Mainstreaming Ecosystem Services from Indonesia’s Remaining Forests
Abstract
:1. Introduction
2. The State of Indonesia’s Forests
3. Ecosystem Services Potential of Indonesia’s Forests
- Provisioning services are the products obtained from ecosystems for the benefit of humans, including food and fiber; fuel; genetic resources; biochemicals, natural medicines, and pharmaceuticals; ornamental resources; and fresh water [29];
- Regulating services are ES that protect the Earth from disasters, such as floods, landslides, and disease, and ensure the implementation of ecosystem protection services and the provision of other ES [29];
- Supporting services are defined as intermediate services generated through the ecosystem’s internal functions, which neither deliver any products nor alter any environmental conditions that people can use instantaneously [33];
- Cultural services are defined as the non-material benefits people obtain from ecosystems through spiritual and religious enrichment, cognitive development, recreation and ecotourism, aesthetics, inspiration, education, a sense of place, and cultural heritage [29].
3.1. Supporting Services
3.1.1. Habitat Provisioning
3.1.2. Protection of Germplasm
3.1.3. Soil Formation
3.1.4. Soil Fertility and Nutrient Cycling
3.2. Provisioning Services
3.2.1. Foods
No. | No. of Species/Families | Location | Users | Habitus | Parts Used | Uses | Plant Category | Source |
---|---|---|---|---|---|---|---|---|
1 | 56 species, 19 families | South Aceh District, Aceh Province | Local communities | Trees | Fruits, young shoots, seeds | Secondary food, fruits, vegetables, spices, beverages | Wild and cultivated | Suwardi, Zidni Ilman, Tisna, Syamsuardi, and Erizal [113] |
2 | 85 species, 37 families | Pasaman District, West Sumatra Province | Minangkabau and Mandailing communities | Trees, shrubs | Fruits, leaves, seeds, stems/shoots tubers, flowers | Starchy staples, fresh fruits, vegetables | Wild | Pawera, et al. [123] |
3 | 76 species, 35 families | Kampar Kiri Hulu, Riau Province | Malay communities | Trees, shrubs, herbs | Fruits, stems, rhizomes, leaves, bulbs | Secondary food ingredients, vegetables, fruits, spices | Wild and cultivated | Susandarini, Khasanah, and Rosalia [116] |
4 | 39 species | Lowland forest of Sukabumi, West Java Province | Local communities | Trees, shrubs, herbs | Fruits, leaves, tubers | Secondary food, fresh fruits, vegetables | Wild and cultivated | Rahayu, Susiarti, and Sihotang [121] |
5 | 19 species | Pulau Panjang Protection Forest, Jepara, Central Java Province | Local communities | Trees, shrubs | Fruits, tubers, leaves, shoots | Fresh fruits, vegetables, seasoning | Wild | Utami [124] |
6 | 21 species | Kampung Birang and Kampung Merabu of Berau District, East Kalimantan Province | Local communities | Trees | Fruits, leaves, young leaves | Secondary food, fresh fruits, vegetables | Wild and cultivated | Hartoyo, Supriyanto, Siregar, Theilade, and Prasetyo [117] |
7 | 111 species, 43 families | Lombok island, West Nusa Tenggara Province | Ethnic Sasak communities | Trees, shrubs, herbs, vines, fungi | Fruits, stems, tubers, leaves, flowers, seeds, bulbs | Secondary food, fruits, vegetables, spices, beverages | Wild, semi-cultivated, cultivated | Sukenti, Hakim, Indriyani, Purwanto, and Matthews [120] |
8 | 20 species | Moyo Island, West Nusa Tenggara Province | Ethnic Brangkuah communities | Trees, shrubs, herbs | Fruits, leaves, tubers, seeds | Staple foods, fresh fruits, vegetables, food seasoning | Wild and cultivated | Trimanto, Danarto, and Ashrafuzzaman [118] |
9 | 32 species, 20 families | Mbeliling Forest Area, East Nusa Tenggara Province | Local communities | Trees, shrubs, herbs | Fruits, stems, tubers, leaves, bulbs | Food and drink | Wild and cultivated | Mulu, et al. [125] |
10 | 39 species | Mantikole village, Sigi District, Central Sulawesi Province | Ethnic Kaili Inde communities | Trees, shrubs | Fruits, bulbs, leaves, roots, rhizomes | Staple food, secondary food, fresh fruits, vegetables | Wild and cultivated | Fathurahman, Nursanto, Madjid, and Ramadanil [115] |
11 | 53 species, 31 families | Menawi village, Yapen District, Papua Province | Ethnic Ampari communities | Trees, shrubs, fungi | Fruits, seeds, flowers, bulbs, leaves, tubers, stems | Staple food, secondary food, seasonings, fresh fruits, vegetables, spices, beverage ingredients | Wild and cultivated | Waroy, Utami, and Jumari [119] |
3.2.2. Medicines and Biochemicals
3.2.3. Biofuels
Aboveground Biomass (Wet) * (Mg × 1,000,000) | Aboveground Biomass (Dry) (Mg × 1,000,000) | Amount of Forest Biomass Collected Annually (Dry) (Mg × 1,000,000) | Biomass to Bio-Methanol Conversion Efficiency (%) | Total Bio-Methanol Produced from Forest Biomass Collected Annually (L × 1,000,000) | Total Electrical Energy Produced from Biomass Harvested (Total Gigawatts) |
---|---|---|---|---|---|
5083 | 2542 | 127 | 25 | 40,029 | 41,697 |
50 | 80,057 | 83,393 | |||
540 | 2705 | 135 | 25 | 42,604 | 44,379 |
50 | 85,208 | 88,758 | |||
10,726 | 5363 | 268 | 25 | 84,467 | 87,978 |
50 | 168,935 | 175,973 |
3.2.4. Genetic Material
3.2.5. Fresh Water
3.3. Regulating Services
3.3.1. Water Regulation
- Reducing or partially returning water reserves that already exist on Earth through the processes of evapotranspiration and the storing/consumption of water for the formation and growth of vegetation body tissue;
- Adding water droplets to the atmosphere;
- As a controller for the fall of rain directly to the Earth’s surface through the processes of interception, through flow, and stem flow;
- As a reducer of the kinetic energy of water flow on the forest floor through surface resistance from stems at the ground level and due to litter on the ground surface;
- As an impetus towards improving the ability of the physical characteristics of soil by absorbing water through root systems, adding organic matter, or increasing biological activity in the soil.
3.3.2. Climate Regulation
3.3.3. Erosion Regulation
3.4. Cultural Services
3.4.1. Cultural Diversity
3.4.2. Spiritual and Religious Values
3.4.3. Knowledge Systems (Traditional and Formal)
3.4.4. Educational Value
3.4.5. Recreation and Ecotourism
4. Ecosystem Services for Climate Change Mitigation and Adaptation
4.1. Renewable Energy Promotion
4.2. Carbon Incentives for Forest Conservation
4.3. Green Economy
4.4. Ecotourism
4.5. Social Forestry
5. Mainstreaming Strategies
5.1. PES Mechanisms
- Ensuring the continuity of supply and quality of resources while making a positive contribution to local livelihoods;
- Operating at local and regional scales with time periods of 10–30 years;
- Using in-kind contributions in preference to cash payments;
- Involving the private sector without intermediaries between buyers and sellers.
5.2. Decision Support System and Spatial Assessment-Based Planning
5.3. Value Articulation
5.3.1. Economic Value
- (a)
- Market price method: This method calculates the economic value of ecosystem goods and services that are bought and sold in commercial markets. It can be used to assess changes in the quantity or quality of a good or service.
- (b)
- Non-market valuation methods: Values for many ecosystem goods and services are not readily captured in market transactions and, thus, require non-market valuation methods, such as travel cost, the hedonic approach, and contingent valuation.
- (c)
- Value transfer: This is an accepted economic methodology that estimates the economic value of non-market goods or services through work conducted at another site or group of sites [304]. The “transfer” refers to applying economic values and other information from the original “study site” to a “policy site”. The study used this technique to estimate the economic value of biodiversity and associated services.
5.3.2. Social Value
5.4. Sustainable Financing
5.4.1. Regulatory Instruments
5.4.2. Administrative Instruments
5.4.3. Fiscal Instruments
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Global Forest Resources Assessment 2020; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Canadell, J.G.; Raupach, M.R. Managing forests for climate change mitigation. Science 2008, 320, 1456–1457. [Google Scholar] [CrossRef] [PubMed]
- Betts, M.G.; Wolf, C.; Ripple, W.J.; Phalan, B.; Millers, K.A.; Duarte, A.; Butchart, S.H.M.; Levi, T. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 2017, 547, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Attiwill, P.M.; Adams, M.A. Nutrient cycling in forests. New Phytol. 1993, 124, 561–582. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Sanford, R.L. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 1986, 17, 137–167. [Google Scholar] [CrossRef]
- Foster, N.W.; Bhatti, J.S. Forest ecosystems: Nutrient cycling. Encycl. Soil Sci. 2006, 718721. [Google Scholar] [CrossRef]
- Šamonil, P.; Král, K.; Hort, L. The role of tree uprooting in soil formation: A critical literature review. Geoderma 2010, 157, 65–79. [Google Scholar] [CrossRef]
- Dlamini, C.S. Contribution of Forest Ecosystem Services Toward Food Security and Nutrition. In Zero Hunger; Leal Filho, W., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Encyclopedia of the UN Sustainable Development Goals; Springer International Publishing: Cham, Switzerland, 2020; pp. 179–196. [Google Scholar]
- Burgess, J.C. Timber Production, Timber Trade and Tropical Deforestation. Ambio 1993, 22, 136–143. [Google Scholar]
- Begossi, A.; Hanazaki, N.; Tamashiro, J.Y. Medicinal Plants in the Atlantic Forest (Brazil): Knowledge, Use, and Conservation. Hum. Ecol. 2002, 30, 281–299. [Google Scholar] [CrossRef]
- Caniago, I.; Stephen, F.S. Medicinal plant ecology, knowledge and conservation in Kalimantan, Indonesia. Econ. Bot. 1998, 52, 229–250. [Google Scholar] [CrossRef]
- Vatandaşlar, C.; Yavuz, M.; Leuchner, M. Erosion Control Service of Forest Ecosystems: A Case Study from Northeastern Turkey. In Smart Geography: 100 Years of the Bulgarian Geographical Society; Nedkov, S., Zhelezov, G., Ilieva, N., Nikolova, M., Koulov, B., Naydenov, K., Dimitrov, S., Eds.; Key Challenges in Geography; Springer International Publishing: Cham, Switzerland, 2020; pp. 443–455. [Google Scholar]
- Calder, I.R.; Aylward, B. Forest and Floods. Water Int. 2006, 31, 87–99. [Google Scholar] [CrossRef]
- Lee, H.-H. Estimations on the Water Purification of Forest by Analyzing Water Quality Variations in Forest Hydrological Processes. J. Korean Soc. For. Sci. 1997, 86, 56–68. [Google Scholar]
- Vilhar, U. Water Regulation and Purification. In The Urban Forest: Cultivating Green Infrastructure for People and the Environment; Pearlmutter, D., Calfapietra, C., Samson, R., O’Brien, L., Krajter Ostoić, S., Sanesi, G., Alonso del Amo, R., Eds.; Future City; Springer International Publishing: Cham, Switzerland, 2017; pp. 41–47. [Google Scholar]
- Song, C.; Lee, W.-K.; Choi, H.-A.; Kim, J.; Jeon, S.W.; Kim, J.S. Spatial assessment of ecosystem functions and services for air purification of forests in South Korea. Environ. Sci. Policy 2016, 63, 27–34. [Google Scholar] [CrossRef]
- Taki, H.; Kevan, P.G.; Ascher, J.S. Landscape effects of forest loss in a pollination system. Landsc. Ecol. 2007, 22, 1575–1587. [Google Scholar] [CrossRef]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Millenium Ecosystem Assessment: Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; p. 155. [Google Scholar]
- Ji, L.; Wang, Z.; Wang, X.; An, L. Forest Insect Pest Management and Forest Management in China: An Overview. Environ. Manag. 2011, 48, 1107–1121. [Google Scholar] [CrossRef] [PubMed]
- Erbaugh, J.T.; Nurrochmat, D.R. Paradigm shift and business as usual through policy layering: Forest-related policy change in Indonesia (1999–2016). Land Use Policy 2019, 86, 136–146. [Google Scholar] [CrossRef]
- Baskent, E.Z. A Framework for Characterizing and Regulating Ecosystem Services in a Management Planning Context. Forests 2020, 11, 102. [Google Scholar] [CrossRef]
- KKP. Laut Masa Depan Bangsa, Mari Jaga Bersama. Available online: https://kkp.go.id/artikel/12981-laut-masa-depan-bangsa-mari-jaga-bersama (accessed on 12 August 2022).
