 50.0a ± 13.742 | 37.5a ± 17.812 | 1.0a ± 0.281 | 0.9a ± 0.033 | 0.9a ± 0.072 | 0.7a ± 0.056 | 0.7a ± 0.286 |
Fruit-Fix® | 100.0b ± 0.0 | 87.5b ± 16.876 | 87.5b ± 18.923 | 1.2a ± 0.796 | 2.6b ± 0.819 | 3.1b ± 1.014 | 2.1b ± 0.991 | 2.5b ± 1.003 |
The Effect of Fruit-Fix® on Young Hass Avocado Trees | ||||||||
---|---|---|---|---|---|---|---|---|
ES % | SI (%) | SG (%) | SB | SL (cm) | TSL (cm) | LN | TLN | |
Control | 95.8a ± 6.028 | 83.3a ± 13.765 | 50.0a ± 9.740 | 2.4a ± 0.279 | 4.2a ± 1.148 | 10.0a ± 3.902 | 3.9a ± 1.820 | 9.3a ± 3.901 |
Fruit-Fix® | 100.0a ± 0.0 | 83.3a ± 16.953 | 45.8a ± 8.710 | 3.4b ± 0.586 | 4.1a ± 1.891 | 14.0a ± 3.109 | 3.6a ± 1.342 | 12.1a ± 4.867 |
Avocado Leaf Analysis | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | Fe | Zn | Mn | Cu | B | ||
% d.m. | % | % | % | % | ppm | ppm | ppm | ppm | ppm | ||
Hass | Control | 1.42a ± 0.826 | 0.101a ± 0.045 | 0.53a ± 0.274 | 2.28a ± 0.872 | 0.657a ± 0.328 | 86.2a ± 18.836 | 15.7a ± 5.924 | 43.6a ± 8.982 | 5.9a ± 3.921 | 10.30a ± 4.643 |
AMINO-16® | 1.49a ± 0.319 | 0.104a ± 0.031 | 0.51a ± 0.134 | 2.26a ± 1.283 | 0.666a ± 0.271 | 75.3a ± 17.286 | 15.4a ± 6.712 | 61.5b ± 7.016 | 5.7a ± 3.008 | 9.85a ± 3.864 | |
Fuerte | Control | 1.63a ± 0.582 | 0.122a ± 0.627 | 0.73a ± 0.245 | 2.68a ± 0.786 | 0.548a ± 0.301 | 77.8a ± 17.825 | 25.8a ± 6.901 | 55.8a ± 12.975 | 7.2a ± 4.862 | 12.2a ± 5.981 |
AMINO-16® | 1.73a ± 0.971 | 0.128a ± 0.386 | 0.71a ± 0.416 | 2.55a ± 1.834 | 0.561a ± 0.418 | 70.3a ± 18.925 | 24.7a ± 8.430 | 65.3a ± 14.234 | 6.9a ± 3.986 | 13.2a ± 5.096 |
Fresh Fruit Growth Parameters | ||||||||
---|---|---|---|---|---|---|---|---|
Length (cm) | Width (cm) | Fruit Weight (cm) | Fruit Weight Increase % | |||||
Initial | Final | Initial | Final | Initial | Final | |||
Hass | Control | 9.8a ± 4.982 | 10.3a ± 4.240 | 6.1a ± 3.156 | 6.2a ± 2.897 | 180.0a ± 45.825 | 182.4a ± 54.753 | 1.3a ± 0.354 |
AΜΙΝO-16® | 9.9a ± 4.824 | 10.9a ± 3.752 | 6.1a ± 2.714 | 6.3a ± 3.132 | 176.8a ± 38.262 | 180.5a ± 43.875 | 2.1a ± 0.846 | |
Fuerte | Control | 9.0a ± 5.134 | 11.0a ± 5.824 | 4.6a ± 2.815 | 6.4a ± 3.712 | 97.9a ± 43.753 | 151.8a ± 19.764 | 54.7a ± 23.976 |
AMINO-16® | 8.4a ± 4.831 | 12.0a ± 5.217 | 4.5a ± 3.143 | 6.9a ± 3.985 | 86.8a ± 36.219 | 190.5b ± 17.363 | 119.3b ± 38.826 |
Fresh Fruit Quality Parameters | |||||||
---|---|---|---|---|---|---|---|
DM (% f.w.) | DMI | OC (% f.w.) | OCI % | ||||
Initial | Final | Initial | Final | ||||
Hass | Control | 21.8a ± 2.143 | 30.9a ± 2.016 | 41.4a ± 0.765 | 11.0a ± 0.876 | 17.0a ± 1.905 | 54.8a ± 5.125 |
AΜΙΝO-16® | 22.0a ± 1.987 | 31.2a ± 2.175 | 41.7a ± 0.825 | 11.2a ± 0.648 | 18.2a ± 1.574 | 62.4a ± 3.301 | |
Fuerte | Control | 19.8a ± 2.857 | 24.3a ± 2.012 | 22.8a ± 5.298 | 5.8a ± 0.968 | 12.4a ± 1.768 | 112.6a ± 11.543 |
AMINO-16® | 18.8a ± 2.098 | 25.4a ± 1.989 | 35.1a ± 7.286 | 5.0a ± 0.829 | 13.7a ± 2.125 | 135.1a ± 12.391 |
Avocado Yield (K/Tree) | ||
---|---|---|
Hass | Control | 64.0a ± 8.125 |
AΜΙΝO-16® | 71.3a ± 6.016 | |
Fuerte | Control | 63.9a ± 5.097 |
AΜΙΝO-16® | 69.1a ± 4.134 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzatzani, T.-T.; Psarras, G.; Scuderi, D.; Kokolakis, E.; Papadakis, I.E. Effect of Organic Fertilizers on Avocado Trees (Cvs. Fuerte, Hass, Lamb Hass) in Western Crete, a Cool Subtropical Region. Sustainability 2022, 14, 12221. https://doi.org/10.3390/su141912221
Tzatzani T-T, Psarras G, Scuderi D, Kokolakis E, Papadakis IE. Effect of Organic Fertilizers on Avocado Trees (Cvs. Fuerte, Hass, Lamb Hass) in Western Crete, a Cool Subtropical Region. Sustainability. 2022; 14(19):12221. https://doi.org/10.3390/su141912221
Chicago/Turabian StyleTzatzani, Thiresia-Teresa, Georgios Psarras, Dario Scuderi, Emmanouil Kokolakis, and Ioannis E. Papadakis. 2022. "Effect of Organic Fertilizers on Avocado Trees (Cvs. Fuerte, Hass, Lamb Hass) in Western Crete, a Cool Subtropical Region" Sustainability 14, no. 19: 12221. https://doi.org/10.3390/su141912221