- Sunderlin, W.D.; Pradnja Resosudarmo, I.A. Rates and Causes of Deforestation in Indonesia: Towards a Resolution of the Ambiguities; CIFOR: Bogor, Indonesia, 1996. [Google Scholar]
- Margono, B.A.; Potapov, P.V.; Turubanova, S.; Stolle, F.; Hansen, M.C. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Chang. 2014, 4, 730–735. [Google Scholar] [CrossRef]
- Austin, K.G.; Schwantes, A.; Gu, Y.; Kasibhatla, P.S. What causes deforestation in Indonesia? Environ. Res. Lett. 2019, 14, 024007. [Google Scholar] [CrossRef]
- Ministry of Environment and Forestry. The State of Indonesia’s Forests 2020; Ministry of Environment and Forestry: Jakarta, Indonesia, 2021; p. 118.
- Chen, B.; Kennedy, C.M.; Xu, B. Effective moratoria on land acquisitions reduce tropical deforestation: Evidence from Indonesia. Environ. Res. Lett. 2019, 14, 044009. [Google Scholar] [CrossRef]
- KLHK. Operational Plan Indonesia’s FOLU Net Sink 2030; Kemeterian Lingkungan Hidup dan Kehutanan: Jakarta, Indonesia, 2022.
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press United States of America: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Luck, G.W.; Daily, G.C.; Ehrlich, P.R. Population diversity and ecosystem services. Trends Ecol. Evol. 2003, 18, 331–336. [Google Scholar] [CrossRef]
- Wood, S.L.R.; Jones, S.K.; Johnson, J.A.; Brauman, K.A.; Chaplin-Kramer, R.; Fremier, A.; Girvetz, E.; Gordon, L.J.; Kappel, C.V.; Mandle, L.; et al. Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosyst. Serv. 2018, 29, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Piponiot, C.; Rutishauser, E.; Derroire, G.; Putz, F.E.; Sist, P.; West, T.A.P.; Descroix, L.; Guedes, M.C.; Coronado, E.N.H.; Kanashiro, M.; et al. Optimal strategies for ecosystem services provision in Amazonian production forests. Environ. Res. Lett. 2019, 14, 124090. [Google Scholar] [CrossRef]
- Price, C. Regulating and supporting services and disservices: Customary approaches to valuation, and a few surprising case-study results. N. Z. J. For. Sci. 2014, 44, S5. [Google Scholar] [CrossRef]
- Achyani, A. Struktur dan komposisi tumbuhan pada habitat bunga bangkai (Amorphophallus titanium Becc.) di cagar alam pagar gunung kepahiang Bengkulu. Biolova 2021, 2, 26–33. [Google Scholar]
- Usmadi, D. Potensi distribusi Agathis borneensis di Provinsi Kalimantan Tengah. Proc. Pros Sem Masy Biodiv Indon 2019. [Google Scholar] [CrossRef]
- Robiansyah, I.; Davy, A.J. Population status and habitat preferences of critically endangered Dipterocarpus littoralis in West Nusakambangan, Indonesia. Makara J. Sci. 2015, 19, 4. [Google Scholar] [CrossRef]
- Mansur, M.; Brearley, F.Q.; Esseen, P.J.; Rode-Margono, E.J.; Tarigan, M.R.M. Ecology of Nepenthes clipeata on Gunung Kelam, Indonesian Borneo. Plant Ecol. Divers. 2021, 14, 195–204. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Meijaard, E.; Nijman, V. Primae hotspots on Borneo: Predictive value for general biodiversity and the effects of taxonomy. Conserv. Biol. 2003, 17, 725–732. [Google Scholar] [CrossRef]
- Putri, I.A. Submontane Forest at Bantimurung Bulusaraung National Park: Hotspot of Bird Diversity and Its Management Conservation. J. Penelit. Kehutan. Wallacea 2015, 4, 115–128. [Google Scholar] [CrossRef]
- Persulessy, Y.E.; Putuhena, J. Keragaman dan Populasi Burung Endemik pada Hotspot Kesatuan Pengelolaan Hutan Produksi Wae Sapalewa Seram Utara. MAKILA J. Penelit. Kehutan. 2020, 14, 99–113. [Google Scholar] [CrossRef]
- Verma, M.; Symes, W.S.; Watson, J.E.; Jones, K.R.; Allan, J.R.; Venter, O.; Rheindt, F.E.; Edwards, D.P.; Carrasco, L.R. Severe human pressures in the Sundaland biodiversity hotspot. Conserv. Sci. Pract. 2020, 2, e169. [Google Scholar] [CrossRef] [Green Version]
- Setiasih, G.; Rianti, A.; Takandjandji, M. Potensi vegetasi dan daya dukung untuk habitat gajah Sumatera (Elephas maximus sumatranus) di areal perkebunan sawit dan hutan produksi Kecamatan Sungai Menang, Kabupaten Ogan Komering Ilir. Ber. Biol. 2018, 17, 49–64. [Google Scholar] [CrossRef]
- Abdullah, A.; Japisa, T. Karakteristik habitat gajah Sumatera (Elephas maximus sumatranus Temminck) pada habitat terganggu di ekosistem hutan Seulawah. J. Edubio Trop. 2013, 1, 57–60. [Google Scholar]
- Hadadi, O.H.; Hartono, H.; Haryono, E. Analisis Potensi Habitat dan Koridor Harimau Sumatera di Kawasan Hutan Lindung Bukit Batabuh, Kabupaten Kuantan Singingi, Provinsi Riau. Maj. Geogr. Indones. 2015, 29, 40–50. [Google Scholar] [CrossRef]
- Muslim, A.; Nurdjali, B.; Dewantara, I. Studi habitat dan jenis pakan badak Sumatera (Dicerorhinus sumatrensis) di Kutai Barat Dan Mahakam Ulu Kalimantan Timur. J. Hutan Lestari 2015, 3, 6. [Google Scholar] [CrossRef]
- Putro, H.R. Heterogenitas habitat badak Jawa (Rhinoceros sondaicus Desm. 1822) di Taman Nasional Ujung Kulon. Media Konserv. Ed. Khusus 1997, 1997, 17–40. [Google Scholar]
- Sucipto, N. Struktur Dan Komposisi Vegetasi Habitat Kuskus Beruang (Ailurop Ursinus) di Kawasan Hutan Desa Peana Kecamatan Pipikoro Kabupaten Sigi; Universitas Tadulako: Palu, Indonesia, 2020. [Google Scholar]
- Pranowo, S. Kepadatan Mamalia Kecil Nokturnal Arboreal di Kantong Habitat Hutan Kemuning Kabupaten Temanggung; Universitas Gadjah Mada: Yogyakarta, Indonesia, 2018. [Google Scholar]
- Kartono, A.P.; Ginting, A.; Santoso, N. Karakteristik Habitat dan Wilayah Jelajah Bekantan di Hutan Mangrove Desa Nipah Panjang Kecamatan Batu Ampar Kabupaten Kubu Raya Provinsi Kalimantan Barat. Media Konserv. 2008, 13. [Google Scholar] [CrossRef]
- Harisin, Y.A. Sebaran dan Penggunaan Habitat Elang Jawa dan Elang Brontok di SPTN I Kuningan, Taman Nasional Gunung Ciremai; Institut Pertanian Bogor: Bogor, Indonesia, 2021. [Google Scholar]
- Riyanto, A.; Soemarno, S.; Wawangningrum, H.; Partomihardjo, T. Karakteristik habitat kura-kura hutan Sulawesi berstatus kritis Leucocephalon yuwonoi di Kawasan Sungai Ganonggol Dan Bangkir, Sulawesi Tengah. Indones. J. Biol. 2006, 4, 78354. [Google Scholar] [CrossRef]
- Perikanan, K.K.d. Ikan Air Tawar Langka di Indonesia; Direktorat Konservasi Kawasan dan Jenis Ikan: Jakarta, Indonesia, 2012.
- Nasution, F.; Prastyaningsih, S.R.; Ikhwan, M. Identifikasi jenis dan habitat jamur makroskopis di Hutan Larangan Adat Rumbio Kabupaten Kampar Provinsi Riau. Wahana For. J. Kehutan. 2018, 13, 64–76. [Google Scholar] [CrossRef]
- Wati, R.; Noverita, N.; Setia, T.M. Keanekaragaman jamur makroskopis di beberapa habitat Kawasan Taman Nasional Baluran. Al-Kauniyah J. Biol. 2019, 12, 171–180. [Google Scholar] [CrossRef]
- Kasongat, H.; Gafur, M.A.; Ponisri, P. Identifikasi dan keanekaragaman jenis jamur ektomikoriza pada hutan jati di Seram Bagian Timur. Median: J. Ilmu Ilmu Eksakta 2019, 11, 39–46. [Google Scholar] [CrossRef]
- Kiding, A.; Khotimah, S.; Linda, R. Karakterisasi dan kepadatan bakteri nitrifikasi pada tingkat kematangan tanah gambut yang berbeda di kawasan hutan lindung Gunung Ambawang Kabupaten Kubu Raya. J. Protobiont 2015, 4, 5. [Google Scholar] [CrossRef]
- Nurrochman, F. Eksplorasi Bakteri Selulolitik Dari Tanah Hutan Mangrove Baros, Kretek, Bantul, Yogyakarta; Universitas Muhammadiyah Surakarta: Surakarta, Indonesia, 2015. [Google Scholar]
- Yusnia, E.D.; Gunam, I.B.W.; Antara, N.S. Isolasi dan skrining bakteri selulolitik dari beberapa tanah hutan di Bali. J. Rekayasa Dan Manaj. Agroindustri 2019, 2503, 488X. [Google Scholar] [CrossRef]
- Mongabay. List of Extinct Species in Indonesia. Available online: https://rainforests.mongabay.com/biodiversity/en/indonesia/EX.html (accessed on 16 June 2022).
- Widyasari, W.B.; Putra, L.K.; Ranomahera, M.R.R.; Puspitasari, A.R. Historical notes, germplasm development, and molecular approaches to support sugarcane breeding program in Indonesia. Sugar Tech 2022, 24, 30–47. [Google Scholar] [CrossRef]
- Prana, M.; Hartati, S.; Prana, T. A study on isozyme variation in the Indonesian taro (Colocasia spp.) germplasm collection. Glob. Divers. Taro 2010, 56–59. Available online: https://scholar.google.co.id/citations?view_op=view_citation&hl=en&user=g7lPA80AAAAJ&citation_for_view=g7lPA80AAAAJ:2osOgNQ5qMEC (accessed on 16 June 2022).
- Mirza, I.; Yusriani, Y.; Azis, A. Plasma nutfah dan pelestarian sapi Aceh. In Proceedings of the Prosiding Seminar dan Kongres Nasional Sumber Daya Genetik, Medan, Indonesia, 12–14 December 2012. [Google Scholar]
- Febrialdi, A. Kondisi Beberapa Plasma Nutfah Non Kayu Disekitar Hutan Kecamatan Rantau Pandan Muara Bungo. J. Sains Agro 2017, 2, 11. [Google Scholar]
- Galingging, R.Y. Potensi plasma nutfah tanaman obat sebagai sumber biofarmaka di Kalimantan Tengah. J. Pengkaj. Dan Pengemb. Teknol. Pertan. 2007, 10, 76–83. [Google Scholar]
- Fatimah, F.; Rahayu, R.; Wiwoho, J.; Firdaus, S.U.; Pujiyono, P.; Marimin, M.; Ariyanto, D.P.; Pramono, A. Genetic diversity of eucalypts for germplasm conservation in Forest Area with the Special Purpose of Mount Bromo, Karanganyar, Indonesia. Biodivers. J. Biol. Divers. 2021, 22, 13. [Google Scholar] [CrossRef]
- Berding, N.; Koike, H. Germplasm conservation of the Saccharum complex: A collection from the Indonesian archipelago. Hawaii. Plant. Rec. 1980, 59, 87–176. [Google Scholar]
- Sumarlin, D.; Dirhamsyah, M.; Ardian, H. Identifikasi tumbuhan sumber pangan di Hutan Tembawang Desa Aur Sampuk Kecamatan Sengah Temila Kabupaten Landak. J. Hutan Lestari 2015, 4, 8. [Google Scholar]
- Fitmawati, F.; Suwita, A.; Sofiyanti, N.; Herman, H. Eksplorasi dan Karakterisasi Keanekaragaman Plasma Nutfah Mangga (Mangifera) di Sumatera Tengah. In Proceedings of the Prosiding SEMIRATA 2013, Lampung, Indonesia, 10–12 May 2013. [Google Scholar]
- Uji, T. Keanekaragaman jenis dan sumber plasma nutfah Durio (Durio spp.) di Indonesia. Bul. Plasma Nutfah 2005, 11, 28–33. [Google Scholar]
- Widowati, D.A.H. Inventarisasi Keanekaragaman Anggrek (Orchidaceae) di Hutan Resort Way Kanan Balai Aman Nasional Way Kambas Sebagai Sumber Informasi dalam Melestarikan Plasma Nutfah. Bioedukasi (J. Pendidik. Biol.) 2015, 6. [Google Scholar] [CrossRef]
- Siregar, C. Exploration and inventory of native orchid germplasm in West Borneo, Indonesia. HortScience 2008, 43, 554–557. [Google Scholar] [CrossRef]
- Sjafani, N. Studi Habitat dan Pengembangbiakan Burung Mamoa (Eulipoa wallacei) Sebagai Upaya Konservasi Plasma Nutfah Kabupaten Halmahera Utara; Universitas Brawijaya: Malang, Indonesia, 2015. [Google Scholar]
- Tyapradana, D.O. Evaluasi Implementasi Program Kawin Semi Alami Sebagai Upaya Peningkatan Jumlah Populasi Dan Kelestarian Plasma Nutfah Banteng Jawa (Bos javanicus) di Taman Nasional Baluran; Universitas Brawijaya: Malang, Indonesia, 2017. [Google Scholar]
- Kurniawanto, A. Studi Perilaku Badak Sumatera (Dicerorhinus sumatrensis Fischer, 1814) di Suako Rhino Sumatera Taman Nasional Way Kambas Lampung. Undergraduate Thesis, Faculty of Forestry, IPB University, Bogor, Indonesia, 2007. [Google Scholar]
- Ramdaniah, Y. Studi Kualitas Tanah Pada Tipe Penutupan Lahan Hutan Alam, Hutan Pinus Dan Padang Rumput di Sub das Curug Cilember, Cisarua, Bogor; IPB University: Bogor, Indonesia, 2001. [Google Scholar]
- Lapadjati, K.K.; Wardah, W.; Rahmawati, R. Sifat fisik tanah pada hutan tanaman kemiri, lahan agroforestri dan lahan hutan sekunder di Desa Labuan Kungguma Kabupaten Donggala Sulawesi Tengah. J. War. Rimba 2016, 4, 6. [Google Scholar]
- Aini, Z.Z.; Khasanah, N.m.; Kusuma, Z. Degradasi sifat fisik tanah sebagai akibat alih guna lahan hutan menjadi sistem kopi monokultur: Kajian perubahan makroporositas tanah. Agrivita 2004, 26, 60–68. [Google Scholar]
- Diana, A. Kajian Sifat Fisika Tanah Akibat Alih Fungsi Lahan dari Hutan Primer dan Kebun Karet (Havea brasiliensis) Menjadi Kebun Kopi Robusta (Coffea canephora) di Nagari Sibakur Kabupaten Sijunjung. Undergraduate Thesis, Soil Science Department, Faculty of Agriculture, Andalas University, Padang, Indonesia, 2021. [Google Scholar]
- Anggara, S.A. Kajian Sifat Fisika Tanah Pada Beberapa Penggunaan Lahan di Hulu DAS Batang Kandis. Undergraduate Thesis, Department of Soil Science, Faculty of Agriculture, Andalas University, Padang, Indonesia, 2021. [Google Scholar]
- Alfiani, B.P. Analisis Sifat Fisika Tanah dan Laju Infiltrasi pada Berbagai Penggunaan Lahan. Undergraduate Thesis, IPB University, Bogor, Indonesia, 2019. [Google Scholar]
- Wasis, B. Dampak Kebakaran Hutan dan Lahan terhadap Kerusakan Tanah. J. Manaj. Hutan Trop. 2003, 9, 79–86. [Google Scholar]
- Murtinah, V.; Edwin, M.; Bane, O. Dampak kebakaran hutan terhadap sifat fisik dan kimia tanah di Taman Nasional Kutai, Kalimantan Timur. J. Pertan. Terpadu 2017, 5, 128–139. [Google Scholar] [CrossRef]
- Wasis, B.; Saharjo, B.H.; Waldi, R.D. Dampak kebakaran hutan terhadap flora dan sifat tanah mineral di kawasan hutan Kabupaten Pelalawan Provinsi Riau. J. Silvikultur Trop. 2019, 10, 40–44. [Google Scholar] [CrossRef]
- Greiner, L.; Keller, A.; Grêt-Regamey, A.; Papritz, A. Soil function assessment: Review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy 2017, 69, 224–237. [Google Scholar] [CrossRef]
- Gerzabek, M.H. Global soil use in biomass production: Opportunities and challenges of ecological and sustainable intensification in agriculture. Bodenkultur 2014, 65, 5–15. [Google Scholar]
- Silver, W.L.; Perez, T.; Mayer, A.; Jones, A.R. The role of soil in the contribution of food and feed. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200181. [Google Scholar] [CrossRef] [PubMed]
- De Deyn, G.B.; Kooistra, L. The role of soils in habitat creation, maintenance and restoration. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200170. [Google Scholar] [CrossRef] [PubMed]
- Lal, R.; Monger, C.; Nave, L.; Smith, P. The role of soil in regulation of climate. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20210084. [Google Scholar] [CrossRef]
- Smith, J.; Farmer, J.; Smith, P.; Nayak, D. The role of soils in provision of energy. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200180. [Google Scholar] [CrossRef]
- Jónsson, J.Ö.G.; Davídsdóttir, B. Classification and valuation of soil ecosystem services. Agric. Syst. 2016, 145, 24–38. [Google Scholar] [CrossRef]
- Widyati, E.; Siarudin, M.; Indrajaya, Y. The Dynamic of Functional Microbes Community Under Auri (Acacia auriculiformis Cunn. Ex Benth) Agroforestry System. J. Manaj. Hutan Trop. 2022, 28, 119–127. [Google Scholar] [CrossRef]
- Dixon, G.R.; Tilston, E.L. Soil Microbiology and Sustainable Crop Production; Springer Science & Business Media: Berlin, Germany, 2010; pp. 1–436. [Google Scholar]
- Hobara, S.; Osono, T.; Hirose, D.; Noro, K.; Hirota, M.; Benner, R. The roles of microorganisms in litter decomposition and soil formation. Biogeochemistry 2014, 118, 471–486. [Google Scholar] [CrossRef]
- Krashevska, V.; Malysheva, E.; Klarner, B.; Mazei, Y.; Maraun, M.; Widyastuti, R.; Scheu, S. Micro-decomposer communities and decomposition processes in tropical lowlands as affected by land use and litter type. Oecologia 2018, 187, 255–266. [Google Scholar] [CrossRef]
- Talukder, M.J.H.; Sun, H. The microbial diversity and structure in peat land forest in Indonesia. J. Biodivers. Conserv. Bioresour. Manag. 2019, 5, 133–144. [Google Scholar] [CrossRef]
- Yulma; Ihsan, B.; Awaludin; Zainuddin; Bija, S.; Rani, M.; Andira, A.; Ramadani, F.; Sunarti. Identification of bacteria from mangrove forest in Mamburungan, Tarakan City. IOP Conf. Ser. Earth Environ. Sci. 2020, 564, 012020. [Google Scholar] [CrossRef]
- Sasongko, P.E. Land Use Change and Soil Quality in the West Slope of Bromo Mountain, East Java, Indonesia. Nusant. Sci. Technol. Proc. 2018, 2017, 160–165. [Google Scholar] [CrossRef]
- Jamnadass, R.H.; McMullin, S.; Iiyama, M.; Dawson, I.K.; Powell, B.; Termote, C.; Ickowitz, A.; Kehlenbeck, K.; Vinceti, B.; Vliet, N.v.; et al. Understanding the roles of forests and tree-based systems in food provision. For. Trees Landsc. Food Secur. Nutr. A Glob. Assess. Rep. 2015, 2, 24. [Google Scholar]
- Farooqi, T.J.A.; Li, X.; Yu, Z.; Liu, S.; Sun, O.J. Reconciliation of research on forest carbon sequestration and water conservation. J. For. Res. 2021, 32, 7–14. [Google Scholar] [CrossRef]
- Zhang, W.; Ricketts, T.H.; Kremen, C.; Carney, K.; Swinton, S.M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 2007, 64, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Ghaley, B.B.; Porter, J.R.; Sandhu, H.S. Soil-based ecosystem services: A synthesis of nutrient cycling and carbon sequestration assessment methods. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 177–186. [Google Scholar] [CrossRef]
- Rahma, N.E.; Rositah, E.; Pramono, D.A.; Widyasasi, D.; Fariyanti, F. Valuasi jasa lingkungan hutan tropis: Studi kasus beberapa kampung di Kalimantan Timur. J. Ris. Pembang. 2020, 2, 67–78. [Google Scholar] [CrossRef]
- Wang, D.; Xu, A.; Elmerich, C.; Ma, L.Z. Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions. ISME J. 2017, 11, 1602–1613. [Google Scholar] [CrossRef]
- Baset Mia, M.A.; Shamsuddin, Z.H. Nitrogen fixation and transportation by rhizobacteria: A scenario of rice and banana. Int. J. Bot. 2010, 6, 235–242. [Google Scholar] [CrossRef]
- Ezawa, T.; Saito, K. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism. New Phytol. 2018, 220, 1116–1121. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Wang, S.; Umbreen, S.; Zhou, C. Soil phosphorus fractionation and its association with soil phosphate-solubilizing bacteria in a chronosequence of vegetation restoration. Ecol. Eng. 2021, 164, 106208. [Google Scholar] [CrossRef]
- Chakravarty, S.; Rai, P.; Vineeta; Pala, N.A.; Shukla, G. Litter Production and Decomposition in Tropical Forest. In Handbook of Research on the Conservation and Restoration of Tropical Dry Forests; IGI Global: Hershey, PA, USA, 2019; pp. 193–212. [Google Scholar] [CrossRef]
- Mekuria, W.; Veldkamp, E.; Tilahun, M.; Olschewski, R. Economic valuation of land restoration: The case of exclosures established on communal grazing lands in Tigray, Ethiopia. Land Degrad. Dev. 2011, 22, 334–344. [Google Scholar] [CrossRef]
- Warningsih, T.; Kusai, K.; Bathara, L.; Zulkarnain, Z.; Deviasari, D. Economic Valuation of Mangrove Ecosystem Services in Sungai Apit District, Siak Regency, Riau Province, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 695, 012036. [Google Scholar] [CrossRef]
- Lee, E.P.; Lee, S.I.; Jeong, H.M.; Han, Y.S.; Lee, S.Y.; Park, J.H.; Jang, R.H.; Hong, Y.S.; Jung, Y.H.; Kim, E.J.; et al. Valuation of ecosystem services in the organic carbon of the Pinus densiflora forest at Mt. Namsan, Seoul Metropolitan City. J. Ecol. Environ. 2019, 43, 1–11. [Google Scholar] [CrossRef]
- Vermeulen, S.; Wellesley, L.; Airey, S.; Singh, S.; Agustina, R.; Izwardy, D.; Saminarsih, D. Healthy Diets from Sustainable Production: Indonesia; Chatham House and Hoffman Centre for Sustainable Resource Economy: Jakarta, Indonesia, 2019. [Google Scholar]
- Suwardi, A.B.; Zidni Ilman, N.; Tisna, H.; Syamsuardi; Erizal, M. Ethnobotany and conservation of indigenous edible fruit plants in South Aceh, Indonesia. Biodivers. J. Biol. Divers. 2020, 21, 1850–1860. [Google Scholar] [CrossRef]
- Andesmora, E.; Muhadiono, M.; Hilwan, I. Ethnobotanical Study of Plants Used by People in Hiang Indigenous Forest Kerinci, Jambi. J. Trop. Life Sci. 2017, 7, 95–101. [Google Scholar] [CrossRef]
- Fathurahman, F.; Nursanto, J.; Madjid, A.; Ramadanil, R. Ethnobotanical Study of “Kaili Inde Tribe” in Central Sulawesi Indonesia. Emir. J. Food Agric. 2016, 28, 337–347. [Google Scholar] [CrossRef]
- Susandarini, R.; Khasanah, U.; Rosalia, N. Ethnobotanical study of plants used as food and for maternal health care by the Malays communities in Kampar Kiri Hulu, Riau, Indonesia. Biodivers. J. Biol. Divers. 2021, 22, 3111–3120. [Google Scholar] [CrossRef]
- Hartoyo, A.P.P.; Supriyanto, S.; Siregar, I.Z.; Theilade, I.D.A.; Prasetyo, L.B. Agroforest diversity and ethnobotanical aspects in two villages of Berau, East Kalimantan, Indonesia. Biodivers. J. Biol. Divers. 2018, 19, 387–398. [Google Scholar] [CrossRef]
- Trimanto; Danarto, S.A.; Ashrafuzzaman, M. Ethnobotanical uses of plants by Brangkuah Community of Moyo Island, West Nusa Tenggara, Indonesia: Ethnobotanical use of plants in Indonesia. J. Bangladesh Agric. Univ. 2019, 17, 325–337. [Google Scholar] [CrossRef]
- Waroy, H.F.; Utami, S.; Jumari. The food plant ethnobotany of Ampari tribe community in Papua, Indonesia. J. Phys. Conf. Ser. 2020, 1524, 012074. [Google Scholar] [CrossRef]
- Sukenti, K.; Hakim, L.; Indriyani, S.; Purwanto, Y.; Matthews, P.J. Ethnobotanical study on local cuisine of the Sasak tribe in Lombok Island, Indonesia. J. Ethn. Foods 2016, 3, 189–200. [Google Scholar] [CrossRef]
- Rahayu, M.; Susiarti, S.; Sihotang, V.B.L. A preliminary ethnobotanical study on useful plants by local communities in Bodogol Lowland Forest, Sukabumi, West Java. J. Trop. Biol. Conserv. (JTBC) 2012, 9, 115–125. [Google Scholar]
- Navia, Z.I.; Audira, D.; Afifah, N.; Turnip, K.; Nuraini, N.; Suwardi, A.B. Ethnobotanical investigation of spice and condiment plants used by the Taming tribe in Aceh, Indonesia. Biodivers. J. Biol. Divers. 2020, 21, 4467–4473. [Google Scholar] [CrossRef]
- Pawera, L.; Khomsan, A.; Zuhud, E.A.M.; Hunter, D.; Ickowitz, A.; Polesny, Z. Wild Food Plants and Trends in Their Use: From Knowledge and Perceptions to Drivers of Change in West Sumatra, Indonesia. Foods 2020, 9, 1240. [Google Scholar] [CrossRef]
- Utami, S. Keanekaragaman Tumbuhan yang Berpotensi sebagai Bahan Pangan di Hutan Lindung Pulau Panjang Jepara Jawa Tengah. Bioma Berk. Ilm. Biol. 2018, 19, 136–140. [Google Scholar] [CrossRef]
- Mulu, M.; Zephisius, R.E.N.; Petrus, S.I.I.; Hildegardis, M. Ethnobotanical knowledge and conservation practices of indigenous people of Mbeliling Forest Area, Indonesia. Biodivers. J. Biol. Divers. 2020, 21, 1861–1873. [Google Scholar] [CrossRef]
- Piesse, M. Food security in Indonesia: A continued reliance on foreign markets. Indep. Strateg. Anal. Aust. Glob. Interests 2016. Available online: http://inford.org/food-security-in-indonesia-a-continued-reliance-on-foreign-markets/ (accessed on 16 June 2022).
- Richardson, R.B. Ecosystem Services and Food Security: Economic Perspectives on Environmental Sustainability. Sustainability 2010, 2, 3520–3548. [Google Scholar] [CrossRef]
- Boseren, M.; Weterings, R. Sago Palm: A Sustainable Solution for Food Security and Peat Conservation in Indonesia; FORCLIME Forests and Climate Change Programme: Jakarta, Indonesia, 2021; Available online: https://forclime.org/documents/Briefing%20Note/English/Policy%20Brief%20-%20Sago%20Palm.pdf (accessed on 16 June 2022).
- Sudomo, A.; Hani, A.; Agus, C.; Nugroho, A.W.; Utomo, M.M.B.; Indrajaya, Y. Intensification of Agroforestry Systems in Community Forests to Increase Land Productivity and Sustainable Food Sovereignty. In Sustainable Agriculture and Food Security; Leal Filho, W., Kovaleva, M., Popkova, E., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 183–199. [Google Scholar]
- Ministry of Environment and Forestry. Performance Report 2020 of Ministry of Environment and Forestry; Ministry of Environment and Forestry: Jakarta, Indonesia, 2021; p. 315.
- Maskun; Napang, M.; Nur, S.; Bachril, S.; Al Mukarramah, N. Detrimental impact of Indonesian food estate policy: Conflict of norms, destruction of protected forest, and its implication to the climate change. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bogor, Indonesia, 2021; p. 012097. [Google Scholar] [CrossRef]
- Marwanto, S.; Pangestu, F. Food estate program in Central Kalimantan Province as an integrated and sustainable solution for food security in Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Scienc; IOP Publishing: Bogor, Indonesia, 2021; p. 012068. [Google Scholar] [CrossRef]
- Yeny, I.; Garsetiasih, R.; Suharti, S.; Gunawan, H.; Sawitri, R.; Karlina, E.; Narendra, B.H.; Ekawati, S.; Djaenudin, D.; Rachmanadi, D. Examining the socio-economic and natural resource risks of food estate development on peatlands: A strategy for economic recovery and natural resource sustainability. Sustainability 2022, 14, 3961. [Google Scholar] [CrossRef]
- Farnsworth, N.R.; Akerele, O.; Bingel, A.S.; Soejarto, D.D.; Guo, Z. Medicinal Plants in Therapy; World Health Organization: Geneva, Switzerland, 1985; p. 965. [Google Scholar]
- Afdhal, A.F.; Welsch, R.L. The Rise of the Modern Jamu Industry in Indonesia: A Preliminary Overview. In The Context of Medicines in Developing Countries: Studies in Pharmaceutical Anthropology; van der Geest, S., Whyte, S.R., Eds.; Springer: Dordrecht, The Netherlands, 1988; pp. 149–172. [Google Scholar]
- User, M.; Kusumaputri, V.S.; Hendrix, T. Bioprospection of traditional medicinal plants in increasing potential of traditional wisdom-based local drugs. J. Kelitbangan Inov. Pembang. 2016, 4, 133–146. [Google Scholar]
- Sholikhah, E.N. Indonesian medicinal plants as sources of secondary metabolites for pharmaceutical industry. J. Med. Sci. 2016, 48, 226–239. [Google Scholar] [CrossRef]
- Herika Jennifer, E.S. Preferensi Individu Terhadap Pengobatan Tradisional di Indonesia. J. Ekon. Dan Studi Pembang. 2015, 16, 1. [Google Scholar]
- Dwiartama, A.; Purnamahati, R.R.; Pramudya, A.A. Policy Brief Arah Pengembangan Bioprospecting di Indonesia; KEHATI: Jakarta Selatan, Indonesia, 2020; Available online: https://kehati.or.id/wp-content/uploads/2021/02/Policy-Brief-Arah-Pengembangan-Bioprospecting-di-Indonesia.pdf (accessed on 16 June 2022).
- Balvanera, P.; Quijas, S.; Karp, D.S.; Ash, N.; Bennett, E.M.; Boumans, R.; Brown, C.; Chan, K.M.A.; Chaplin-Kramer, R.; Halpern, B.S.; et al. Ecosystem Services. In The GEO Handbook on Biodiversity Observation Networks; Walters, M., Scholes, R.J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 39–78. [Google Scholar]
- Rad, M.F.; Fröling, M.; Grönlund, E. Including ecosystem services in sustainability assessment of forest biofuels. In Proceedings of the World Bioenergy, Jönköping, Sweden, 29–31 May 2012; pp. 75–78. [Google Scholar]
- Gasparatos, A.; Stromberg, P.; Takeuchi, K. Biofuels, ecosystem services and human wellbeing: Putting biofuels in the ecosystem services narrative. Agric. Ecosyst. Environ. 2011, 142, 111–128. [Google Scholar] [CrossRef]
- McBride, A.C.; Dale, V.H.; Baskaran, L.M.; Downing, M.E.; Eaton, L.M.; Efroymson, R.A.; Garten, C.T.; Kline, K.L.; Jager, H.I.; Mulholland, P.J.; et al. Indicators to support environmental sustainability of bioenergy systems. Ecol. Indic. 2011, 11, 1277–1289. [Google Scholar] [CrossRef]
- Joly, C.; Verdade, L.; Huntley, B.; Dale, V.; Mace, G.; Muok, B.; Ravindranath, N.H. Biofuel impacts on biodiversity and ecosystem services. In Bioenergy & Sustainability: Bridging the Gaps; Souza, G.M., Victoria, R.L., Joly, C.A., Verdade, L.M., Eds.; SCOPE: Sao Paulo, Brazil, 2015; Volume 72, pp. 548–574. [Google Scholar]
- Putrasari, Y.; Praptijanto, A.; Santoso, W.B.; Lim, O. Resources, policy, and research activities of biofuel in Indonesia: A review. Energy Rep. 2016, 2, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Effendi, R.; Roffandi, N.; Puspitodjati, T.; Bangsawan, I. Menggagas Energi Biomassa Hutan Sebagai Sumber Energi Terbarukan. Penelit. Dan Pengemb. Sos. Ekon. Kebijak. Dan Perubahan Iklim 2018, 11, 1–5. [Google Scholar]
- Central Bureau of Statistics. Statistik Produksi Kehutanan; Central Bureau of Statistics: Jakarta, Indonesia, 2020.
- Suntana, A.S.; Vogt, K.A.; Turnblom, E.C.; Upadhye, R. Bio-methanol potential in Indonesia: Forest biomass as a source of bio-energy that reduces carbon emissions. Appl. Energy 2009, 86, S215–S221. [Google Scholar] [CrossRef]
- Sarana Multi Infrastruktur. PT SMI Insight—Q3 Reaching the Energy Mix Target through Bioenergy; PT Sarana Multi Infrastruktur (Persero): Jakarta, Indonesia, 2017; pp. 1–13. [Google Scholar]
- Yana, S.; Nizar, M.; Irhamni; Mulyati, D. Biomass waste as a renewable energy in developing bio-based economies in Indonesia: A review. Renew. Sustain. Energy Rev. 2022, 160, 112268. [Google Scholar] [CrossRef]
- Mohammed, J. The Role of Genetic Diversity to Enhance Ecosystem Service. Am. J. Biol. Environ. Stat. 2019, 5, 46–51. [Google Scholar] [CrossRef]
- Sembiring, L. Microbial diversity and its importance in microbial genetic resources preservation and its role in natural. J. Biol. Res. 2015, 21, 13–17. [Google Scholar] [CrossRef]
- Wijayanti, M.; Meryandini, A.; Wahyudi, A.T.; Yuhana, M. Diversity and the Composition of Fatty Acids of Lipolytic Bacteria Isolated from Soil and Aquatic Sediment in a Forest and on an Oil Palm Plantation. Makara J. Sci. 2014, 18, 71–78. [Google Scholar] [CrossRef]
- Sukara, E. Tropical Forest Biodiversity to Provide Food, Health and Energy Solution of the Rapid Growth of Modern Society. Procedia Environ. Sci. 2014, 20, 803–808. [Google Scholar] [CrossRef]
- Lopez, S.; Goux, X.; van der Ent, A.; Erskine, P.D.; Echevarria, G.; Calusinska, M.; Morel, J.L.; Benizri, E. Bacterial community diversity in the rhizosphere of nickel hyperaccumulator species of Halmahera Island (Indonesia). Appl. Soil Ecol. 2019, 133, 70–80. [Google Scholar] [CrossRef]
- Martínez, A.; Amri, A. Managing Plant Genetic Resources in the Agro-Ecosystem: Global Change, Crop-Associated Biodiversity and Ecosystem Services; FAO-ICARDA: Rome, Italy, 2008. [Google Scholar]
- Swift, M.J.; Izac, A.M.N.; van Noordwijk, M. Biodiversity and ecosystem services in agricultural landscapes—Are we asking the right questions? Agric. Ecosyst. Environ. 2004, 104, 113–134. [Google Scholar] [CrossRef]
- Priscoli, J.D. Linking ecosystem services and water security-SDGs offer a new opportunity for integration. Glob. Water Partnersh. Perspect. Pap. 2016. Available online: https://www.gwp.org/globalassets/global/toolbox/publications/perspective-papers/gwp_pp_-ecosystemservices.pdf (accessed on 20 June 2022).
- Carignan, R.; Steedman, R.J. Impacts of major watershed perturbations on aquatic ecosystems. Can. J. Fish. Aquat. Sci. 2000, 57, 1–4. [Google Scholar] [CrossRef]
- Ceci, P. Forest and Water: International Momentum and Action; FAO: Rome, Italy, 2013. [Google Scholar]
- Guo, Z.; Xiao, X.; Li, D. An assessment of ecosystem services: Water flow regulation and hydroelectric power production. Ecol. Appl. 2000, 10, 925–936. [Google Scholar] [CrossRef]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A.C. Assessing water ecosystem services for water resource management. Environ. Sci. Policy 2016, 61, 194–203. [Google Scholar] [CrossRef]
- Fakhriyah, F.; Yeyendra, Y.; Marianti, A. Integrasi Smart Water Management Berbasis Kearifan Lokal Sebagai Upaya Konservasi Sumber Daya Air di Indonesia. Indones. J. Conserv. 2021, 10, 34–41. [Google Scholar]
- Fulazzaky, M.A. Challenges of integrated water resources management in Indonesia. Water 2014, 6, 2000–2020. [Google Scholar] [CrossRef]
- ADB. Indonesia Country Water Assessment; Asian Development Bank: Manila, Philippines, 2016. [Google Scholar]
- Piesse, M. Indonesian Water Security: Improving but Still Subject to Shocks. Future Dir. Int. 2016. Available online: http://inford.org/indonesian-water-security-improving-but-still-subject-to-shocks/ (accessed on 20 June 2022).
- Ardhianie, N. Coping with Water Scarcity in Indonesia. Available online: https://www.thejakartapost.com/news/2015/03/25/coping-with-water-scarcity-indonesia.html (accessed on 20 June 2022).
- Nugroho, H.Y.; Indrawati, D.R.; Wahyuningrum, N.; Adi, R.N.; Supangat, A.B.; Indrajaya, Y.; Putra, P.B.; Cahyono, S.A.; Nugroho, A.W.; Basuki, T.M.; et al. Toward Water, Energy, and Food Security in Rural Indonesia: A Review. Water 2022, 14, 1645. [Google Scholar] [CrossRef]
- Asdak, C. Hidrologi dan Pengelolaan Daerah Aliran Sungai; Gadjah Mada University Press: Yogyakarta, Indonesia, 2018. [Google Scholar]
- Suryatmojo, H. Peran Hutan Sebagai Penyedia Jasa Lingkungan; Fakultas Kehutanan Universitas Gadjah Mada: Yogyakarta, Indonesia, 2006. [Google Scholar]
- Suryatmojo, H. Peran Hutan Pinus Sebagai Penyedia Jasa Lingkungan Melalui Penyimpanan Karbon dan Penyediaan Sumberdaya Air; Hasil Penelitian: Yogyak, Indonesia, 2004. [Google Scholar]
- Junaidi, E.; Tarigan, S.D. Pengaruh hutan dalam pengaturan tata air dan proses sedimentasi Daerah Aliran Sungai (DAS): Studi Kasus di DAS Cisadane. J. Penelit. Hutan Dan Konserv. Alam 2011, 8, 155–176. [Google Scholar] [CrossRef]
- Scherr, S.J.; Shames, S.; Friedman, R. From climate-smart agriculture to climate-smart landscapes. Agric. Food Secur. 2012, 1, 12. [Google Scholar] [CrossRef]
- Campos, J.C.; Rodrigues, S.; Sil, Â.; Hermoso, V.; Freitas, T.R.; Santos, J.A.; Fernandes, P.M.; Azevedo, J.C.; Honrado, J.P.; Regos, A. Climate regulation ecosystem services and biodiversity conservation are enhanced differently by climate- and fire-smart landscape management. Environ. Res. Lett. 2022, 17, 054014. [Google Scholar] [CrossRef]
- Zari, M.P. Utilizing relationships between ecosystem services, built environments, and building materials. Mater. A Healthy Ecol. Sustain. Built Environ. 2017, 3–27. [Google Scholar] [CrossRef]
- Indrajaya, Y.; Yuwati, T.W.; Lestari, S.; Winarno, B.; Narendra, B.H.; Nugroho, H.Y.; Rachmanadi, D.; Pratiwi; Turjaman, M.; Adi, R.N.; et al. Tropical Forest Landscape Restoration in Indonesia: A Review. Land 2022, 11, 328. [Google Scholar] [CrossRef]
- Basuki, T.M.; Nugroho, H.Y.; Indrajaya, Y.; Pramono, I.B.; Nugroho, N.P.; Supangat, A.B.; Indrawati, D.R.; Savitri, E.; Wahyuningrum, N.; Purwanto; et al. Improvement of Integrated Watershed Management in Indonesia for Mitigation and Adaptation to Climate Change: A Review. Sustainability 2022, 14, 9997. [Google Scholar] [CrossRef]
- Markov, B.; Nedkov, S. Mapping of Erosion Regulation Ecosystem Services. In Proceedings of the 6th International Conference on Cartography and GIS, Albena, Bulgaria, 13–17 June 2016. [Google Scholar]
- Sidle, R.C.; Ziegler, A.D.; Negishi, J.N.; Nik, A.R.; Siew, R.; Turkelboom, F. Erosion processes in steep terrain—Truths, myths, and uncertainties related to forest management in Southeast Asia. For. Ecol. Manag. 2006, 224, 199–225. [Google Scholar] [CrossRef]
- Sihombing, R.S.M. The role of the indigenous knowledge system of the community Dayak in water management Kahayan River: Review of local wisdom perspective. In Proceedings of the Iapa Proceedings Conference, Bali, Indonesia, 11–12 November 2019; pp. 341–350. [Google Scholar] [CrossRef]
- Sundari, S.; Ibo, L.; Rahajoe, J.; Alhamd, L.; Gunawan, H.; Priyono, N. Biodiversity study of several peatland types in Papua. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bogor, Indonesia, 2020; p. 012002. [Google Scholar]
- Hijjang, P. Pasang dan Kepemimpinan Ammatoa: Memahami Kembali Sistem Kepemimpinan Tradisional Masyarakat Adat dalam Pengelolaan Sumberdaya Hutan di Kajang Sulawesi Selatan. Antropol. Indones. 2015, 29, 255–256. [Google Scholar] [CrossRef]
- Muntaza, M. Satu Abad Perubahan Sakralitas Alam Malind-anim. J. Sosiol. Reflektif 2016, 8, 179–208. [Google Scholar]
- Satia, R.; Gumiri, S.; Utsman, S.; Asmawati, Y.; Abubakar, H.M.; Bulkani, B.; Yusuf, M.; Ardianor, A.; Yusuf, N.S.; Nasir, M. Pukung Pahewan; Diva Press: Yogyakarta, Indonesia, 2019; p. 358. [Google Scholar]
- Wiati, C.B. Kajian aturan adat pemanfaatan Tana’ Olen oleh masyarakat local di Desa Setulang Kabupaten Malinau, Kalimantan Timur. J. Penelit. Ekosist. Dipterokarpa 2013, 7, 123–130. [Google Scholar] [CrossRef]
- Suparmini, S.; Setyawati, S.; Sumunar, D.R.S. Pelestarian lingkungan masyarakat Baduy berbasis kearifan lokal. J. Penelit. Hum. 2013, 18, 8–22. [Google Scholar] [CrossRef]
- Syarif, E.; Fatchan, A.; Astina, K. Tradition of “Pasang Ri-Kajang” in the forests managing in system mores of “Ammatoa” at District Bulukumba South Sulawesi, Indonesia. Mediterr. J. Soc. Sci. 2016, 7, 325. [Google Scholar] [CrossRef]
- Yamani, M. Strategi perlindungan hutan berbasis hukum lokal di enam komunitas adat daerah bengkulu. J. Huk. Ius Quia Iustum 2011, 18, 175–192. [Google Scholar] [CrossRef]
- Sumarsono, A.; Wasa, C. Traditional Sasi wisdom in Papua-based nature conservation. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bogor, Indonesia, 2019; p. 012092. [Google Scholar] [CrossRef]
- Pattiselanno, F. The wildlife hunting in Papua. Biota 2006, XI, 59–61. [Google Scholar]
- Renjaan, M.J.; Purnaweni, H.; Anggoro, D.D. Studi kearifan lokal sasi kelapa pada masyarakat adat di Desa Ngilngof Kabupaten Maluku Tenggara. J. Ilmu Lingkung. 2013, 11, 23–29. [Google Scholar] [CrossRef]
- Efremila; Wardenaar, E.; Sisillia, L. Studi etnobotani tumbuhan obat oleh etnis suku Dayak di desa Kayu Tanam kecamatan Mandor kabupaten Landak. J. Hutan Lestari 2015, 3. [Google Scholar] [CrossRef]
- Pristi, N.A. Etnobotani Dalam Upacara Adat Masyarakat Suku Naga, Desa Neglasari, Kecamatan Salawu, Kabupaten Tasikmalaya, Jawa Barat. Bachelor’s Thesis, Fakultas Sains dan Teknologi Universitas Islam Negeri Syarif Hidayatullah, Jakarta, Indonesia, 2015. [Google Scholar]
- Wansa, W.S. Pemanfaatan Etnobotani Masyarakat Suku Kajang Desa Tanah Toa Kecamatan Kajang Kabupaten Bulukumba; Universitas Muhammadiyah Makassar: Makassar, Indonesia, 2019. [Google Scholar]
- Nahuelhual, L.; Carmona, A.; Lozada, P.; Jaramillo, A.; Aguayo, M. Mapping recreation and ecotourism as a cultural ecosystem service: An application at the local level in Southern Chile. Appl. Geogr. 2013, 40, 71–82. [Google Scholar] [CrossRef]
- Putri, I.A.S.L.P.; Ansari, F.; Susilo, A. Response of Bird Community Toward Tourism Activities in the Karst Area of Bantimurung Bulusaraung National Park. J. Qual. Assur. Hosp. Tour. 2019, 21, 146–167. [Google Scholar] [CrossRef]
- UNEP. The Role of Ecosystems in Developing a Sustainable ‘Green Economy’; United Nation Environment Programme: Nairobi, Kenya, 2010. [Google Scholar]
- EIA. EIA Projects Nearly 50% Increase in world Energy Usage by 2050, Led by Growth in Asia. Available online: https://www.eia.gov/todayinenergy/detail.php?id=41433 (accessed on 18 April 2022).
- Platform. Finding Synergies between Renewable Energy and Ecosystem Services. Available online: https://www.interregeurope.eu/find-policy-solutions/stories/finding-synergies-between-renewable-energy-and-ecosystem-services (accessed on 16 May 2022).
- Picchi, P.; Verzandvoort, S.; Geneletti, D.; Hendriks, K.; Stremke, S. Deploying ecosystem services to develop sustainable energy landscapes: A case study from the Netherlands. Smart Sustain. Built Environ. 2020. ahead-of-print. [Google Scholar] [CrossRef]
- Ministry of National Development Planning. Pedoman Teknis Penyusunan Rencana Aksi—Tujuan Pembangunan Berkelanjutan/Sustainable Development Goals (TPB/SDGs), 2nd ed.; Ministry of National Development Planning: Jakarta, Indonesia, 2020.
- Republik Indonesia Energi. Undang-undang Republik Indonesia nomor 40 tahun 2007 tentang perseroan terbatas. Jkt. Sekr. Negara 2007. Available online: https://www.ojk.go.id/Files/box/keuangan-berkelanjutan/UU_PT_No_40_tahun_2007.pdf (accessed on 20 June 2022).
- Espécie, M.d.A.; de Carvalho, P.N.; Pinheiro, M.F.B.; Rosenthal, V.M.; da Silva, L.A.F.; Pinheiro, M.R.d.C.; Espig, S.A.; Mariani, C.F.; de Almeida, E.M.; Sodré, F.N.G.A.d.S. Ecosystem services and renewable power generation: A preliminary literature review. Renew. Energy 2019, 140, 39–51. [Google Scholar] [CrossRef]
- Hastik, R.; Basso, S.; Geitner, C.; Haida, C.; Poljanec, A.; Portaccio, A.; Vrščaj, B.; Walzer, C. Renewable energies and ecosystem service impacts. Renew. Sustain. Energy Rev. 2015, 48, 608–623. [Google Scholar] [CrossRef]
- Fearnside, P.M. Global Warming and Tropical Land-Use Change: Greenhouse Gas Emissions from Biomass Burning, Decomposition and Soils in Forest Conversion, Shifting Cultivation and Secondary Vegetation. Clim. Chang. 2000, 46, 115–158. [Google Scholar] [CrossRef]
- Cramer, W.; Bondeau, A.; Schaphoff, S.; Lucht, W.; Smith, B.; Sitch, S. Twenty-first century atmospheric change and deforestation: Potential impacts on tropical forests. In Tropical Forests and Global Atmospheric Change; Malhi, Y., Phillips, O., Eds.; Oxford Scholarship Online: Oxford, UK, 2005; pp. 17–30. [Google Scholar]
- Ramankutty, N.; Gibbs, H.K.; Achard, F.; Defries, R.; Foley, J.A.; Houghton, R.A. Challenges to estimating carbon emissions from tropical deforestation. Glob. Chang. Biol. 2007, 13, 51–66. [Google Scholar] [CrossRef]
- Tacconi, L.; Muttaqin, M.Z. Reducing emissions from land use change in Indonesia: An overview. For. Policy Econ. 2019, 108, 101979. [Google Scholar] [CrossRef]
- Miles, L.; Kapos, V. Reducing Greenhouse Gas Emissions from Deforestation and Forest Degradation: Global Land-Use Implications. Science 2008, 320, 1454–1455. [Google Scholar] [CrossRef]
- Johns, T.; Merry, F.; Stickler, C.; Nepstad, D.; Laporte, N.; Goetz, S. A three-fund approach to incorporating government, public and private forest stewards into a REDD funding mechanism. Int. For. Rev. 2008, 10, 458–464. [Google Scholar] [CrossRef]
- Cadman, T.; Sarker, T.; Muttaqin, Z.; Nurfatriani, F.; Salminah, M.; Maraseni, T. The role of fiscal instruments in encouraging the private sector and smallholders to reduce emissions from deforestation and forest degradation: Evidence from Indonesia. For. Policy Econ. 2019, 108, 101913. [Google Scholar] [CrossRef]
- Boediono, L. Indonesia and the World Bank Sign Milestone Agreement on Emission Reductions. Available online: https://www.worldbank.org/en/news/press-release/2020/12/08/indonesia-and-the-world-bank-sign-milestone-agreement-on-emission-reductions (accessed on 29 May 2022).
- Venter, O.; Meijaard, E.; Possingham, H.; Dennis, R.; Sheil, D.; Wich, S.; Hovani, L.; Wilson, K. Carbon payments as a safeguard for threatened tropical mammals. Conserv. Lett. 2009, 2, 123–129. [Google Scholar] [CrossRef]
- Saepudin, A.; Muryantini, A.; Maghfiroh, H.D. Kebijakan Indonesia Dalam Mewujudkan Industri Hijau (Green Industry) Masa Pemerintahan Presiden Joko Widodo. J. EKSOS 2020, 2, 166–177. [Google Scholar]
- Pusat Pengkajian Strategis Kehutanan. Green Product Kehutanan vs. Issue Lingkungan. Available online: http://www.forestforlife.web.id/2012/09/green-product-kehutanan-versus-issue.html (accessed on 2 June 2022).
- Maryudi, A.; Devkota, R.R.; Schusser, C.; Yufanyi, C.; Salla, M.; Aurenhammer, H.; Rotchanaphatharawit, R.; Krott, M. Back to basics: Considerations in evaluating the outcomes of community forestry. For. Policy Econ. 2012, 14, 1–5. [Google Scholar] [CrossRef]
- Purwanto, A.; Asbari, M.; Prameswari, M.; Pramono, R. Sistem manajemen pengelolaan hutan FSC, PEFC, ISO 38200:2018 dan pengaruhnya terhadap kinerja industri kayu di Indonesia. Tengkawang 2020, 10, 34–44. [Google Scholar] [CrossRef]
- Wibowo, A.; Sahide, M.A.K.; Pratiwi, S.; Dharmawan, B.; Giessen, L. Ragam Skema Sertifikasi Hutan Global Dan Opsi Transformasinya Di Indonesia. RISALAH KEBIJAKAN PERTANIAN DAN LINGKUNGAN Rumusan Kaji. Strateg. Bid. Pertan. Dan Lingkung. 2015, 2, 1–8. [Google Scholar] [CrossRef]
- Gavrilut, I.; Halalisan, A.-F.; Giurca, A.; Sotirov, M. The Interaction between FSC Certification and the Implementation of the EU Timber Regulation in Romania. Forests 2016, 7, 3. [Google Scholar] [CrossRef]
- Kongmanee, C.; Ahmed, F.; Longpichai, O. Cost-Benefit Analysis and Challenges of Implementing FSC Standards in Rubber Plantations in Southern Thailand. J. Asian Financ. Econ. Bus. 2020, 7, 423–431. [Google Scholar] [CrossRef]
- Palupi, R.D. Implementasi Sertifikasi FSC (Forest Stewardship Council) Terhadap Eco-Product di Indonesia. Available online: https://pediailmu.com/kehutanan/implementasi-sertifikasi-fsc-terhadap-eco-product-di-indonesia/ (accessed on 10 June 2022).
- Tacconi, L.; Rodrigues, R.J.; Maryudi, A. Law enforcement and deforestation: Lessons for Indonesia from Brazil. For. Policy Econ. 2019, 108, 101943. [Google Scholar] [CrossRef]
- Wiyono, W.; Oktalina, S.N. Kendala Implementasi Sistem Verifikasi Legalitas Kayu pada Industri Kayu di Daerah Istimewa Yogyakarta. In Proceedings of the Prosiding Seminar Nasional Teknologi Terapan 2015 “Inovasi Budaya dan Teknologi untuk Kemajuan Bangsa”. Sekolah Vokasi Universitas Gajah Mada, Yogjakarta, Indonesia, 14 November 2015. [Google Scholar]
- Romero, C.; Sills, E.O.; Guariguata, M.R.; Cerutti, P.O.; Lescuyer, G.; Putz, F.E. Evaluation of the impacts of Forest Stewardship Council (FSC) certification of natural forest management in the tropics: A rigorous approach to assessment of a complex conservation intervention. Int. For. Rev. 2017, 19, 36–49. [Google Scholar] [CrossRef]
- Yahya, A.F.; Damayanti, E.; Zuhud, E.A. Traditional forest-related knowledge for ecosystem services in Sundanese ethnic of Sukabumi District, West Java Province. In Proceedings of the XIV WORLD FORESTRY CONGRESS, Durban, South Africa, 7–11 September 2015. [Google Scholar]
- Yeoman, J. Ecotourism and Sustainable Development. In Who Owns Paradise? 2nd ed.; Island Press: Washington, DC, USA, 2001; Volume 22, pp. 206–208. [Google Scholar]
- Libosada, C.M. Business or leisure? Economic development and resource protection-Concepts and practices in sustainable ecotourism. Ocean Coast. Manag. 2009, 52, 390–394. [Google Scholar] [CrossRef]
- Hsu, P.H. Economic impact of wetland ecotourism: An empirical study of Taiwan’s Cigu Lagoon area. Tour. Manag. Perspect. 2019, 29, 31–40. [Google Scholar] [CrossRef]
- Indira Anggraini, R.; Gunawan, B. Ecotourism development in National Parks: A new paradigm of forest management in Indonesia. E3S Web Conf. 2021, 249, 03010. [Google Scholar] [CrossRef]
- Pynanjung, P.A. Dampak pengembangan ekowisata terhadap kesejahteraan masyarakat di Kabupaten Bengkayang: Studi kasus Kawasan Ekowisata Riam Pangar. J. Nas. Pariwisata 2018, 10, 22–38. [Google Scholar] [CrossRef]
- Wiyono, W.; Hidayat, R.; Oktalina, S. The Community Empowerment Strategy in Protected Forest Management through Community-Based Ecotourism Development in Kalibiru Village, Kulon Progo Regency. Habitat 2020, 31, 11–27. [Google Scholar] [CrossRef]
- Atmodjo, E.; Lamers, M.; Mol, A. Financing marine conservation tourism: Governing entrance fees in Raja Ampat, Indonesia. Mar. Policy 2017, 78, 181–188. [Google Scholar] [CrossRef]
- Schuhmann, P.W.; Skeete, R.; Waite, R.; Lorde, T.; Bangwayo-Skeete, P.; Oxenford, H.A.; Gill, D.; Moore, W.; Spencer, F. Visitors’ willingness to pay marine conservation fees in Barbados. Tour. Manag. 2019, 71, 315–326. [Google Scholar] [CrossRef]
- Ma, B.; Yin, R.; Zheng, J.; Wen, Y.; Hou, Y. Estimating the social and ecological impact of community-based ecotourism in giant panda habitats. J. Environ. Manag. 2019, 250, 109506. [Google Scholar] [CrossRef]
- Wiratno, W.; Withaningsih, S.; Gunawan, B.; Iskandar, J. Ecotourism as a Resource Sharing Strategy: Case Study of Community-Based Ecotourism at the Tangkahan Buffer Zone of Leuser National Park, Langkat District, North Sumatra, Indonesia. Sustainability 2022, 14, 3399. [Google Scholar] [CrossRef]
- Butarbutar, R.; Soemarno, S. Environmental effects of ecotourism in Indonesia. J. Indones. Tour. Dev. Stud. 2013, 1, 97–107. [Google Scholar] [CrossRef]
- Purnomo, M.; Maryudi, A.; Dedy Andriatmoko, N.; Muhamad Jayadi, E.; Faust, H. The cost of leisure: The political ecology of the commercialization of Indonesia’s protected areas. Environ. Sociol. 2022, 8, 121–133. [Google Scholar] [CrossRef]
- Lenzen, M.; Sun, Y.Y.; Faturay, F.; Ting, Y.P.; Geschke, A.; Malik, A. The carbon footprint of global tourism. Nat. Clim. Chang. 2018, 8, 522–528. [Google Scholar] [CrossRef]
- Morris, E.K.; Morris, D.J.P.; Vogt, S.; Gleber, S.C.; Bigalke, M.; Wilcke, W.; Rillig, M.C. Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. ISME J. 2019, 13, 1639–1646. [Google Scholar] [CrossRef] [PubMed]
- Kholil, K.; Dharoko, T.A.; Widayati, A. Pendekatan multi dimensional scaling untuk evaluasi keberlanjutan waduk Cirata—Propinsi Jawa Barat. J. Mns. Dan Lingkung. 2015, 22, 22–31. [Google Scholar] [CrossRef]
- Nandini, R.; Kusumandari, A.; Gunawan, T.; Sadono, R. Multidimensional Scaling Approach to Evaluate the Level of Community Forestry Sustainability in Babak Watershed, Lombok Island, West Nusa Tenggara. Forum Geogr. 2017, 31, 28–42. [Google Scholar] [CrossRef]
- Suryanto, S.; Onrizal, O.; Susilo, A.; Andriansyah, M.; Muslim, T. Implementation of Multi-System Silviculture (MSS) to improve performance of production forest management: A case study of PT Sarpatim, Central Kalimantan. Indones. J. For. Res. 2018, 5, 1–19. [Google Scholar] [CrossRef]
- Rakatama, A.; Pandit, R. Reviewing social forestry schemes in Indonesia: Opportunities and challenges. For. Policy Econ. 2020, 111, 102052. [Google Scholar] [CrossRef]
- Cowling, R.M.; Egoh, B.; Knight, A.T.; O’Farrell, P.J.; Reyers, B.; Rouget, M.; Roux, D.J.; Welz, A.; Wilhelm-Rechman, A. An operational model for mainstreaming ecosystem services for implementation. Proc. Natl. Acad. Sci. USA 2008, 105, 9483–9488. [Google Scholar] [CrossRef]
- Mijatović, D.; Sakalian, M.; Hodgkin, T. Mainstreaming Biodiversity in Production Landscapes; United Nations Environment Programme: New Delhi, India, 2018. [Google Scholar]
- Cowling, R.M.; Pierce, S.M.; Sandwith, T. Conclusions: The Fundamentals of Mainstreaming Biodiversity. In Mainstreaming Biodiversity in Development: Case Studies from South Africa; van Wilgen, B., Marais, C., Magadlela, D., Jezile, N., Stevens, D., Eds.; The International Bank for Reconstructionand Development/The World Bank: Washington, DC, USA, 2002; p. 143. [Google Scholar]
- Capodaglio, A.G.; Callegari, A. Can Payment for Ecosystem Services schemes be an alternative solution to achieve sustainable environmental development? A critical comparison of implementation between Europe and China. Resources 2018, 7, 40. [Google Scholar] [CrossRef]
- Grima, N.; Singh, S.J.; Smetschka, B.; Ringhofer, L. Payment for Ecosystem Services (PES) in Latin America: Analysing the performance of 40 case studies. Ecosyst. Serv. 2016, 17, 24–32. [Google Scholar] [CrossRef]
- Folharini, S.d.O.; De Oliveira, R.C. Environmental Services and Ecosystem Services: Conceptual Difference and Application in Brazilian Environmental Legislation. Geoambiente-Line 2020, 38, 210–229. [Google Scholar] [CrossRef]
- Ferraro, P.J. The future of payments for environmental services. Conserv. Biol. 2011, 25, 1134–1138. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.T.; Loft, L.; Bennett, K.; Phuong, V.T.; Dung, L.N.; Brunner, J. Monitoring and evaluation of Payment for Forest Environmental Services in Vietnam: From myth to reality. Ecosyst. Serv. 2015, 16, 220–229. [Google Scholar] [CrossRef]
- Ferraro, P.J. Asymmetric information and contract design for payments for environmental services. Ecol. Econ. 2008, 65, 810–821. [Google Scholar] [CrossRef]
- Wunder, S. When payments for environmental services will work for conservation. Conserv. Lett. 2013, 6, 230–237. [Google Scholar] [CrossRef]
- Pasha, R.; Asmawan, T.; Leimona, B.; Setiawan, E.; Wijaya, C.I. Komoditisasi Atau Koinvestasi Jasa Lingkungan: Skema Imbal Jasa Lingkungan Program Peduli Sungai di DAS Way Besai, Lampung, Indonesia; World Agroforestry Centre: Bogor, Indonesia, 2011. [Google Scholar]
- Laila, N.; Murtilaksono, K.; Nugroho, B. Kelembagaan kemitraan hulu hilir untuk pasokan air DAS Cidanau, Provinsi Banten. J. Penelit. Sos. Dan Ekon. Kehutan. 2014, 11, 29177. [Google Scholar] [CrossRef]
- Fauzi, A.; Anna, Z. The complexity of the institution of payment for environmental services: A case study of two Indonesian PES schemes. Ecosyst. Serv. 2013, 6, 54–63. [Google Scholar] [CrossRef]
- Napitupulu, D.F.; Asdak, C.; Budiono, B. Mekanisme imbal jasa lingkungan di sub-das Cikapundung (studi kasus pada Desa Cikole dan Desa Suntenjaya Kabupaten Bandung Barat). J. Ilmu Lingkung. Undip 2013, 11, 73–83. [Google Scholar] [CrossRef]
- Pagiola, S.; Landell-Mills, N.; Bishop, J. Market-based mechanisms for forest conservation and development. In Selling Forest Environmental Services; Pagiola, S., Bishop, J., Landell-Mills, N., Eds.; Earthscan Publications Ltd.: New York, NY, USA, 2002; pp. 1–13. [Google Scholar]
- Aviantara, D.B.; Suciati, F. Penggunaan model matematik gaussian dispersion untuk pendugaan perubahan kualitas udara dalam analisis dampak lingkungan. J. Rekayasa Lingkung. 2021, 14. [Google Scholar] [CrossRef]
- Budhi, G.S.; Kuswanto, S.; Iqbal, M. Concept and implementation of PES program in the Cidanau watershed: A lesson learned for future environmental policy. Anal. Kebijak. Pertan. 2008, 6, 37–55. [Google Scholar]
- Santosa, A.; Sakti, D.K.; Hardiyanto, G.; Berliani, H.; Suwito. Mendorong Pemanfaatan Air dan Energi Air yang Lebih Baik; The Partnership for Governance Reform: Jakarta, Indonesia, 2015. [Google Scholar]
- Diswandi, D. A hybrid Coasean and Pigouvian approach to Payment for Ecosystem Services Program in West Lombok: Does it contribute to poverty alleviation? Ecosyst. Serv. 2017, 23, 138–145. [Google Scholar] [CrossRef]
- Iqbal, Y.M.; Burhanudin, H. Penentuan Biaya Kompensasi Air dari Kota Cirebon untuk Penghijauan Desa Sekitar Mata Air Cipaniis Kabupaten Kuningan. In Proceedings of the Seminar Penelitian Sivitas Akademika UNISBA, Bandung, Indonesia, 6–11 August 2020; pp. 408–416. [Google Scholar] [CrossRef]
- Suich, H.; Lugina, M.; Muttaqin, M.Z.; Alviya, I.; Sari, G.K. Payments for ecosystem services in Indonesia. Oryx 2017, 51, 489–497. [Google Scholar] [CrossRef] [Green Version]
- Romero, H.G. Payments for Environmental Services: Can They Work? The Case of Mexico. Field Actions Sci. Rep. J. Field Actions 2012, 6, 1–7. [Google Scholar]
- Lapeyre, R.; Pirard, R.; Leimona, B. Payments for environmental services in Indonesia: What if economic signals were lost in translation? Land Use Policy 2015, 46, 283–291. [Google Scholar] [CrossRef]
- Bulte, E.H.; Lipper, L.; Stringer, R.; Zilberman, D. Payments for ecosystem services and poverty reduction: Concepts, issues, and empirical perspectives. Environ. Dev. Econ. 2008, 13, 245–254. [Google Scholar] [CrossRef]
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Bond, I.; Mayers, J. Fair Deals for Watershed Services Lessons from a Multi-Country Action-Learning Project; International Institute for Environment and Development: London, UK, 2010. [Google Scholar]
- Tahri, M.; Kaspar, J.; Vacik, H.; Marusak, R. Multi-attribute decision making and geographic information systems: Potential tools for evaluating forest ecosystem services. Ann. For. Sci. 2021, 78, 1–19. [Google Scholar] [CrossRef]
- Borges, J.G.; Nordstrom, E.M.; Garcia Gonjalo, J.; Hujala, T.; Trasobares, A. Computer-Based Tools for Supporting Forest Management. The Experience and the Expertise World-Wide; Forest Resource Management-SLU: Umeå, Sweden, 2014; p. 507. ISBN 978-91-576-9236-8. [Google Scholar]
- Zhang, Z.; Sherman, R.; Yang, Z.; Wu, R.; Wang, W.; Yin, M.; Yang, G.; Ou, X. Integrating a participatory process with a GIS-based multi-criteria decision analysis for protected area zoning in China. J. Nat. Conserv. 2013, 21, 225–240. [Google Scholar] [CrossRef]
- Armatas, C.A.; Campbell, R.M.; Watson, A.E.; Borrie, W.T.; Christensen, N.; Venn, T.J. An integrated approach to valuation and tradeoff analysis of ecosystem services for national forest decision-making. Ecosyst. Serv. 2018, 33, 1–18. [Google Scholar] [CrossRef]
- Hyyppä, E.; Yu, X.; Kaartinen, H.; Hakala, T.; Kukko, A.; Vastaranta, M.; Hyyppä, J. Comparison of backpack, handheld, under-canopy UAV, and above-canopy UAV laser scanning for field reference data collection in boreal forests. Remote Sens. 2020, 12, 3327. [Google Scholar] [CrossRef]
- Liang, X.; Wang, Y.; Pyörälä, J.; Lehtomäki, M.; Yu, X.; Kaartinen, H.; Kukko, A.; Honkavaara, E.; Issaoui, A.E.I.; Nevalainen, O.; et al. Forest in situ observations using unmanned aerial vehicle as an alternative of terrestrial measurements. For. Ecosyst. 2019, 6, 1–16. [Google Scholar] [CrossRef]
- Palomino, J.; Muellerklein, O.C.; Kelly, M. A review of the emergent ecosystem of collaborative geospatial tools for addressing environmental challenges. Comput. Environ. Urban Syst. 2017, 65, 79–92. [Google Scholar] [CrossRef]
- Emery, B.; Camps, A. Introduction to Satellite Remote Sensing: Atmosphere, Ocean, Land and Cryosphere Applications; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Bagstad, K.J.; Semmens, D.J.; Waage, S.; Winthrop, R. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst. Serv. 2013, 5, 27–39. [Google Scholar] [CrossRef]
- Çetinkaya, C.; Kabak, M.; Erbaş, M.; Özceylan, E. Evaluation of ecotourism sites: A GIS-based multi-criteria decision analysis. Kybernetes 2018, 47, 1664–1686. [Google Scholar] [CrossRef]
- Woo, H.; Acuna, M.; Moroni, M.; Taskhiri, M.S.; Turner, P. Optimizing the location of biomass energy facilities by integrating Multi-Criteria Analysis (MCA) and Geographical Information Systems (GIS). Forests 2018, 9, 585. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, J.; Bushenkov, V.; McDill, M.E.; Borges, J.G. A decision support system for assessing trade-offs between ecosystem management goals: An application in Portugal. Forests 2015, 6, 65–87. [Google Scholar] [CrossRef]
- Nordström, E.M.; Nieuwenhuis, M.; Başkent, E.Z.; Biber, P.; Black, K.; Borges, J.G.; Bugalho, M.N.; Corradini, G.; Corrigan, E.; Eriksson, L.O.; et al. Forest decision support systems for the analysis of ecosystem services provisioning at the landscape scale under global climate and market change scenarios. Eur. J. For. Res. 2019, 138, 561–581. [Google Scholar] [CrossRef]
- Cristal, I.; Ameztegui, A.; González-Olabarria, J.R.; Garcia-Gonzalo, J. A Decision support tool for assessing the impact of climate change on multiple ecosystem services. Forests 2019, 10, 440. [Google Scholar] [CrossRef]
- Pasalodos-Tato, M.; Mäkinen, A.; Garcia-Gonzalo, J.; Borges, J.G.; Lamas, T.; Eriksson, L.O. Review. Assessing uncertainty and risk in forest planning and decision support systems: Review of classical methods. For. Syst. 2013, 22, 282–303. [Google Scholar]
- Lopes, R.; Videira, N. How to articulate the multiple value dimensions of ecosystem services? Insights from implementing the PArticulatES framework in a coastal social-ecological system in Portugal. Ecosyst. Serv. 2019, 38, 100955. [Google Scholar] [CrossRef]
- Lopes, R.; Videira, N. Valuing marine and coastal ecosystem services: An integrated participatory framework. Ocean Coast. Manag. 2013, 84, 153–162. [Google Scholar] [CrossRef]
- Chee, Y.E. An ecological perspective on the valuation of ecosystem services. Biol. Conserv. 2004, 120, 549–565. [Google Scholar] [CrossRef]
- Jamouli, A.; Allali, K. Economic valuation of ecosystem services in Africa. E3S Web Conf. 2020, 183, 01002. [Google Scholar] [CrossRef]
- Christie, M.; Hyde, A.; Cooper, R.; Fazey, I.; Dennis, P.; Warren, J.; Colombo, S.; Hanley, N. Economic Valuation of the Benefits of Ecosystem Services Delivered by the UK Biodiversity Action Plan (Defra Project SFFSD 0702); DEFRA: London, UK, 2011.
- Pisani, D.; Pazienza, P.; Perrino, E.V.; Caporale, D.; De Lucia, C. The Economic Valuation of Ecosystem Services of Biodiversity Components in Protected Areas: A Review for a Framework of Analysis for the Gargano National Park. Sustainability 2021, 13, 11726. [Google Scholar] [CrossRef]
- Selivanov, E.; Hlaváčková, P. Methods for monetary valuation of ecosystem services: A scoping review. J. For. Sci. 2021, 67, 499–511. [Google Scholar] [CrossRef]
- Eregae, J.E.; Njogu, P.; Karanja, R.; Gichua, M. Economic Valuation for Cultural and Passive Ecosystem Services Using a Stated Preference (Contingent Valuation Method (CVM)) Case of the Elgeyo Watershed Ecosystem, Kenya. Int. J. For. Res. 2021, 2021, 5867745. [Google Scholar] [CrossRef]
- Ojea, E.; Martin-Ortega, J.; Chiabai, A. Economic Valuation of Ecosystem Services: Conflicts in Classification. In Proceedings of the 9th International and National Webinar on Fisheries and Marine Science (ISFM 9), Riau, Indonesia, 10 September 2010. [Google Scholar]
- Resendea, F.M.; Fernandesa, G.W.; Andraded, D.C.; Néderd, H.D. Economic valuation of the ecosystem services provided by a protected area in the Brazilian Cerrado: Application of the contingent valuation method. Braz. J. Biol. 2017, 77, 762–773. [Google Scholar] [CrossRef] [PubMed]
- Roslinda, E.; Yuliantini, Y. The economic value of hydrological services in Mendalam Sub Watershed, Kapuas Hulu Regency, West Kalimantan, Indonesia. Indones. J. For. Res. 2014, 1, 1–8. [Google Scholar] [CrossRef]
- Balasubramanian, M. Economic value of regulating ecosystem services: A comprehensive at the global level review. Environ. Monit. Assess. 2019, 191, 616. [Google Scholar] [CrossRef]
- Baral, H.; Jaung, W.; Bhatta, L.D.; Phuntsho, S.; Sharma, S.; Paudyal, K.; Zarandian, A.; Sears, R.R.; Sharma, R.; Dorji, T.; et al. Approaches and tools for assessing mountain forest ecosystem services. Work. Pap. 2017, 235. [Google Scholar] [CrossRef]
- Farber, S.; Costanza, R.; Childers, D.L.; Erickson, J.; Gross, K.; Grove, M.; Hopkinson, C.S.; Kahn, J.; Pincetl, S.; Troy, A.; et al. Linking Ecology and Economics for Ecosystem Management. BioScience 2006, 56, 121–133. [Google Scholar] [CrossRef]
- Bullock, J.M.; Aronson, J.; Newton, A.C.; Pywell, R.F.; Rey-Benayas, J.M. Restoration of ecosystem services and biodiversity: Conflicts and opportunities. Trends Ecol. Evol. 2011, 26, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Baral, H.; Keenan, R.J.; Sharma, S.K.; Stork, N.E.; Kasel, S. Economic evaluation of ecosystem goods and services under different landscape management scenarios. Land Use Policy 2014, 39, 54–64. [Google Scholar] [CrossRef]
- Barbier, E.B.; Heal, G.M. Valuing Ecosystem Services. Econ. Voice 2006, 3, 6. [Google Scholar] [CrossRef]
- Turner, R.K.; Morse-Jones, S.; Fisher, B. Ecosystem valuation. Ann. N. Y. Acad. Sci. 2010, 1185, 79–101. [Google Scholar] [CrossRef]
- Salles, J.-M. Valuing biodiversity and ecosystem services: Why put economic values on Nature? C. R. Biol. 2011, 334, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Troy, A.; Wilson, M.A. Mapping ecosystem services: Practical challenges and opportunities in linking GIS and value transfer. Ecol. Econ. 2006, 60, 435–449. [Google Scholar] [CrossRef]
- Effendi, R.; Salsabila, H.; Malik, A. Pemahaman Tentang Lingkungan Berkelanjutan. Modul 2018, 18, 75. [Google Scholar] [CrossRef]
- Raymond, C.M.; Singh, G.G.; Benessaiah, K.; Bernhardt, J.R.; Levine, J.; Nelson, H.; Turner, N.J.; Norton, B.; Tam, J.; Chan, K.M.A. Ecosystem Services and Beyond: Using Multiple Metaphors to Understand Human–Environment Relationships. BioScience 2013, 63, 536–546. [Google Scholar] [CrossRef]
- Lin, Y.P.; Lin, W.C.; Li, H.Y.; Wang, Y.C.; Hsu, C.C.; Lien, W.Y.; Anthony, J.; Petway, J.R. Integrating social values and ecosystem services in systematic conservation planning: A case study in Datuan Watershed. Sustainability 2017, 9, 718. [Google Scholar] [CrossRef]
- Phelps, J.; Dermawan, A.; Garmendia, E. Institutionalizing environmental valuation into policy: Lessons from 7 Indonesian agencies. Glob. Environ. Chang. 2017, 43, 15–25. [Google Scholar] [CrossRef]
- Johnson, D.N.; van Riper, C.J.; Chu, M.; Winkler-Schor, S. Comparing the social values of ecosystem services in US and Australian marine protected areas. Ecosyst. Serv. 2019, 37, 100919. [Google Scholar] [CrossRef]
- Walz, A.; Schmidt, K.; Ruiz-Frau, A.; Nicholas, K.A.; Bierry, A.; de Vries Lentsch, A.; Dyankov, A.; Joyce, D.; Liski, A.H.; Marbà, N.; et al. Sociocultural valuation of ecosystem services for operational ecosystem management: Mapping applications by decision contexts in Europe. Reg. Environ. Chang. 2019, 19, 2245–2259. [Google Scholar] [CrossRef]
- Marupah; Zubair, H.; Rukmana, D.; Baja, S. Economic valuation of erosion. IOP Conf. Ser. Earth Environ. Sci. 2018, 157, 012018. [Google Scholar] [CrossRef] [Green Version]
- Felipe-Lucia, M.R.; Comín, F.A.; Escalera-Reyes, J. A framework for the social valuation of ecosystem services. AMBIO 2015, 44, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Chintantya, D. Peranan Jasa Ekosistem dalam Perencanaan Kebijakan Publik di Perkotaan. Proc. Biol. Educ. Conf. 2017, 14, 144–147. [Google Scholar]
- Bryan, B.A.; Raymond, C.M.; Crossman, N.D.; Macdonald, D.H. Targeting the management of ecosystem services based on social values: Where, what, and how? Landsc. Urban Plan. 2010, 97, 111–122. [Google Scholar] [CrossRef]
- Emerton, L.; Aung, Y.M. The Economic Value of Forest Ecosystem Services in Myanmar and Options for Sustainable Financing; International Management Group: Yangon, Myanmar, 2013. [Google Scholar]
- Emerton, L.; Bishop, J.; Thomas, L. Sustainable Financing of Protected Areas: A Global Review of Challenges and Options; IUCN: Gland, Switzerland, 2006. [Google Scholar]
- Saputra, W.; Halimatussadiah, A.; Haryanto, J.; Nurfatriani, F.; Salminah, M. Designing Policy of Regional Incentive Funds (DID), Specific Purpose Funds (DAK) for Environment and Forestry Sector and Village Funds (DD) Ecological Fiscal Transfers in Indonesia; USAID-Kemitraan: Jakarta, Indonesia, 2021.
- Gutman, P.; Davidson, S. A Review of Innovative International Financial Mechanisms for Biodiversity Conservation with a Special Focus on the International Financing of Developing Countries’ Protected Areas; WWF: Washington, DC, USA, 2007. [Google Scholar]
- Barbier, E.B. Valuing ecosystem services as productive inputs. Econ. Policy 2007, 22, 178–229. [Google Scholar] [CrossRef]
- Freeman, A.M., III; Herriges, J.A.; Kling, C.L. The Measurement of Environmental and Resource Values: Theory and Methods; Routledge: London, UK, 2014. [Google Scholar]
- Bayon, R.; Lovink, J.S.; Veening, W.J. Financing Biodiversity Conservation; Citeseer: Washington, DC, USA, 2000. [Google Scholar]
- Panayotou, T. Taking stock of trends in sustainable development finance since Rio. In Proceedings of the Finance for Sustainable Development: The Road Ahead, Santiago, Chile, 8–10 January 1997. [Google Scholar]
- Nurfatriani, F.; Satrio, A.E. Urgensi Pendanaan Pembangunan Berbasis Ekologi. Dalam Pendanaan Pembangunan Berbasis Ekologi di Provinsi Kalimantan Timur. In Tinjauan Atas Skema Result Based Payment Sebagai Insentif REDD+; Nurfatriani, F., Dharmawan, I.W.S., Eds.; IPB Press: Bogor, Indonesia, 2020. [Google Scholar]
- Fiskal, B.K. Pendanaan Publik Untuk Pengendalian Perubahan Iklim Indonesia 2016–2018; Badan Kebijakan Fiskal: Jakarta, Indonesia, 2019.
- Direktorat Mobilisasi Sumberdaya Sektoral dan Regional. Menuju Operasionalisasi Pendanaan Iklim; Direktorat Mobilisasi Sumberdaya Sektoral dan Regional (Direktorat MSSR); Kementerian Lingkungan Hidup dan Kehutanan: Jakarta, Indonesia, 2017.
- Dhewanthi, L. Kebijakan dan strategi pendanaan perlindungan dan pengelolaan lingkungan hidup. In Proceedings of the Perbaikan Tata Kelola dan Dukungan Pendanaan Perubahan Iklim di Daerah, Jakarta, Indonesia, 23 April 2020. [Google Scholar]
- Krott, M. Forest Policy Analysis; Springer Science & Business Media: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Aryal, K.; Bhatta, L.D.; Thapa, P.S.; Ranabhat, S.; Neupane, N.; Joshi, J.; Shrestha, K.; Shrestha, A.B. Payment for ecosystem services: Could it be sustainable financing mechanism for watershed services in Nepal? Green Financ. 2019, 1, 221–236. [Google Scholar] [CrossRef]
- Blackman, A.; Woodward, R.T. User financing in a national payments for environmental services program: Costa Rican hydropower. Ecol. Econ. 2010, 69, 1626–1638. [Google Scholar] [CrossRef]
Program | Target | Realization |
---|---|---|
Food Estate | Establishing food estates in four provinces: Central Kalimantan, Papua, North Sumatra, and South Sumatra | The program was underway in 115 villages, 50 sub-districts and two districts/municipalities in the four provinces in 2020 |
Agrarian Land Reform (TORA) | 4.1 million ha | 2.6 million ha in 2020 |
Social Forestry | 12.7 million ha | 1.7 million ha in 2020 |
No. | Program | The Parties | Agreement | Result | Source |
---|---|---|---|---|---|
1. | River Care Program in the Way Besai watershed, Lampung | Farmers as providers of ecosystem services, and PT PLN Lampung’s Besai Hydroelectric Power Plant as user | The project goal is to reduce sedimentation by 30% within one year; in return, PT PLN will award micro hydro equipment worth IDR 20 million | The community carried out the content of the agreement effectively, with 86% of activities being successful; sediment concentrations fell by 20% | Pasha, et al. [254] |
2. | PES Mechanism Initiative in the Cidanau watershed | Krakatau Titra Industry Inc., upstream farmers in the Cidanau watershed, and Cidanau Watershed Communication Forum as a mediator | Industries in downstream areas that utilize Cidanau watershed ecosystem services provide compensation of IDR 1.2–1.75 million per ha per year to several groups of upstream farmers to manage their land in a sustainable manner | Improved awareness among farmer groups about planting more trees (more than 12,500 trees on 25 ha) | Laila, et al. [255] |
3. | Program for water source protection for PDAM Menang, Mataram, West Nusa Tenggara | Farmer Water Users Association (P3A) and an association of PDAM customers, accompanied by Samdhana | PDAM users pay conservation fees for the protection of catchments that provide water sources for Mataram in Lombok | 90% of customers are willing to pay conservation fees of IDR 1000–5000/month | Fauzi and Anna [256] |
4. | Building a mechanism for upstream–downstream relations in water resource conservation in the Citarum watershed (Cikapundung sub-watershed) | Giri Putri and Surga Air farmer groups with PT Aetra, BPLHD as a facilitator, and LP3ES as a companion | PT Aetra pays compensation of IDR 40,504,500 in stages for seed procurement and planting activities to two groups of upstream farmers for soil and water conservation activities through planting, maintenance, and other activities related to efforts to preserve watershed functions | The program has yet to fully meet the criteria for a sustainable PES mechanism (realistic, voluntary, conditional, and pro-poor) | Napitupulu, et al. [257] |
No. | Level | Traditional Finance Mechanisms | Innovative Finance Mechanisms |
---|---|---|---|
1 | Local |
|
|
2 | National |
|
|
3 | International |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nugroho, H.Y.S.H.; Nurfatriani, F.; Indrajaya, Y.; Yuwati, T.W.; Ekawati, S.; Salminah, M.; Gunawan, H.; Subarudi, S.; Sallata, M.K.; Allo, M.K.; et al. Mainstreaming Ecosystem Services from Indonesia’s Remaining Forests. Sustainability 2022, 14, 12124. https://doi.org/10.3390/su141912124
Nugroho HYSH, Nurfatriani F, Indrajaya Y, Yuwati TW, Ekawati S, Salminah M, Gunawan H, Subarudi S, Sallata MK, Allo MK, et al. Mainstreaming Ecosystem Services from Indonesia’s Remaining Forests. Sustainability. 2022; 14(19):12124. https://doi.org/10.3390/su141912124
Chicago/Turabian StyleNugroho, Hunggul Yudono Setio Hadi, Fitri Nurfatriani, Yonky Indrajaya, Tri Wira Yuwati, Sulistya Ekawati, Mimi Salminah, Hendra Gunawan, Subarudi Subarudi, Markus Kudeng Sallata, Merryana Kiding Allo, and et al. 2022. "Mainstreaming Ecosystem Services from Indonesia’s Remaining Forests" Sustainability 14, no. 19: 12124. https://doi.org/10.3390/su141912124